
A Missing Proofs

A.1 Proof of Theorem 3.4

Theorem (Restatement of Theorem 3.4 ). A review graph G is recovery-resilient if and only if the
review graph G has a doubly-connected component S that covers all items, i.e. C(S) = [N ].

Proof. Proof of Sufficiency. We first consider the “if” direction. That is, the qualities of all items
covered by a doubly-connected component can always be perfectly recovered by any solution of
LP (3). Without loss of generality, in the following argument, we fix any given review scores, any
solution of LP. Following the design of Algorithm 1, we present a bottom-up induction proof.

Base case: the smallest unit of a doubly-connected component is a single vertex, which represents
some reviewer i. According to the linear constraint in LP (3), the recovered qualities x of all items in
Ii must be a linear transformation of their review scores yi by reviewer i. As these review scores yi
are also a linear transformation of the true qualities x⇤, so the recovered qualities x solved by the LP
(3) must be a linear transformation of the true qualities x⇤. In another word, the solution of the LP
(3) must perfectly recover the qualities of all items in Ii.

Inductive case: Given two doubly-connected components A,B, and the solution of LP (3) restricted
to A,B is a perfect recovery respectively to the items covered by A and B. This means, by definition,
we have kA, kB > 0 and bA, b2 such that xA = kAx⇤

A + bA, xB = kBx⇤
B + bB , where xA, x⇤

A and
xB , x⇤

B are the recovered vector of qualities and true qualities indexed by items in A,B. According
to Algorithm 1, if A and B share at least 2 commonly covered items, then their union D = A [B
is also a doubly-connected component. We show that the solution of (3) must perfectly recover the
qualities of items covered by D.

Let u, v be two of the items covered by both component A and B. Denote their recovered (by LP (3)
restricted to D) and true qualities be xu, x⇤

u and xv, x⇤
v respectively. Let xA, xB denote the recovered

x when restricted to A,B respectively. By definition, xA [resp. xB] is a feasible solution to LP
(3) restricted to A [resp. B]. Our induction hypothesis thus implies that there are the two linear
functions xA = kAx⇤

A + bA, xB = kBx⇤
B + bB . Note that xu, xv should appear in both vector

xA and xB . That means these two linear functions xA = kAx⇤
A + bA, xB = kBx⇤

B + bB intersect
at both (xu, x⇤

u) and (xv, x⇤
v). Since item true qualities x⇤ are assume to be unequal for any two

different items, the only possibility when the two linear functions have two intersections is that they
are identical, i.e., kA = kB , bA = bB . This implies the entire xD vector where D = A [ B must
satisfy xD = kA · x⇤

D + bA. That is, recovered qualities in both xA, xB follow the same linear
transformation from the true qualities. Therefore, all items covered by D can be perfectly recovered
by the solution of LP (3).

Proof of Necessity. For the “only if” direction, we prove its contrapositive statement. That is, if
there is no doubly-connected component S that covers all items in the review graph, then there must
exist some paper assignment that induces review graph G and some review scores under which the
solution to LP (3) cannot perfectly recover the true scores.

We start with a few simplifications, that are without loss of generality. First, according to the above
proof of “if” direction, we know that papers within any doubly connected component in the review
graph can be perfectly recovered. This means we can replace each of these components by a single
vertex, i.e., a single reviewer, with some linear scoring function, who reviewed all the items covered
by this doubly connected component. After this transformation, the new review graph will have at
most one edge connecting any two vertices. Second, to construct paper assignment that induces this
review graph, we will let each edge e = (i, j) in the given review graph correspond to a unique item
e, which is only reviewed by reviewer i, j, but no one else.

Let x 2 RN be an arbitrary vector solution to LP (3) which contains the recovered qualities of all the
N items. Without loss of generality, we will pick x as the true quality x⇤ since we know x⇤ must be a
feasible solution as well. Next we will show there exists another solution ex 2 RN to the LP (3) such
that ex is not linear to x⇤ (i.e., their corresponding entries do not have linear relation). This implies
perfect recoverability is not possible by definition.

To construct ex, we will craft a linear function for every reviewer i determined by coefficient ki and
constant bi. That is, for every item u reviewed by reviewer i, we let exu = kix⇤

u + bi, where ki, bi are
to be determined later. We wish to set item u’s constructed score as exu. If we could succeed in doing
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so, then as long as ki 6= kj for all i, j, then ex cannot have a linear relation with x⇤, which completes
our proof. However, there are some constraints to be satisfied when setting exu as item u’s constructed
score, which is why we have to pick {ki, bi}i2[M ] and x⇤ carefully. The constraints come from edges
of the graph: each edge e = (i, j) connecting reviewer i and j corresponds to an item e that reviewer
i, j both reviewed. This will require the constructed scores, when viewed from i’s and j’s perspective,
have to be consistent, i.e.,

kix
⇤
e + bi = kjx

⇤
e + bj , 8e

which both equal the constructed exe.

Since recovery-resilience of a review graph needs to hold for any given underlying true qualities,
to disapprove it we only need to identify one set of true item qualities to satisfy our construction.
Towards that end, we will use the following construction: ki =

p
pi, bi = pi, 8i 2 [M ], where pi is

the ith smallest prime number from 2. Given these {ki, bi}i2[M ] , we then let

x⇤
e = �

bi � bj
ki � kj

= �
pi � pj
p
pi �

p
pj

= �
p
pi �

p
pj , for all edge e = (i, j).

It is easy to verify that the above construction does satisfy kix⇤
e + bi = kjx⇤

e + bj for any edge
e = (i, j). Moreover, no two edges with e = (i, j), e0 = (i0, j0) can have their quality exe = exe0

because for any four pi, pj , pi0 , pj0 with at least two unique prime pi, pi0 , it is impossible that
p
pi +

p
pj =

p
pi0 +

p
pj0 . To see this, if we take the square of both side, this will lead to

2
p
pipj � 2

p
pi0pj0 = pi + pj + pi0 + pj0 . Now if we take the square of both sides again, we have

�8
p
pipjpi0pj0 = (pi + pj + pi0 + pj0)2 � 4(pipj + pi0pj0). However, the RHS is rational, yet the

LHS must be irrational since at least pi, pi0 are unique prime number, a contradiction. Therefore, our
construction of ex is indeed valid. This concludes that the review graph with no more than one edge
cannot be recovery-resilient.

A.2 Proof of Theorem 3.6

Theorem (Restatement). Convex Program (4) is equivalent to LSC with H = HL(C) in the following
sense: for any optimal solution (x⇤, ✏⇤) to (4), there exists f⇤ = {f⇤

j 2 HL(C)}j2[M ] such that
(x⇤, ✏⇤, f⇤) is optimal to (2).

Proof. For any optimal solution (x⇤, ✏⇤) to (4), we can linearly interpolate points {(x⇤(I`j )+✏
`⇤
j , y`j)}l

and construct the linear function f⇤
j (x) = ↵x+ � with ↵ =

y`
j�y`�1

j

ex`
j�ex`�1

j

and � = y`j � ↵x
⇤(I`j ), for all

j 2 [M ], 2  `  |Ij |. Therefore, (x⇤, ✏⇤, f⇤ = {f⇤
j }j2[M ]) is a feasible solution to LSC and thus

the optimal objective of LSC is at least that of LP (4).

To show that the optimal objective of LCS is at most that of LP (4), observe that any feasible solution
to LSC must satisfies the linear equality constraint of LP (4) because

1

↵j
=

ex`
j � ex`�1

j

y`j � y`�1
j

=
ex`+1
j � ex`

j

y`+1
j � y`j

8j 2 [M ], 2  `  |Ij |

which is precisely the linear equaltiy constraints of LP (4). This implies that the feasible region of
LP (4) contains the feasible region of LSC restricted to x, ✏. Therefore, the optimal objective of LSC
is also at most that of LP (4), as desired.

A.3 Proof of Theorem 4.2

Theorem (Restatement). The `2 Matrix Seriation (4.1) problem can be solved by the following
Functional Optimization Problem.

min
x,f

MX

j=1

|Ij |X

`=1

(✏`j)
2 (8)

s.t. y`j = fj(x(I
`
j )) + ✏`j 8j 2 [M ], `  |Ij |

fj 2 Hmono j 2 [M ]
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Proof. We can represent reviewers’ scores as a matrix A 2 Rm⇥n where each row represents the
scores given by a specific reviewer, and each column represents the scores received by a specific
item. Therefore, Ai,j represents reviewer i’s score for item j. Note that Ai,j is a partial matrix. Ai,j

is empty if reviewer i does not review item j. Starting with an empty matrix B, we fill Bj,I`
j

with
fj(x(I`j )) = y`j � ✏

`
j for all j 2 [M ], `  |Ij |, which is obtained from the solution of the Functional

Optimization Problem (8).

Note that

kA�Bk2 =
MX

j=1

|Ij |X

`=1

(y`j � fj(x(I
`
j )))

2 =
MX

j=1

X

`|Ij |

(✏`j)
2

which is exactly what FOP (8) minimizes.

In addition, because all scoring functions are monotonically increasing, it means each row of B
preserves the order according to items’ qualities x. In other words, for any i, j 2 [m], p, q 2 [n] we
have

Bi,q  Bi,p () Bj,q  Bj,p

Therefore, (8) solves the matrix seriation problem.

B Additional Details and Results for Experiments

In this section, we provide a detailed description of our data generation procedure, as well as various
experiments to better understand the strength and limitation of our calibration framework.

B.1 Dataset Generation

Our synthesized data generation follows the procedure below. For the ease of reproduction, we also
include the implementation details in the our released code in supplemental materials.

Paper qualities. Without loss of generality, we restrict the true qualities of papers to be within
[0, 10]. We randomly sample the true quality of each paper from a Gaussian distribution x ⇠
N (5, 1.6). This choice of parameter ensures roughly 99.8% of the true qualities fall within [0.2, 9.8].
We truncate the value to 0 or 10 if any sample falls below or above the [0, 10] interval.

Paper assignment and review graph. We randomly assign each paper to a pool of reviewers
under the natural constraint that a paper should be reviewed at least bkM/Nc, according to the
Algorithm 2. Meanwhile, for the experiment shown in Figure 2, we generate the review graph of
double connectivity, according to Algorithm 3. The function choose(S, k) there is to randomly
sample from the set S for k elements without replacement.

Paper scores. We randomly assign a scoring function to each reviewer to compute their review
scores.

To generate a linear scoring function, f(x) = kx + b, we draw the parameter k ⇠ U(0, 2) and
b ⇠ N (0, 2).

To generate a concave function, we take a random linear combination between a set of monotone
concave functions {c2 ·

p
x, c3 · 3

p
x, c4 · 4

p
x}, where the weight of each function is sampled uniformly

random according to cp ⇠ U(1, 10
pp10

), 8p 2 {1, 2, 3, 4}.

To generate a convex function, we take a random linear combination between a set of monotone
convex functions {c1 · x2, c2 · x2.5, c3 · x3

} where the weight of each function is sampled uniformly
random according to c1, c2, c3 ⇠ U(0, 1).

To generate an arbitrary monotone function, we randomly sample k values from [0, 10] in increasing
order and assign them to papers in the corresponding order.

In addition, for the noisy case, a zero-mean Gaussian error ✏ ⇠ N (0,�) is added to the true qualities
of the papers for each reviewer-paper pair as the percetion error before applying each reviewer’s
scoring function.
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Algorithm 2 Random Assignment
input N papers, M reviewer, k papers per reviewer

1: b bkM/Nc # minimum number of reviews requires for each paper
2: V  ; # set of papers that have met the minimum requirement
3: usage {} # map for the number of reviews of each paper
4: for i 2 {1 . . .M} do
5: S1  choose ([N ]/V,min(k,N � |V |))

# sample as many papers that have not met the minimum requirement
6: S2  choose (V, k � |S1|))

# sample the remaining papers so the reviewer gets k papers
7: Ti  S1 [ S2

8: for j 2 Ii do
9: usage[j] usage[j] + 1

10: if usage[j] >= b then
11: V  V + j
12: end if
13: end for
14: end for
15: return {Ii}i2[M ]

Algorithm 3 Random Assignment with Double Connectivity
input N papers, M reviewer, k > 2 papers per reviewer

1: b bkM/Nc # minimum number of reviews requires for each paper
2: usage {} # map for the number of reviews of each paper
3: V  ; # set of papers that have met the minimum requirement
4: I1  choose([N ], k) # sample any k papers for reviewer 1
5: T  I1 # set of papers that have been assigned
6: usage[j] 1, 8j 2 I1
7: for i 2 {2 . . .M} do
8: S1  choose([N ]/T,max(k � 2, N � |T |))

# sample as many unassigned papers
9: S2  choose(T/V,min(2, |T |� |V |))

# sample as many as 2 assigned papers that have not met minimum requirement
10: S3  choose(V, k � |S1|� |S2|)

# sample the remaining papers so the reviewer gets k papers
11: Ii  S1 [ S2 [ S3

12: T  T [ Ii
13: for j 2 Ii do
14: usage[j] usage[j] + 1
15: if usage[j] >= b then
16: V  V + j
17: end if
18: end for
19: end for
20: return {Ii}i2[M ]
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B.2 Experiments for Remark 3.5

Figure 2: Performance comparisons of LSC with linear constraints between randomly generated
review graph (green bar) and randomly generated doubly connected reviewed graph (orange
bar) under different level of noise scale with N = 1000,M = 350, k = 5.

In Figure 2, we are able to directly verify our Theorem 3.4 that a randomly generated graph of double
connectivity is indeed recovery-resilient, as it is able to achieve the bona fide perfect precision in the
noiseless setting. In addition, the topological structure of double connectivity is also less prone to the
perception noise, compared to a review graph generated from a completely random assignment.

B.3 Additional Experiments and Discussions on the Effects of Prior Knowledge

Figure 3: Performance comparisons in the noisy (� = 0.5) and mixed setups with linear scoring
functions and arbitrary monotone functions. Only LSC (mix) has prior knowledge of every reviewer’s
scoring function type.

In Section 5.3, we demonstrate the robustness of our model under the situation when the prior
knowledge is misspecified. In Figure 3, we can see that, under the noisy setting, our model still
outperforms all the baselines. However, it turns out that the influence of whether the prior knowledge
is misspecified or not is rather minimal, compared the noiseless setting. Similar pattern is observed
in Table 3, where the scoring functions consist of 1/3 monotonic increasing function, 1/3 convex
functions, and 1/3 concave functions (all randomly generated). Only LSC (mix) has the exact prior
knowledge of every reviewer’s scoring function type. The LSC model can effectively utilize such the
prior knowledge. We can see significant improvement of the precision under noiseless setting, though
such improvement is minor in the more noisy setting. On one hand, our model is indeed able to fit for
a wide range of function classes so that more prior knowledge can lead to better calibration. On the
other hand, these observations also suggest that with the presence of more perception noise, it could
be more beneficial to pick a robust model rather than fixating on an accurate prior knowledge for
better calibration results. This justifies the usage of our model for the cases even without strong prior
knowledge.
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Model
Metric Pre. (%) Avg. Gap Pre. (%) Avg. Gap

Average 39.9 ± 2.5 0.70 ± 0.06 38.6 ± 3.5 0.76 ± 0.07
QP 76.4 ± 3.0 0.13 ± 0.02 69.8 ± 4.5 0.21 ± 0.05

Bayesian 54.4 ± 3.1 0.40 ± 0.03 51.1 ± 3.6 0.48 ± 0.04
LSC (mono) 76.4 ± 3.9 0.13 ± 0.03 68.8 ± 3.2 0.22 ± 0.02
LSC (linear) 76.4 ± 3.8 0.14 ± 0.02 67.7 ± 3.1 0.22 ± 0.03
LSC (mixed) 93.2 ± 2.5 0.02 ± 0.01 71.1 ± 3.4 0.18 ± 0.03

Table 3: Experimental results for mixed scoring functions setting on the baselines and LSC with
monotone, linear or mixed (given the prior knowledge) constraints. Each entry contains the mean and
standard deviation over 20 trials. The table on the left and right side respectively shows the results in
the noiseless (� = 0) and noisy (� = 0.5) setting.

Figure 4: The experiments evaluate the performance of baseline models as well as the LSC under
monotone or linear constraints. The first plot shows how the algorithms’ performance changes
according to k, the number of papers assigned to each reviewer in the noiseless (� = 0) setting,
the second plot shows the performance change in the noisy (� = 0.5) setting.

B.4 Additional Empirical Study

In real applications such academic conferences, the calibration framework could face very different
setups. For example, the PKC-2020 [14] conference has 180 submission with an acceptance rate of
0.24 while the AAAI-2020 [2] conference has 8800 submitted papers. It is crucial to investigate and
understand the performance of our model at different scales of hardness. Therefore, we conduct a set
of empirical studies with datasets generated by different hyperparameters.

The number of papers k assigned to each reviewer Since reviewers can professionally review
a large amount of papers in practice, we compare the algorithm performance under different k,
changing from 3 to 7, as shown in the first column of Figure 4. We observe improved performance as
the number k of papers per reviewer increases. Interestingly, it turns out that k = 6 serves as a sweet
spot to balance reviewers’ workload and the calibration performance since after k = 6 the calibration
quality starts to increases only mildly. Our model LSC (linear) can always perfectly recover the true
qualities of the best papers under the noiseless case even when each reviewer only reviews 3 papers.

The paper to reviewer ratio (N : M ) While we assume a 1 : 1 ratio between the number of
papers and reviewers in our standard setup, there is sometimes less reviewers than papers in large
academic conferences.9 To understand the algorithm performance under different paper to reviewer
ratios, we test a 3 : 2 ratio and 2 : 1 ratio by fixing other hyperparameters (e.g., k = 5, N = 1000).
As can be seen in Figure 5, comparing to the performance drop with a smaller k in the Figure 4, the
decrease in the number of reviewer has similar effect on our models, but is a relatively less important

9For example, NeurIPS-2019 [25] receives 6743 submissions and has around 4500 reviewers, leading to a
paper to reviewer ratio around 3 : 2.
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Figure 5: The experiments evaluate the performance of baseline models as well as the LSC under
monotone or linear constraints. The first plot shows how the algorithms’ performance changes
according to N : M , the paper to reviewer ratio in the noiseless (� = 0) setting, the second plot
shows the performance change in the noisy (� = 0.5) setting.

Figure 6: The experiments evaluate the performance of baseline models as well as the LSC under
monotone or linear constraints. The plot shows how the algorithms’ performance changes according
to sigma, the noise scale.

factor for the performance. Our model LSC (linear) can always perfectly recover the true qualities of
the best papers under the noiseless case even when the reviewer to paper ratio is 1 : 2.

The noise scale � All the previous empirical studies are to understand the impact from the structure
of the review graph. Finally, we explore a different dimension that adds difficulty to calibration,
i.e., the noise scale of perception. Results are shown in Figure 6. We can see that while the
performance our proposed calibration model degrades gracefully as the noise scale increases, it
steadily outperforms all the baseline methods. Among them, the Bayesian model is most robust
against the noise, while the QP algorithm is very sensitive to noise. Moreover, as noise scale increases,
the advantage of LSC (linear) over LSC (mono) gradually disappears. This is because large noise
level makes the prior knowledge of linear scoring function less useful, as we have pointed out in
Appendix B.3.

B.5 Performance Comparison in Rank-Aware Metrics

In this section, we further investigate the quality of our calibration through rank-aware metrics, that
are typically used in the evaluation of information retrieval and recommendation system. Specially,
we consider the following metrics that are designed to measure different aspects of ranking:

• Average L1 !(x;x⇤) = 1
N

P
i2[N ] |Rank(i|x⇤) � Rank(i|x)| where Rank(i|x) is the rank of

paper i under scores x. It measures the L1 distance of each item’s ranking given respectively by
the true qualities and the recovered qualities. It is used to quantify how close the recovered ranking
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is to the true ranking. The smaller this distance is, the closer the recovered ranking is to the ranking
of true qualities.

• Average Precision (AP) �(S, T ) = 1
p(|S|)

P
i2|S| p(i) · 1[i 2 T ] where p(i) is the number of

papers that are in T and ranked at least as high as i in S. It measures if the items in T are indeed
recovered with relatively high quality by the model as the accepted papers. The larger this metric
is, the better.

• Normalized Discounted Cumulative Gain (NDCG)  (S, T ) =
P

i2|S| log
�1(Rank(i|x)+1)·1[i2T ]

P
i2|S| log

�1(Rank(i|x)+1)
.

Similar to AP, it measures the ranking quality of the items that are both in S and T . In particular,
the smooth logarithmic discounting factor has a good theoretical basis [28]. The larger this metric
is, the more top papers in T are recovered with high qualities in S.

Note that the average L1 metric does not apply to Bayesian model, because it is designed to estimate
the likelihood of each paper getting accepted, and thus cannot provide reasonable quality estimation
of the unaccepted papers. In Table 4, we can see that our proposed LSC model with linear constraint
still have the best performance in the three different ranking metrics. Meanwhile, the performance
of QP in ranking metrics under the noiseless setting is close to perfect, which suggests that this
baseline only accepts very few papers that should be rejected and ranked them relatively low among
the accepted papers. The Bayesian model however is more robust, as its performance drops the least
from noiseless to noisy setting.

Model
Metric Avg. L1 AP (%) NDCG (%) Avg. L1 AP (%) NDCG (%)

Average 209.7 ± 6.2 60.8 ± 7.9 45.6 ± 4.4 206.6 ± 6.6 61.1 ± 6.6 45.8 ± 4.4
QP 5.5 ± 2.2 99.8 ± 0.4 97.9 ± 1.2 79.7 ± 14.2 74.2 ± 9.0 68.9 ± 6.9

Bayesian N/A 87.1 ± 5.7 75.9 ± 4.3 N/A 83.2 ± 5.6 71.4 ± 4.0
LSC (mono) 34.4 ± 3.0 99.4 ± 0.3 93.9 ± 1.4 69.0 ± 2.8 89.1 ± 3.7 79.2 ± 2.4
LSC (linear) 0 ± 0 100 ± 0 100 ± 0 54.5 ± 2.0 95.4 ± 1.6 84.7 ± 2.3

Table 4: Experimental results for linear scoring functions setting on the Average, QP [21],
Bayesian [10], and LSC with monotone, and linear constraints. Each entry contains the mean
and standard deviation over 20 trials. The table on the left and right side respectively shows the
results in the noiseless (� = 0) and noisy (� = 0.5) setting.

B.6 More results on Peer-Grading Dataset

In this section, we include more results on the Peer-Grading Dataset. Each homework has about 250
submissions and 200 student reviewers; each submission have at least 6 reviews. However, due to the
different settings and difficulty levels of each homework, the calibration results are slightly different.
We here include all of these results in Figure 7.

We can see that the performance of average baseline is generally good in the Precision metric, but
bad in the ranking metric. This suggests it is important to dig into the ranking metric on how the
recovered quality can match the ground truth order. Each baseline seems to have certain scenario
that they can top the remaining models. And this potentially means our models designed for peer
reviews may not be sufficient to model all the factors in the peer grading tasks. However, to our best
effort, this is the only real-world dataset to test our model performance beyond synthesized dataset.
And it is fair to conclude that LSC (linear) does show the overall best and most stable calibration
performance in different ranking metrics for different n.
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Figure 7: Experimental results on Peer-Grading dataset. In each plot, the performance of each model
is compared in six different homework. n is set as the 20%, 50% of total papers to be selected in
the plots of each row from top to bottom. We use the metric, Precision, NDCG in the plots of each
column from left to right.
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