
Supplementary Material for Paper1

“Universal Semi-Supervised Learning”2

In this supplementary material, we first provide the implementation details of our CAFA method3

and the baseline methods in Section A. Then we will explain the dataset establishment in Section B.4

Moreover, we will conduct additional experiments to further evaluate our method in Section C.5

Furthermore, we provide the standard deviation results that correspond to the main paper in Section D.6

Finally, we will discuss the limitations and social impact of our method in Section E.7

A Implementation Details8

To achieve a fair comparison, we investigate all algorithms with the same backbone network structure9

ResNet-50 [5]. In the CIFAR-10 dataset, we choose a batch size of 100, and in Office-31 and10

VisDA2017 datasets, we set the batch size to 64. For each iteration, the labeled data and unlabeled11

data are sampled in the same size, which equals half of batch size. The network training for all12

methods is iterated 10,000 times. We use an SGD optimizer with a weight decay factor of 5× 10−413

after 8,000 iterations. Other implementation details are presented below.14

A.1 Network Structure15 Table 1: Architecture of our discrim-
inator D and D′.

Layer Hyper-Parameters

GRL flip-coefficient
Linear 128→1,024
ReLU

Dropout p = 0.5
Linear 1,024→1,024
ReLU

Dropout p = 0.5
Linear 1,024→1

Sigmoid

Apart from the shared backbone network F , our method con-16

tains a classifier C and two identical discriminators D and D′.17

The classifier C is one fully connected layer that maps the18

feature representations to label predictions. The discriminators19

D and D′ have the same structure as [13], which is shown20

in Table 1. For the adversarial discriminator D, we imple-21

ment the adversarial process using gradient reversal layer [3].22

On the other hand, the training process of the non-adversarial23

discriminator D′ is detached from the backbone network F .24

A.2 Hyper-parameters25

The trade-off parameters γ and δ ramp up from 0 to 1 by following the functions γ = exp(−5 ×26

(1−min( iter
8,000 , 1))

2
) and δ = exp(−5×(1−min( iter

4,000 , 1))
2
), respectively, where iter denotes the27

current iteration. For other compared SSL methods, we follow [9] by using different hyper-parameter28

settings, which are shown in Table 2.29

B Dataset Establishment30

We have specified the classes that are chosen to construct Cl and Cu in the main paper, here we31

present other details for the establishment of our datasets with mismatched classes.32

CIFAR-10 is a typical dataset for SSL. It is composed of 50,000 training instances and 10,00033

test instances collected from 10 natural categories. We use CIFAR-10 to create datasets with class34

distribution mismatch. For subset mismatch, there are 2,400 labeled training instances are chosen from35

Cl, i.e., 400 labeled instances per class. Then, we choose 20,000 unlabeled training instances from36

Cu. Since |Cu| varies in different situations, there are approximately 2,222 unlabeled instances from37

each class for the subset mismatch and approximately 3,333 unlabeled instances for the intersectional38

mismatch. Furthermore, we select 5,000 test instances that belong to Cl to evaluate the performance39

of our method.40

Office-31 dataset is used to create a feature distribution mismatch by choosing the labeled and41

unlabeled data from different domains. It contains 3 domains: “Amazon” (A), “DSLR” (D), and42

“Webcam” (W), and each domain is composed of 31 classes. By changing the chosen domains, we43

have 6 combinations to form the labeled and unlabeled datasets: A/D, A/W, D/A, D/W, W/A, and44

W/D. For each combination, we choose 100 labeled instances from the classes in Cl, i.e., 5 labeled45

instances per class, and sample 400 unlabeled instances (we conduct up-sampling for some domains46

containing less than 400 instances) from the classes in Cu, i.e., 20 unlabeled instances per class for47
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Table 2: Hyperparameter settings of the compared SSL methods.
Shared

learning rate decay factor 0.2
# training iteration in which learning rate decay starts 400,000

# training iteration in which consistency coefficient ramp up starts 200,000

Supervised

Initial learning rate 0.003

Π-Model [6, 10]

Initial learning rate 3×10−4

Max consistency coefficient 20

Mean Teacher [12]

Initial learning rate 4×10−4

Max consistency coefficient 8
Exponential moving average decay 0.95

VAT [8]

Initial learning rate 0.003
Max consistency coefficient 0.3

ε 6.0
ξ 10−6

Pseudo-Label [7]

Initial learning rate 0.003
Max consistency coefficient 0.3

Pseudo-Label threshold 0.95

MixMatch [1]

Initial learning rate 0.003
Augmentation number 2

Beta distribution α 0.75

FixMatch [11]

Initial learning rate 0.003
Pseudo-Label threshold 0.95

UASD [2]

Initial learning rate 0.003
Ensemble size 10

DS3L [4]

Initial learning rate for backbone network 0.003
Initial learning rate for meta network 0.001

Initial learning rate for weighting network 6×10−5

MTCF [14]

Initial learning rate 0.003

subset mismatch and approximately 13 unlabeled instances per class for the intersectional mismatch.48

Moreover, we sample 500 test instances in Cl from the labeled domain to form a test set.49

VisDA2017 focuses on transferring knowledge from the simulated objects to real-world objects. It50

contains a training dataset sampled from a simulation domain and a validation dataset sampled from51

a reality domain, and each domain contains 12 classes. Here we choose 1,800 real-world instances52

from the classes in Cl to form our labeled set, i.e., 200 labeled instances per class. We choose 20,00053

simulated instances from the classes in Cu to construct our unlabeled set, i.e., approximately 1,66754

unlabeled instances per class for the subset mismatch and 2,222 unlabeled instances per class for the55

intersectional mismatch. Additionally, we choose 1,000 real-world instances in Cl to compose the56

test set.57
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Table 3: Ablation studies on different model configurations. We report the averaged test accuracies±standard
deviations (%) over three runs on Office-31 and VisDA2017 dataset with feature distribution mismatch and class
distribution mismatch. The best results are highlighted in bold. The notation “W/A” denotes that the labeled
data are from W domain and unlabeled data are from A domain.

Method
Subset Mismatch Intersectional Mismatch

Office-31 (W/A) VisDA2017 Office-31 (W/A) VisDA2017

w/o Class-Sharing Data Detection 65.76± 8.49 61.91± 1.04 70.65± 4.53 56.31± 1.57
w/o Feature Adaptation 56.84± 5.92 39.70± 1.73 51.41± 7.13 38.52± 2.18
w/o Detection & Adaptation (PI) 48.34± 1.21 17.54± 10.5 46.85± 0.33 26.83± 12.3
CAFA-PI 74.13 ± 6.02 88.86 ± 1.42 73.69 ± 2.16 86.30 ± 1.31

C Ablation Study58

In the main paper, we have provided the evaluation of the effectiveness of our method as well as some59

performance analyses. Here we conduct an ablation study to examine each module of the proposed60

CAFA framework, which includes class-sharing data detection and feature adaptation. Firstly, we61

conduct our framework without class-sharing data detection. Then we remove the feature adaptation62

module and conduct semi-supervised training on the detected class-sharing data. At last, we remove63

all the two modules and train the network using pure SSL. Here we use PI as the backbone method.64

The experimental results are shown in Table 3. We can see that all other model configurations have65

performance drops than the original CAFA framework. Hence both the two modules are essential for66

dealing with the open-set problems.67

D Evaluation Results with Standard Deviation68

In this section, we present the accuracy±standard deviation of the evaluation results from the main69

paper, which are shown in Tables 4, 5, 6, and 7.70

Table 4: Averaged test accuracies±standard deviations (%) over three runs on CIFAR-10 with class distribution
mismatch. The best results are highlighted in bold.

Method
CIFAR-10

Subset Mismatch Intersectional Mismatch

Supervised 76.13± 0.24
PI [6] 75.02± 0.66 73.19± 0.59
PL [7] 75.11± 0.75 74.71± 0.39
MT [12] 75.38± 0.78 74.63± 0.50
VAT [8] 76.07± 0.84 75.25± 0.48
MM [1] 79.08± 1.20 78.43± 1.79
FM [11] 80.19± 0.55 80.01± 1.21

UASD [2] 77.11± 0.69 76.30± 0.91
DS3L [4] 79.78± 0.75 78.16± 0.78
MTCF [14] 77.23± 0.39 76.67± 0.96

CAFA-PI (ours) 79.36± 0.51 79.10± 0.72
CAFA-FM (ours) 83.97 ± 0.91 81.28 ± 0.76

Table 5: Averaged test accuracies±standard deviations (%) over three runs on Office-31 and VisDA2017 dataset
with feature distribution mismatch. The best results are highlighted in bold. The notation “A/D” denotes that the
labeled data are from A domain and unlabeled data are from D domain.

Method
Office-31 VisDA2017

A/D A/W D/A D/W W/A W/D

Supervised 57.07 ± 0.69 58.89 ± 0.48 58.23 ± 0.45 62.89 ± 0.72 52.96 ± 0.36 54.48 ± 0.58 78.29 ± 0.73
PI [6] 49.29 ± 1.40 57.99 ± 3.96 75.71 ± 3.67 71.83 ± 2.69 68.74 ± 2.62 55.94 ± 7.93 27.00 ± 6.27
PL [7] 52.97 ± 1.12 58.59 ± 1.23 33.59 ± 2.39 52.89 ± 1.59 34.32 ± 2.72 43.64 ± 2.30 18.40 ± 6.80
MT [12] 69.34 ± 1.84 70.49 ± 2.39 55.65 ± 7.46 65.19 ± 6.25 54.40 ± 10.1 65.34 ± 7.18 20.12 ± 8.77
VAT [8] 16.19 ± 8.97 31.85 ± 8.32 25.54 ± 8.34 38.89 ± 9.97 35.51 ± 8.08 30.32 ± 8.15 16.89 ± 3.74
MM [1] 23.34 ± 4.45 41.45 ± 9.85 33.89 ± 8.26 31.42 ± 8.22 40.69 ± 7.39 34.12 ± 6.12 67.58 ± 8.25
FM [11] 69.77 ± 1.33 70.62 ± 1.14 61.05 ± 3.65 60.29 ± 4.17 62.50 ± 2.73 59.61 ± 1.76 85.78 ± 2.85

UASD [2] 54.29 ± 2.34 65.99 ± 0.81 63.09 ± 1.58 66.69 ± 1.44 43.20 ± 1.97 50.32 ± 2.26 47.22 ± 2.67
DS3L [4] 55.97 ± 1.98 47.28 ± 1.38 53.26 ± 1.60 51.08 ± 2.29 36.95 ± 3.42 52.71 ± 2.31 60.28 ± 3.23
MTCF [14] 38.99 ± 3.01 42.93 ± 3.86 46.19 ± 2.68 36.95 ± 3.96 40.76 ± 3.98 47.28 ± 2.87 56.08 ± 3.75

CAFA-PI (ours) 81.97 ± 2.11 83.57 ± 1.26 79.04 ± 1.38 76.44 ± 1.16 74.59 ± 3.31 80.48 ± 0.78 91.02 ± 0.59
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Table 6: Averaged test accuracies±standard deviations (%) over three runs on Office-31 and VisDA2017 dataset
with feature distribution mismatch and subset class distribution mismatch. The best results are highlighted
in bold. The notation “A/D” denotes that the labeled data are from A domain and unlabeled data are from D
domain.

Method
Office-31 VisDA2017

A/D A/W D/A D/W W/A W/D

Supervised 57.07 ± 0.69 58.89 ± 0.48 58.23 ± 0.45 62.89 ± 0.72 52.96 ± 0.36 54.48 ± 0.58 78.29 ± 0.73
PI [6] 45.15 ± 1.96 56.97 ± 2.67 38.45 ± 2.25 66.99 ± 4.53 48.34 ± 1.21 54.94 ± 6.92 17.54 ± 10.5
PL [7] 34.79 ± 6.16 46.14 ± 8.21 63.67 ± 9.61 57.04 ± 2.40 61.44 ± 5.97 44.84 ± 1.91 22.06 ± 6.09
MT [12] 74.89 ± 0.44 71.84 ± 0.58 69.69 ± 3.84 72.75 ± 12.3 67.74 ± 0.92 62.34 ± 1.06 21.35 ± 2.45
VAT [8] 26.19 ± 15.6 28.89 ± 7.56 49.89 ± 6.25 57.24 ± 3.42 49.36 ± 2.55 41.14 ± 11.7 35.56 ± 7.44
MM [1] 53.80 ± 3.67 57.06 ± 5.17 54.34 ± 1.64 49.45 ± 6.37 61.41 ± 4.06 55.97 ± 5.73 70.32 ± 1.00
FM [11] 68.74 ± 0.07 69.34 ± 1.15 60.64 ± 0.20 52.88 ± 2.16 63.39 ± 7.70 55.62 ± 6.67 83.17 ± 0.11

UASD [2] 42.52 ± 2.65 38.34 ± 0.29 56.54 ± 0.66 67.54 ± 0.93 44.83 ± 3.61 50.78 ± 1.82 37.97 ± 2.64
DS3L [4] 48.36 ± 1.29 50.54 ± 0.66 61.41 ± 5.90 65.76 ± 1.84 46.19 ± 4.72 60.86 ± 7.38 69.44 ± 1.85
MTCF [14] 55.97 ± 8.93 53.80 ± 4.90 55.79 ± 8.82 59.78 ± 8.12 47.28 ± 4.52 51.63 ± 3.83 74.48 ± 1.29

CAFA-PI (ours) 81.44 ± 2.89 82.49 ± 0.36 78.49 ± 1.10 77.29 ± 0.36 74.13 ± 6.02 78.50 ± 3.76 88.86 ± 1.42

Table 7: Averaged test accuracies±standard deviations (%) over three runs on Office-31 and VisDA2017 dataset
with feature distribution mismatch and intersectional class distribution mismatch. The best results are highlighted
in bold. The notation “A/D” denotes that the labeled data are from A domain and unlabeled data are from D
domain.

Method
Office-31 VisDA2017

A/D A/W D/A D/W W/A W/D

Supervised 57.07 ± 0.69 58.89 ± 0.48 58.23 ± 0.45 62.89 ± 0.72 52.96 ± 0.36 54.48 ± 0.58 78.29 ± 0.73
PI [6] 64.09 ± 2.89 66.11 ± 4.90 66.39 ± 2.49 64.79 ± 3.16 46.85 ± 0.33 52.74 ± 1.25 26.83 ± 12.3
PL [7] 56.14 ± 3.61 52.09 ± 5.82 58.79 ± 9.34 47.14 ± 6.00 46.05 ± 6.25 38.20 ± 1.56 32.22 ± 0.47
MT [12] 65.54 ± 1.96 68.14 ± 5.29 66.19 ± 1.69 70.89 ± 2.82 59.37 ± 0.53 61.57 ± 0.19 27.52 ± 7.78
VAT [8] 23.64 ± 8.90 27.50 ± 12.4 40.04 ± 5.98 43.54 ± 0.66 23.45 ± 4.73 32.66 ± 1.65 19.67 ± 2.03
MM [1] 59.78 ± 5.98 59.23 ± 5.70 62.50 ± 14.4 61.41 ± 9.34 55.97 ± 10.6 47.82 ± 6.65 66.34 ± 8.90
FM [11] 66.99 ± 1.21 64.12 ± 0.35 62.19 ± 0.21 65.44 ± 6.50 57.93 ± 0.10 55.76 ± 2.48 85.57 ± 0.96

UASD [2] 45.99 ± 5.12 31.14 ± 1.18 39.44 ± 4.09 71.84 ± 2.65 30.84 ± 1.15 49.78 ± 0.21 21.57 ± 4.16
DS3L [4] 52.17 ± 1.93 50.54 ± 2.65 48.36 ± 2.73 61.08 ± 1.83 55.43 ± 1.18 49.56 ± 0.73 67.17 ± 0.66
MTCF [14] 59.78 ± 4.42 55.43 ± 9.43 58.15 ± 2.12 62.17 ± 6.50 53.80 ± 5.20 54.34 ± 2.58 58.38 ± 0.82

CAFA-PI (ours) 81.57 ± 0.76 80.17 ± 1.38 78.74 ± 1.10 75.19 ± 2.56 73.69 ± 2.16 72.39 ± 0.30 86.30 ± 1.31

E Limitation and Social Impact71

The proposed CAFA framework can solve different scenarios of open-set problems. However, there72

are still some limitations: 1) our method is computationally expensive. It requires an extra backward73

propagation to compute the adversarial perturbation; 2) the CAFA method ignores the potential74

class imbalance problem in the intersectional mismatch scenario. The number of instances in Cl is75

much less than the instances in Cu. As a result, such an imbalance problem could hurt the learning76

performance and it is worthy of further research; and 3) our method is a little bit complex since it77

needs to tackle different problems that occur in the open-set cases. Hence, it is necessary to design a78

more compact framework that can tackle both class and feature distribution mismatch.79

Regardless of the limitations, our method could have some positive social impacts. As demonstrated80

in the introduction, our method is the closest method to reality than all other SSL approaches. Hence81

our method can be well conducted in many practical situations and help deploy SSL in modern82

industry.83
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