Supplementary Material for Paper "Universal Semi-Supervised Learning"

In this supplementary material, we first provide the implementation details of our CAFA method
and the baseline methods in Section A. Then we will explain the dataset establishment in Section B.
Moreover, we will conduct additional experiments to further evaluate our method in Section C.
Furthermore, we provide the standard deviation results that correspond to the main paper in Section D.
Finally, we will discuss the limitations and social impact of our method in Section E.

8 A Implementation Details

1

⁹ To achieve a fair comparison, we investigate all algorithms with the same backbone network structure 10 ResNet-50 [5]. In the CIFAR-10 dataset, we choose a batch size of 100, and in Office-31 and 11 VisDA2017 datasets, we set the batch size to 64. For each iteration, the labeled data and unlabeled 12 data are sampled in the same size, which equals half of batch size. The network training for all 13 methods is iterated 10,000 times. We use an SGD optimizer with a weight decay factor of 5×10^{-4} 14 after 8,000 iterations. Other implementation details are presented below.

15 A.1 Network Structure

Table 1: Architecture of our discriminator D and D'.

Apart from the shared backbone network F, our method con-16 tains a classifier C and two identical discriminators D and D'. 17 The classifier C is one fully connected layer that maps the 18 feature representations to label predictions. The discriminators 19 D and D' have the same structure as [13], which is shown 20 in Table 1. For the adversarial discriminator D, we imple-21 ment the adversarial process using gradient reversal layer [3]. 22 On the other hand, the training process of the non-adversarial 23 discriminator D' is detached from the backbone network F. 24

Layer	Hyper-Parameters
GRL	flip-coefficient
Linear	128→1,024
ReLU	
Dropout	p = 0.5
Linear	1,024→1,024
ReLU	
Dropout	p = 0.5
Linear	$1,024 \rightarrow 1$
Sigmoid	

25 A.2 Hyper-parameters

30 **B**

The trade-off parameters γ and δ ramp up from 0 to 1 by following the functions $\gamma = \exp(-5 \times (1 - \min(\frac{iter}{8,000}, 1))^2)$ and $\delta = \exp(-5 \times (1 - \min(\frac{iter}{4,000}, 1))^2)$, respectively, where *iter* denotes the

current iteration. For other compared SSL methods, we follow [9] by using different hyper-parameter settings, which are shown in Table 2.

Dataset Establishment

We have specified the classes that are chosen to construct C^l and C^u in the main paper, here we present other details for the establishment of our datasets with mismatched classes.

CIFAR-10 is a typical dataset for SSL. It is composed of 50,000 training instances and 10,000 33 test instances collected from 10 natural categories. We use CIFAR-10 to create datasets with class 34 distribution mismatch. For subset mismatch, there are 2,400 labeled training instances are chosen from 35 36 C^{l} , *i.e.*, 400 labeled instances per class. Then, we choose 20,000 unlabeled training instances from \mathcal{C}^{u} . Since $|\mathcal{C}^{u}|$ varies in different situations, there are approximately 2,222 unlabeled instances from 37 each class for the subset mismatch and approximately 3,333 unlabeled instances for the intersectional 38 mismatch. Furthermore, we select 5,000 test instances that belong to \mathcal{C}^{l} to evaluate the performance 39 of our method. 40

Office-31 dataset is used to create a feature distribution mismatch by choosing the labeled and unlabeled data from different domains. It contains 3 domains: "Amazon" (A), "DSLR" (D), and "Webcam" (W), and each domain is composed of 31 classes. By changing the chosen domains, we have 6 combinations to form the labeled and unlabeled datasets: A/D, A/W, D/A, D/W, W/A, and W/D. For each combination, we choose 100 labeled instances from the classes in C^l , *i.e.*, 5 labeled instances per class, and sample 400 unlabeled instances (we conduct up-sampling for some domains containing less than 400 instances) from the classes in C^u , *i.e.*, 20 unlabeled instances per class for

Table 2: Hyperparameter settings of the compared SSL me Shared	cilious.
learning rate decay factor	0.2
# training iteration in which learning rate decay starts	400,000
# training iteration in which consistency coefficient ramp up starts	200,000
Supervised	
Initial learning rate	0.003
П -Model [6, 10]	
Initial learning rate	3×10^{-4}
Max consistency coefficient	20
Mean Teacher [12]	
Initial learning rate	4×10^{-4}
Max consistency coefficient	8
Exponential moving average decay	0.95
VAT [8]	
Initial learning rate	0.003
Max consistency coefficient	0.3
ϵ	6.0
ξ	10^{-6}
Pseudo-Label [7]	
Initial learning rate	0.003
Max consistency coefficient	0.3
Pseudo-Label threshold	0.95
MixMatch [1]	
Initial learning rate	0.003
Augmentation number	2
Beta distribution α	0.75
FixMatch [11]	
Initial learning rate	0.003
Pseudo-Label threshold	0.95
UASD [2]	
Initial learning rate	0.003
Ensemble size	10
DS3L [4]	
Initial learning rate for backbone network	0.003
Initial learning rate for meta network	0.001
Initial learning rate for weighting network	6×10^{-5}
MTCF [14]	
Initial learning rate	0.003

Table 2: Hyperparameter settings of the compared SSL methods.

subset mismatch and approximately 13 unlabeled instances per class for the intersectional mismatch. Moreover, we sample 500 test instances in C^l from the labeled domain to form a test set.

VisDA2017 focuses on transferring knowledge from the simulated objects to real-world objects. It
 contains a training dataset sampled from a simulation domain and a validation dataset sampled from

⁵² a reality domain, and each domain contains 12 classes. Here we choose 1,800 real-world instances

from the classes in C^l to form our labeled set, *i.e.*, 200 labeled instances per class. We choose 20,000

simulated instances from the classes in C^u to construct our unlabeled set, *i.e.*, approximately 1,667

⁵⁵ unlabeled instances per class for the subset mismatch and 2,222 unlabeled instances per class for the ⁵⁶ intersectional mismatch. Additionally, we choose 1,000 real-world instances in C^l to compose the

57 test set.

Table 3: Ablation studies on different model configurations. We report the averaged test accuracies \pm standard deviations (%) over three runs on Office-31 and VisDA2017 dataset with feature distribution mismatch and class distribution mismatch. The best results are highlighted in **bold**. The notation "W/A" denotes that the labeled data are from W domain and unlabeled data are from A domain.

	Subset N	lismatch	Intersectional Mismatch		
Method	Office-31 (W/A)	VisDA2017	Office-31 (W/A)	VisDA2017	
w/o Class-Sharing Data Detection w/o Feature Adaptation w/o Detection & Adaptation (PI) CAFA-PI	$\begin{array}{c} 65.76 \pm 8.49 \\ 56.84 \pm 5.92 \\ 48.34 \pm 1.21 \\ \textbf{74.13} \pm \textbf{6.02} \end{array}$	$\begin{array}{c} 61.91 \pm 1.04 \\ 39.70 \pm 1.73 \\ 17.54 \pm 10.5 \\ \textbf{88.86} \pm \textbf{1.42} \end{array}$	$\begin{array}{c} 70.65 \pm 4.53 \\ 51.41 \pm 7.13 \\ 46.85 \pm 0.33 \\ \textbf{73.69} \pm \textbf{2.16} \end{array}$	$\begin{array}{c} 56.31 \pm 1.57 \\ 38.52 \pm 2.18 \\ 26.83 \pm 12.3 \\ \textbf{86.30} \pm \textbf{1.31} \end{array}$	

58 C Ablation Study

In the main paper, we have provided the evaluation of the effectiveness of our method as well as some 59 performance analyses. Here we conduct an ablation study to examine each module of the proposed 60 CAFA framework, which includes class-sharing data detection and feature adaptation. Firstly, we 61 conduct our framework without class-sharing data detection. Then we remove the feature adaptation 62 module and conduct semi-supervised training on the detected class-sharing data. At last, we remove 63 all the two modules and train the network using pure SSL. Here we use PI as the backbone method. 64 The experimental results are shown in Table 3. We can see that all other model configurations have 65 performance drops than the original CAFA framework. Hence both the two modules are essential for 66 dealing with the open-set problems. 67

68 D Evaluation Results with Standard Deviation

In this section, we present the accuracy \pm standard deviation of the evaluation results from the main paper, which are shown in Tables 4, 5, 6, and 7.

Table 4: Averaged test accuracies \pm standard deviations (%) over three runs on CIFAR-10 with class distribution mismatch. The best results are highlighted in **bold**.

N. 4 1	CIFAR-10					
Method	Subset Mismatch	Intersectional Mismatch				
Supervised	76.13 ± 0.24					
PI [6]	75.02 ± 0.66	73.19 ± 0.59				
PL [7]	75.11 ± 0.75	74.71 ± 0.39				
MT [12]	75.38 ± 0.78	74.63 ± 0.50				
VAT [8]	76.07 ± 0.84	75.25 ± 0.48				
MM [1]	79.08 ± 1.20	78.43 ± 1.79				
FM [11]	80.19 ± 0.55	80.01 ± 1.21				
UASD [2]	77.11 ± 0.69	76.30 ± 0.91				
DS3L [4]	79.78 ± 0.75	78.16 ± 0.78				
MTCF [14]	77.23 ± 0.39	76.67 ± 0.96				
CAFA-PI (ours)	79.36 ± 0.51	79.10 ± 0.72				
CAFA-FM (ours)	83.97 ± 0.91	81.28 ± 0.76				

Table 5: Averaged test accuracies \pm standard deviations (%) over three runs on Office-31 and VisDA2017 dataset with feature distribution mismatch. The best results are highlighted in **bold**. The notation "A/D" denotes that the labeled data are from A domain and unlabeled data are from D domain.

X 4 4	Office-31					VisDA2017	
Method	A/D	A/W	D/A	D/W	W/A	W/D	130/12017
Supervised PI [6] PL [7] MT [12] VAT [8] MM [1] FM [11]	$\begin{array}{c} 57.07 \pm 0.69 \\ 49.29 \pm 1.40 \\ 52.97 \pm 1.12 \\ 69.34 \pm 1.84 \\ 16.19 \pm 8.97 \\ 23.34 \pm 4.45 \\ 69.77 \pm 1.33 \end{array}$	$\begin{array}{c} 58.89 \pm 0.48 \\ 57.99 \pm 3.96 \\ 58.59 \pm 1.23 \\ 70.49 \pm 2.39 \\ 31.85 \pm 8.32 \\ 41.45 \pm 9.85 \\ 70.62 \pm 1.14 \end{array}$	$\begin{array}{c} 58.23 \pm 0.45 \\ 75.71 \pm 3.67 \\ 33.59 \pm 2.39 \\ 55.65 \pm 7.46 \\ 25.54 \pm 8.34 \\ 33.89 \pm 8.26 \\ 61.05 \pm 3.65 \end{array}$	$\begin{array}{c} 62.89 \pm 0.72 \\ 71.83 \pm 2.69 \\ 52.89 \pm 1.59 \\ 65.19 \pm 6.25 \\ 38.89 \pm 9.97 \\ 31.42 \pm 8.22 \\ 60.29 \pm 4.17 \end{array}$	$\begin{array}{c} 52.96 \pm 0.36 \\ 68.74 \pm 2.62 \\ 34.32 \pm 2.72 \\ 54.40 \pm 10.1 \\ 35.51 \pm 8.08 \\ 40.69 \pm 7.39 \\ 62.50 \pm 2.73 \end{array}$	$\begin{array}{c} 54.48 \pm 0.58 \\ 55.94 \pm 7.93 \\ 43.64 \pm 2.30 \\ 65.34 \pm 7.18 \\ 30.32 \pm 8.15 \\ 34.12 \pm 6.12 \\ 59.61 \pm 1.76 \end{array}$	$\begin{array}{c} 78.29 \pm 0.73 \\ 27.00 \pm 6.27 \\ 18.40 \pm 6.80 \\ 20.12 \pm 8.77 \\ 16.89 \pm 3.74 \\ 67.58 \pm 8.25 \\ 85.78 \pm 2.85 \end{array}$
UASD [2] DS3L [4] MTCF [14]	54.29 ± 2.34 55.97 ± 1.98 38.99 ± 3.01	65.99 ± 0.81 47.28 ± 1.38 42.93 ± 3.86	$\begin{array}{c} 63.09 \pm 1.58 \\ 53.26 \pm 1.60 \\ 46.19 \pm 2.68 \end{array}$ $\begin{array}{c} \textbf{79.04 \pm 1.38} \end{array}$	$\begin{array}{c} 66.69 \pm 1.44 \\ 51.08 \pm 2.29 \\ 36.95 \pm 3.96 \end{array}$	$\begin{array}{c} 43.20 \pm 1.97 \\ 36.95 \pm 3.42 \\ 40.76 \pm 3.98 \end{array}$	50.32 ± 2.26 52.71 ± 2.31 47.28 ± 2.87	47.22 ± 2.67 60.28 ± 3.23 56.08 ± 3.75

Table 6: Averaged test accuracies \pm standard deviations (%) over three runs on Office-31 and VisDA2017 dataset with feature distribution mismatch and subset class distribution mismatch. The best results are highlighted in **bold**. The notation "A/D" denotes that the labeled data are from A domain and unlabeled data are from D domain.

Mada	Office-31						VisDA2017
Method	A/D	A/W	D/A	D/W	W/A	W/D	130/12017
Supervised	57.07 ± 0.69	58.89 ± 0.48	58.23 ± 0.45	62.89 ± 0.72	52.96 ± 0.36	54.48 ± 0.58	78.29 ± 0.73
PI [6]	45.15 ± 1.96	56.97 ± 2.67	38.45 ± 2.25	66.99 ± 4.53	48.34 ± 1.21	54.94 ± 6.92	17.54 ± 10.5
PL [7]	34.79 ± 6.16	46.14 ± 8.21	63.67 ± 9.61	57.04 ± 2.40	61.44 ± 5.97	44.84 ± 1.91	22.06 ± 6.09
MT [12]	74.89 ± 0.44	71.84 ± 0.58	69.69 ± 3.84	72.75 ± 12.3	67.74 ± 0.92	62.34 ± 1.06	21.35 ± 2.45
VAT [8]	26.19 ± 15.6	28.89 ± 7.56	49.89 ± 6.25	57.24 ± 3.42	49.36 ± 2.55	41.14 ± 11.7	35.56 ± 7.44
MM [1]	53.80 ± 3.67	57.06 ± 5.17	54.34 ± 1.64	49.45 ± 6.37	61.41 ± 4.06	55.97 ± 5.73	70.32 ± 1.00
FM [11]	68.74 ± 0.07	69.34 ± 1.15	60.64 ± 0.20	52.88 ± 2.16	63.39 ± 7.70	55.62 ± 6.67	83.17 ± 0.11
UASD [2]	42.52 ± 2.65	38.34 ± 0.29	56.54 ± 0.66	67.54 ± 0.93	44.83 ± 3.61	50.78 ± 1.82	37.97 ± 2.64
DS3L [4]	48.36 ± 1.29	50.54 ± 0.66	61.41 ± 5.90	65.76 ± 1.84	46.19 ± 4.72	60.86 ± 7.38	69.44 ± 1.85
MTCF [14]	55.97 ± 8.93	53.80 ± 4.90	55.79 ± 8.82	59.78 ± 8.12	47.28 ± 4.52	51.63 ± 3.83	74.48 ± 1.29
CAFA-PI (ours)	81.44 ± 2.89	82.49 ± 0.36	78.49 ± 1.10	77.29 ± 0.36	74.13 ± 6.02	78.50 ± 3.76	88.86 ± 1.42

Table 7: Averaged test accuracies \pm standard deviations (%) over three runs on Office-31 and VisDA2017 dataset with feature distribution mismatch and intersectional class distribution mismatch. The best results are highlighted in **bold**. The notation "A/D" denotes that the labeled data are from A domain and unlabeled data are from D domain.

N. 4. 1	Office-31					VisDA2017	
Method	A/D	A/W	D/A	D/W	W/A	W/D	VISDA2017
Supervised PI [6] PL [7] MT [12] VAT [8] MM [1] FM [11]	$\begin{array}{c} 57.07 \pm 0.69 \\ 64.09 \pm 2.89 \\ 56.14 \pm 3.61 \\ 65.54 \pm 1.96 \\ 23.64 \pm 8.90 \\ 59.78 \pm 5.98 \\ 66.99 \pm 1.21 \end{array}$	$\begin{array}{c} 58.89 \pm 0.48 \\ 66.11 \pm 4.90 \\ 52.09 \pm 5.82 \\ 68.14 \pm 5.29 \\ 27.50 \pm 12.4 \\ 59.23 \pm 5.70 \\ 64.12 \pm 0.35 \end{array}$	$\begin{array}{c} 58.23 \pm 0.45 \\ 66.39 \pm 2.49 \\ 58.79 \pm 9.34 \\ 66.19 \pm 1.69 \\ 40.04 \pm 5.98 \\ 62.50 \pm 14.4 \\ 62.19 \pm 0.21 \end{array}$	$\begin{array}{c} 62.89 \pm 0.72 \\ 64.79 \pm 3.16 \\ 47.14 \pm 6.00 \\ 70.89 \pm 2.82 \\ 43.54 \pm 0.66 \\ 61.41 \pm 9.34 \\ 65.44 \pm 6.50 \end{array}$	$\begin{array}{c} 52.96 \pm 0.36 \\ 46.85 \pm 0.33 \\ 46.05 \pm 6.25 \\ 59.37 \pm 0.53 \\ 23.45 \pm 4.73 \\ 55.97 \pm 10.6 \\ 57.93 \pm 0.10 \end{array}$	$\begin{array}{c} 54.48 \pm 0.58 \\ 52.74 \pm 1.25 \\ 38.20 \pm 1.56 \\ 61.57 \pm 0.19 \\ 32.66 \pm 1.65 \\ 47.82 \pm 6.65 \\ 55.76 \pm 2.48 \end{array}$	$\begin{array}{c} 78.29 \pm 0.73 \\ 26.83 \pm 12.3 \\ 32.22 \pm 0.47 \\ 27.52 \pm 7.78 \\ 19.67 \pm 2.03 \\ 66.34 \pm 8.90 \\ 85.57 \pm 0.96 \end{array}$
UASD [2] DS3L [4] MTCF [14] CAFA-PI (ours)	$\begin{array}{c} 45.99 \pm 5.12 \\ 52.17 \pm 1.93 \\ 59.78 \pm 4.42 \end{array}$ 81.57 \pm 0.76	$\begin{array}{c} 31.14 \pm 1.18 \\ 50.54 \pm 2.65 \\ 55.43 \pm 9.43 \end{array}$ 80.17 \pm 1.38	$\begin{array}{c} 39.44 \pm 4.09 \\ 48.36 \pm 2.73 \\ 58.15 \pm 2.12 \end{array}$ 78.74 \pm 1.10	$71.84 \pm 2.65 \\ 61.08 \pm 1.83 \\ 62.17 \pm 6.50 \\ \textbf{75.19} \pm \textbf{2.56}$	$\begin{array}{c} 30.84 \pm 1.15 \\ 55.43 \pm 1.18 \\ 53.80 \pm 5.20 \end{array}$ 73.69 \pm 2.16	$\begin{array}{c} 49.78 \pm 0.21 \\ 49.56 \pm 0.73 \\ 54.34 \pm 2.58 \end{array}$ 72.39 \pm 0.30	$\begin{array}{c} 21.57 \pm 4.16 \\ 67.17 \pm 0.66 \\ 58.38 \pm 0.82 \end{array}$ 86.30 \pm 1.31

71 E Limitation and Social Impact

The proposed CAFA framework can solve different scenarios of open-set problems. However, there 72 are still some limitations: 1) our method is computationally expensive. It requires an extra backward 73 propagation to compute the adversarial perturbation; 2) the CAFA method ignores the potential 74 class imbalance problem in the intersectional mismatch scenario. The number of instances in \overline{C}^{\prime} is 75 much less than the instances in \mathcal{C}^u . As a result, such an imbalance problem could hurt the learning 76 performance and it is worthy of further research; and 3) our method is a little bit complex since it 77 needs to tackle different problems that occur in the open-set cases. Hence, it is necessary to design a 78 more compact framework that can tackle both class and feature distribution mismatch. 79

Regardless of the limitations, our method could have some positive social impacts. As demonstrated
 in the introduction, our method is the closest method to reality than all other SSL approaches. Hence
 our method can be well conducted in many practical situations and help deploy SSL in modern
 industry.

References

- [1] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and Colin A
 Raffel. Mixmatch: A holistic approach to semi-supervised learning. In *NeurIPS*, pages
 5049–5059, 2019.
- [2] Yanbei Chen, Xiatian Zhu, Wei Li, and Shaogang Gong. Semi-supervised learning under class
 distribution mismatch. In *AAAI*, 2020.
- [3] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation.
 In *ICML*, pages 1180–1189. PMLR, 2015.

- [4] Lan-Zhe Guo, Zhen-Yu Zhang, Yuan Jiang, Yu-Feng Li, and Zhi-Hua Zhou. Safe deep semi supervised learning for unseen-class unlabeled data. In *ICML*, 2020.
- [5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, pages 770–778, 2016.
- [6] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. In *ICLR*, 2016.
- [7] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for
 deep neural networks. In *ICML Workshop*, 2013.
- [8] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:
 a regularization method for supervised and semi-supervised learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)*, 41(8):1979–1993, 2018.
- [9] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Goodfellow.
 Realistic evaluation of deep semi-supervised learning algorithms. In *NeurIPS*, pages 3235–3246, 2018.
- [10] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. Regularization with stochastic trans formations and perturbations for deep semi-supervised learning. In *NeurIPS*, pages 1163–1171,
 2016.
- [11] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D Cubuk,
 Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-supervised learning
 with consistency and confidence. *arXiv preprint arXiv:2001.07685*, 2020.
- [12] Antti Tarvainen and Harri Valpola. Meanteachers are better role models: Weight-averaged
 consistency targets improve semi-supervised deep learning results. In *NeurIPS*, pages 1195–1204, 2017.
- [13] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Universal
 domain adaptation. In *CVPR*, 2020.
- [14] Qing Yu, Daiki Ikami, Go Irie, and Kiyoharu Aizawa. Multi-task curriculum framework for
 open-set semi-supervised learning. In *ECCV*, 2020.