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A Supplementary experiments.

A.1 Comparison to fixed thresholds

A standard practice in anomaly detection to classify observations is to use a fixed threshold, either
over the data itself or over a model-assigned score. In probabilistic anomaly detection, this corre-
sponds to deciding on a p-value below which the null hypothesis is rejected. As we argued above,
such procedure controls the probability of a false discovery for each individual test but does not
provide any control over the whole sequence.
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Figure 5: Power (recall) and FDR (1 � precision) for false discovery control rules as well as fixed
threshold. The data generating process is the same as in Figure 2

Figure 5 shows that our decay FDRC rules do draw a similar Precision-Recall curve as the fixed
threshold approach does. The major difference between both approaches is that FDRC rules al-
low users to specify the precision target ex-ante while this is not possible with fixed threshold.
Non-decay rules achieve lower recall for a given precision level than both decay FDRC and fixed
thresholds on at least part of the precision range.

B Discussion about SAFFRON and ADDIS.

B.1 Standard algorithms

In this section we discuss briefly some of the details in the definitions of SAFFRON and ADDIS [19,
30]. The algorithm LORD cannot be seen as a special case of SAFFRON. However SAFFRON is a
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special case of ADDIS as will be presented below. Given two sequences {�t}
1

t=1 and {⌧t}
1

t=1 we
define the indicators

Ct = 1{pt  �t} and Kt = 1{pt  ⌧t}.

We define the filtration

F
t , �(R1, . . . , Rt, C1, . . . , Ct, K1, . . . , Kt)

and require sequences {↵t}
1

t=1, {�t}
1

t=1, {⌧t}
1

t=1 to be predictable, that is, ↵t, �t, ⌧t 2 F
t�1. They

must also satisfy the inequality ⌧t > �t � ↵t for all t.

The ADDIS oracle is given by

dFDPADDIS(T ) =

P
tT ↵t

1{�t<pt⌧t}
⌧t��t

R(T ) _ 1
,

and SAFFRON can be seen as a special case of ADDIS where ⌧t = 1 for all t, that is,

dFDPSAFFRON(T ) =

P
tT ↵t

1{�t<pt}

1��t

R(T ) _ 1
.

The FDR is controlled at time T if dFDPADDIS(T )  ↵.

A special instance of this algorithm can be derived as follows. We let

Sj(t) , 1{t > ⇢j} +
t�1X

i=⇢j+1

1{� < pi  ⌧} ,

where ⇢0 = �1 and define

↵t = (⌧ � �)
⇣
w0(�S0(t) � �S1(t)) + ↵

X

j

�Sj(t)

⌘
^ �

for some w0 2 (0, ↵).

In practice, the sequences {�t}
1

t=1 and {⌧t}
1

t=1 are often chosen to be constant. Typical values are
�t = 1/2 for SAFFRON and �t = 1/4, ⌧t = 1/2 for ADDIS; they are the ones we choose in our
experiments. The sequence {�t}

1

t=1 �t / t
�s for both SAFFRON and ADDIS, where s = 1.6 unless

otherwise specified.

B.2 Memory decay algorithms

For the memory decay versions controlling sFDR� we define the oracle

dFDP
�

ADDIS(T ) =

P
tT �

T�t
↵t

1{�t<pt⌧t}
⌧t��t

R�(T ) + ⌘
,

and have the following result.
Proposition 3. Suppose that quantities ↵t, �t and 1 � ⌧t are coordinatewise non-decreasing func-
tions of the past satisfying ⌧t > �t � ↵t for all t. If p-values satisfy relation 3 then picking decision
thresholds ↵t such that dFDP

�

ADDIS(T )  ↵ at time T ensures that sFDR�(T )  ↵.

Proof is given in Appendix C.3. For some fixed parameters ⌧ > � we can define the following
special instance:

↵t = ↵(⌧ � �)
⇣
⌘�̃S0(t) +

X

j

�
t�⇢j�Sj(t)

⌘
^ �.

In Appendix D we show how to adapt the statements in order to control the standard memory decay
FDR.
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C Omitted proofs

Our proofs are based on the two following lemmas, proposed by [18] and [30].
Lemma C.1 ([18]). Suppose that the sequence {pt}

1

t=1 is composed of independent p-values. Let
ft be a sequence of non-decreasing functions such that ↵t = ft(R1, . . . , Rt�1). Then for any
non-decreasing function h,

E


↵t

h(R1:T )
| F

t�1

�
� E


1{pt  ↵t}

h(R1:T )
| F

t�1

�
,

where F = �(R1, . . . , Rt).
Lemma C.2 ([30]). Suppose that the sequence {pt}

1

t=1 is composed of independent p-values. let
ft, gt, g̃t be three sequences of non-decreasing functions such that ↵t = ft(R1:t�1, C1:t�1, K1:t�1),
�t = gt(R1:t�1, C1:t�1, K1:t�1), ⌧t = g̃t(R1:t�1, C1:t�1, K1:t�1) and ↵t  �t < ⌧t. Then for any
non-decreasing function h,

E


↵t1{�t < pt  ⌧t}

(⌧t � �t)h(R1:T )
| F

t�1
, Kt = 1

�
� E


↵t

⌧th(R1:T )
| F

t�1
, Kt = 1

�

� E


1{pt  ↵t}

h(R1:T )
| F

t�1
, Kt = 1

�
,

where F
t = �(R1, . . . , Rt, C1, . . . , Ct, K1, . . . , Kt).

Detailed proofs of these lemma may be found in [18] and [30].

At all times T we have

sFDR�(T ) = E


V�(T )

R�(T ) + ⌘

�

= E

"
TX

t=1

�
T�t

Rt1{t 2 H
0
}

R�(T ) + ⌘

#

 E

"
TX

t=1

�
T�t

Rt

R�(T ) + ⌘

#
. (11)

So if we prove that the sum in the expectation is less than ↵ at time T then the sFDR�(T ) is con-
trolled. We show below that this is the case for LORD, SAFFRON and ADDIS. To do so, we let
R(T ) = {t 2 [T ] | Rt = 1} denote the set containing the times of rejections until step T .

C.1 Proof of Proposition 1

The mapping h(R1:T ) =
PT

t=1 �
T�t

Rt +⌘ is coordinate-wise non-decreasing. If we use it to apply
Lemma C.1 to the quantity in Inequality (11) we find that

sFDR�(T )  E

"
TX

t=1

�
T�t

↵t

R�(T ) + ⌘

#

= E
h
dFDR

�

LORD(T )
i
.

This shows that if the thresholds are chosen such that dFDR
�

LORD(T )  ↵ at time T then sFDR� is
controlled.

Let us now show that the special instance

↵t = ↵⌘�̃t + ↵

X

j

�
t�⇢j�t�⇢j

satisfies this property. This is equivalent to show that the quantity

P (T ) = ↵(R�(T ) + ⌘) �
TX

t=1

�
T�t

↵t
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is non-negative for all T . We find that

P (T ) = ↵

✓ TX

t=1

�
T�t

Rt + ⌘

◆
� ↵

TX

t=1

✓
�
T�t

⌘�̃t +
X

j

�
t�⇢j�t�⇢j

◆

= ↵⌘

✓
1 �

TX

t=1

�
T�t

�̃t

◆
+ ↵

X

t2R(T )

�
T�t

✓
1 �

T�tX

j=1

�j

◆

� 0,

where the inequality comes from the fact that {�t}1

t=1 sums to 1 and that
PT

t=1 �
T�t

�̃t  1.

C.2 Proof of proposition 2

We let Gt = � (R1, . . . , Rt�L) denote the non-conflicting filtration, i.e., the information known at
time t which is not in conflict with the current p-value (it is indeed a filtration because t � L is
non-decreasing). In particular ↵t is measurable with respect to G

t�1. We write the oracle here again
for convenience:

dFDP
�

dep(T ) =

P
tT �

T�t
↵t

R�(T ) + ⌘
.

The proof is essentially based on the analysis in [34]. We have

E[V�(T )] = E

 TX

t=1

�
T�t

Rt1{t 2 H
0
}

�

 E

 TX

t=1

�
T�t

Rt

�

=
TX

t=1

�
T�tE[Rt]

=
TX

t=1

�
T�tE

⇥
E[Rt | G

t�1]
⇤



TX

t=1

�
T�tE[↵t]

= E

 TX

t=1

�
T�t

↵t

�
,

where we used the fact that Rt is Gt�1 measurable.

Now assume that dFDP
�

dep(T )  ↵. It follows that

E[V�(T )]  ↵E


R�(T ) + ⌘

�

and we conclude that mFDR�(T )  ↵.

Let us now show that the special instance

↵t = ↵⌘�̃t + ↵

X

j

�
t�⇢j�t�⇢j�L.

satisfies the above property. This is equivalent to show that the quantity

P (T ) = ↵(R�(T ) + ⌘) �
TX

t=1

�
T�t

↵t
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is non-negative for all T . We compute that

P (T ) = ↵

✓ TX

t=1

�
T�t

Rt + ⌘

◆
� ↵

TX

t=1

�
T�t

✓
⌘�̃t +

X

j

�
t�⇢j�t�⇢j�L

◆

= ↵⌘

✓
1 �

TX

t=1

�
T�t

�̃t

◆
+ ↵

TX

t=1

�
T�t

✓
Rt �

X

j

�
t�⇢j�t�⇢j�L

◆

= ↵⌘

✓
1 �

TX

t=1

�
T�t

�̃t

◆
+ ↵

X

t2R(T )

�
T�t

✓
1 �

T�t�LX

j=1

�j

◆

� 0.

C.3 Proof of Proposition 3

For ADDIS the filtration is given by F
t = �(R1:t, C1:t, K1:t). From Inequality (11) we derive

sFDR�(T )  E

"
TX

t=1

�
T�t

Rt

R�(T ) + ⌘

#

=
TX

t=1

E


E


�
T�t

Rt

R�(T ) + ⌘
| Kt = 1,F

t�1

�
Prob{Kt = 1 | F

t�1
}

�
(12)

The mapping h(R1:T ) =
PT

t=1 �
T�t

Rt +⌘ is coordinate-wise non-decreasing. If we use it to apply
Lemma C.2 to E

h
↵t1{�t<pt⌧t}
(⌧t��t)h(R1:T ) | F

t�1
, Kt = 1

i
Inequality (12) we find

sFDR�(T ) 
TX

t=1

E


E


�
T�t ↵t1{�t < pt  ⌧t}

(⌧t � �t)(R�(T ) + ⌘)
| F

t�1
, Kt = 1

�
Prob{Kt = 1 | F

t�1
}

�

=
TX

t=1

E


�
T�t ↵t1{�t < pt  ⌧t}

(⌧t � �t)(R�(T ) + ⌘)

�

= E
h
dFDR

�

ADDIS(T )
i
.

This shows that if the thresholds are chosen such that dFDR
�

ADDIS(T )  ↵ at time T then the
sFDR�(T ) is controlled.

Let us now show that the special instance

↵t = ↵(⌧ � �)
⇣
⌘�̃S0(t) +

X

j

�
t�⇢j�Sj(t)

⌘
^ �.

satisfies this property, where we define

Sj(t) = 1{t > ⇢j} +
t�1X

i=⇢j+1

1{� < pi  ⌧}

= 1{t > ⇢j} +
t�1X

i=⇢j+1

(1 � Ci)Ki.

This is equivalent to show that the quantity

P (T ) = ↵(R�(T ) + ⌘) �
TX

t=1

�
T�t

↵t1{� < pt  ⌧}

(⌧ � �)
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is non-negative for all T . We find that

P (T ) � ↵

✓ TX

t=1

�
T�t

Rt + ⌘

◆
� ↵

TX

t=1

�
T�t1{� < pt  ⌧}

�
⌘�̃S0(t) +

X

j

�
t�⇢j�Sj(t)

�

= ↵⌘

✓
1 �

TX

t=1

�
T�t(1 � Ct)Kt�̃S0(t)

◆
+ ↵

TX

t=1

�
T�t

✓
Rt � (1 � Ct)Kt

X

j

�
t�⇢j�Sj(t)

◆

� ↵⌘

✓
1 �

S0(t)X

t=1

�
T�t

�̃t

◆
+ ↵

TX

t2R(T )

�
T�t

✓
1 �

Sj(t)X

j=1

�j

◆

� 0.

Statements for SAFFRON are naturally obtained by setting ⌧t = 1 for all t.

D Adapting algorithms to standard FDR

We show here how to adapt the aforementioned algorithms to control the memory decay FDR with-
out smoothing, that is,

FDR�(T ) = E


V�(T )

R�(T ) _ 1

�
.

To do so we define new oracles where the only difference is the denominator.

LORD. For LORD we define the oracle

dFDP
�

LORD(T ) =

P
tT �

T�t
↵t

R�(T ) _ 1
.

Picking thresholds {↵t}
1

t=1 such that dFDP
�

LORD(T )  ↵ ensure that FDR�(T )  ↵. The proof for
this statement is very similar as the one in Appendix C.1.

As a special instance, we pick w0 2 (0, ↵) and define

↵t = w0�̃t + (↵ � w0)
X

j

�
t�⇢j�t�⇢j . (13)

We can check that dFDP
�

LORD(T )  ↵ at all time T which shows that FDR� is controlled. Notice that
the thresholds are lower-bounded by w0(1 � �).

SAFFRON and ADDIS. For ADDIS we define the oracle

dFDP
�

ADDIS(T ) =

P
tT �

T�t
↵t

1{�t<pt⌧t}
⌧t��t

R�(T ) _ 1
.

Here again, if we pick the threshold such that dFDP
�

ADDIS(T )  ↵ then FDR�(T )  ↵ and the proof
is very similar to the one in Appendix C.3.

As a special instance, we pick ⌧ > �, w0 2 (0, ↵) and define

↵t = (⌧ � �)
⇣
w0�̃S0(t) + (↵ � w0)

X

j

�
t�⇢j�Sj(t)

⌘
^ �.

We can check that at any time T ,

dFDP
�

ADDIS(T )  ↵

which shows that FDR� is controlled. Again, SAFFRON is just a special case where ⌧t = 1 for all t.
Thresholds are lower-bounded by (⌧ � �)w0(1 � �) ^ �.

Local dependence. For the local dependency setup we can define the thresholds

↵t = w0�̃t + (↵ � w0)
X

j

�
t�⇢j�L

�t�⇢j�L.
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