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Abstract

It is well known that vision classification models suffer from poor calibration in
the face of data distribution shifts. In this paper, we take a geometric approach
to this problem. We propose Geometric Sensitivity Decomposition (GSD) which
decomposes the norm of a sample feature embedding and the angular similarity
to a target classifier into an instance-dependent and an instance-independent com-
ponent. The instance-dependent component captures the sensitive information
about changes in the input while the instance-independent component represents
the insensitive information serving solely to minimize the loss on the training
dataset. Inspired by the decomposition, we analytically derive a simple extension
to current softmax-linear models, which learns to disentangle the two components
during training. On several common vision models, the disentangled model out-
performs other calibration methods on standard calibration metrics in the face of
out-of-distribution (OOD) data and corruption with significantly less complexity.
Specifically, we surpass the current state of the art by 30.8% relative improvement
on corrupted CIFAR100 in Expected Calibration Error. Code available at https:
//github.com/GT-RIPL/Geometric-Sensitivity-Decomposition.git.

1 Introduction

During development, deep learning models are trained and validated on data from the same distribu-
tion. However, in the real world sensors degrade and weather conditions change. Similarly, subtle
changes in image acquisition and processing can also lead to distribution shift of the input data. This
is often known as covariate shift, and will typically decrease the performance (e.g. classification ac-
curacy). However, it has been empirically found that the model’s confidence remains high even when
accuracy has degraded [1]. The process of aligning confidence to empirical accuracy is called model
calibration. Calibrated probability provides valuable uncertainty information for decision making.
For example, knowing when a decision cannot be trusted and more data is needed is important for
safety and efficiency in real world applications such as self-driving [2] and active learning [3].

A comprehensive comparison of calibration methods has been studied for in-distribution (IND)
data [4], However, these methods lead to unsatisfactory performance under distribution shift [5]. To
resolve the problem, high-quality uncertainty estimation [6, 5] is required. Principled Bayesian meth-
ods [7] model uncertainty directly but are computationally heavy. Recent deterministic methods [8, 9]
propose to improve a model’s sensitivity to input changes by regularizing the model’s intermediate
layers. In this context, sensitivity is defined as preserving distance between two different input
samples through layers of the model. We would like to utlize the improved sensitivity to better detect
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Out-of-Distribution (OOD) data. However, these methods introduce added architecture changes and
large combinatorics of hyperparameters.

Unlike existing works, we propose to study sensitivity from a geometric perspective. The last linear
layer in a softmax-linear model can be decomposed into the multiplication of a norm and a cosine
similarity term [10, 11, 12, 13]. Geometrically, the angular similarity dictates the membership of an
input and the norm only affects the confidence in a softmax-linear model. Counter-intuitively, the
norm of a sample’s feature embedding exhibits little correlation to the hardness of the input [11].
Based on this observation, we explore two questions: 1) why is a model’s confidence insensitive to
distribution shift? 2) how do we improve model sensitivity and calibration?

We hypothesize that in part an insensitive norm is responsible for bad calibration especially on shifted
data. We observe that the sensitivity of the angular similarity increases with training whereas the
sensitivity of the norm remains low. More importantly, calibration worsens during the period when
the norm increases while the angular similarity changes slowly. This shows a concrete example
of the inability of the norm to adapt when accuracy has dropped. Intuitively, training on clean
datasets encourages neural networks to always output increasingly large feature norm to continuously
minimize the training loss. Because the probability of the prevalent class of an input is proportional
to its norm, larger norms lead to smaller training loss when most training data have been classified
correctly (See Sec. 3.1). This renders the norm insensitive to input differences because the model
is trained to always output features with large norm on clean data. While we have put forth that
the norm is poorly calibrated, we must emphasize that it can still play an important role in model
calibration (See Sec. 4.1).

To encourage sensitivity, we propose to decompose the norm of a sample’s feature embedding and
the angular similarity into two components: instance-dependent and instance-independent. The
instance-dependent component captures the sensitive information about the input while the instance-
independent component represents the insensitive information serving solely to minimize the loss on
the training dataset. Inspired by the decomposition, we analytically derive a simple extension to the
current softmax-linear model, which learns to disentangle the two components during training. We
show that our model outperforms other deterministic methods (despite their significant complexity)
and is comparable to multi-pass methods with fewer training hyperparameters in Sec. 4.1.

In summary, our contributions are four fold:

• We study the problem of calibration geometrically and identify that the insensitive norm is
responsible for bad calibration under distribution shift.

• We derive a principled but simple geometric decomposition that decomposes the norm into
an instance-dependent and instance-independent component.

• Based on the decomposition, we propose a simple training and inference scheme to encour-
age the norm to reflect distribution changes.

• We achieve state of the art results in calibration metrics in the face of corruptions while
having arguably the simplest calibration method to implement.

2 Related Work

Methods dedicated to strengthening calibration can be divided into two camps: multi-pass models
and single-pass deterministic models. The current state-of-the-art multi-pass models are: Bayesian
Monte Carlo Drop Out (MCDO) [7] and Deep Ensembles [14]. Bayesian methods are the most
principled way to model uncertainty. Instead of optimizing max likelihood for a single set of
parameters, Bayesian methods obtain a posterior distribution over possible parameters given a prior
distribution over parameters and calculated data likelihood assuming some process noise. The
posterior distribution over parameters captures epistemic uncertainty or uncertainty due to the limits
of what the model knows . The final predictive distribution is obtained by marginalizing out model
parameters. While Bayesian methods are theoretically sound, they are intractable in practice. Deep
Ensembles averages multiple models trained using different random initialization so they learn
different classification functions.

A recent trend is to use a single-pass deterministic non-Bayesian model to improve uncertainty
estimation. Two recent works DUQ [8] and SNGP [9] propose to improve uncertainty-awarenesss of
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deterministic networks by improving the networks’ sensitivity to input changes. Intuitively, a sensitive
model should map samples further from the training data as they become more out-of-distribution.
This can be achieved at two levels: feature level and output level. At the feature level, both methods
require the feature extractors (CNNs) to be regularized to prevent feature collapse, which is the
mapping of two different data points to the same embedded vector. This is ensured by having input
distance awareness, which is equivalent to ensuring bi-Lipschitz continuity [15].

In order to achieve this, DUQ [8] uses a two-sided gradient penalty [16] and SNGP [9] uses bounded
spectral normalization [15]. The output level needs to reflect the changes in feature space. This can
be done by adopting distance-aware classifiers. DUQ [8] uses a RBF networks with learned centroids
for each class and SNGP [9] uses an approximate Gaussian Process layer. We were inspired by
temperature scaling [4], which is another method for bettering calibration, but fails under distribution
shift [5]. Our method does not require input distance awareness and instead leverages the geometric
intuitions about the output layer, specifically properties of the norm of the input embedding.

3 Method

Following our hypothesise that the insensitivity of the norm is responsible for bad calibration on
distribution shifted data, we propose geometric sensitivity decomposition (GSD) for the norm. We
first introduce the geometric perspective of the last linear layer in Sec. 3.1 and then derive GSD in
Sec. 3.2. To improve sensitivity of the norm and model calibration on shifted data, we propose a
GSD-inspired training and inference procedure in Sec. 3.3 and Sec. 3.4.

3.1 Norm and Similarity

The output layer of a neural network can be written as a dot-product < x,wy >, where x is the
embedded input and wy is the weight vector associated with class y. Though seemingly simple there
are strong geometric and calibration related intuitions drawn from this. Several prior works [10, 12,
11] have studied the effects decomposition of the last linear layer in a softmax model can have on
classification. The output layer can be decomposed into angular similarity cosφy and norm ‖x‖2.

P (y|x) =
exp ly∑c
j=1 exp lj

=
exp (‖wy‖2‖x‖2 cosφy)∑c
j=1 exp (‖wj‖2‖x‖2 cosφj)

(1)

where ‖wy‖2 is the norm of a specific classifier in the linear layer. We’ll use this geometric view of
the linear layer instead of the dot-product representation.

Based on this perspective, we base the foundation of our work on the following observations from prior
works [10, 12, 11]: 1) The probability/confidence of the prevalent class of an input is proportional to
its norm [12]. 2) While the norm of a feature strongly scales the predictive probability, due to it’s
unregularized nature the norm is not sensitive to the hardness of the input [11]. In other words, the
norm could be the reason for bad sensitivity of the confidence to input distribution shift. Consequently,
the insensitive norm can be causally related to bad calibration. We will examine a strong correlation
between the quality of calibration and the magnitude of norm in Sec. 4.2.

3.2 Geometric Sensitivity Decomposition of Norm and Angular Similarity

To motivate the subsequent geometric decomposition, we can revisit the softmax model, P (y|x) ∝
exp (‖wy‖2‖x‖2 cosφy). There are three terms contributing to the magnitude of the exponential
function, ‖wy‖2, ‖x‖2 and cosφy. Due to weight regularizations, ‖wy‖2 is most likely very small,
while cosφy ∈ [−1, 1]. Therefore, the only way to obtain a high probability/confidence on training
data and minimize cross-entropy loss is to 1) push the norm ‖x‖2 to a large value and 2) keep cos |φy|
of the ground truth class close to one, i.e., |φy| close to zero. This is further supported by [17],
where it was shown that logits of the ground truth class must diverge to infinity in order to minimize
cross-entropy loss under gradient descent. In this process, models tend towards large norms and
small angles for all training samples.

Therefore, we propose to decompose the norms of features into two components: an instance-
independent scalar offset and an instance-dependent variance factor, which we define in Eq. 2. The
role of the instance-independent offset Cx is to minimize the loss on the entire training set and
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the instance-dependent component ∆x accounts for differences in samples. Therefore, if we can
disentangle the instance-independent component from the instance-dependent component, we can
obtain a norm that is sensitive to the hardness of data. Following this logic, we decompose the norm
into two components.

‖x‖2 = ‖∆x‖2 + Cx (2)

Similarly, we relax the angles such that the predicted angular similarity does not need to be close to
one on the training data, i.e., making the angles larger. To achieve this, we introduce an instance-
independent relaxation angle Cφ and an instance-dependent angle ∆φy. Analogous to the norm
decomposition, the scalar Cφ serves solely to minimize the training loss while the instance-dependent
∆φy accounts for differences in samples. Because we need to account for the sign of the angle, we
put an absolute value on it.

|φy| = |∆φy| − |Cφ| (3)

The ‖∆x‖2, |∆φy| are the instance-dependent components and Cx, |Cφ| are the instance-independent
components. We can rewrite the pre-softmax logits in Eq. 1 with the decomposed norm and angular
similarity. (Detailed derivation in Sec. A.1 in the Appendix.)

‖x‖2 cosφy = ‖x‖2 cos |φy| = (‖∆x‖2 + Cx) cos (|∆φy| − |Cφ|) (4)

= (‖∆x‖2 + Cx)
1

cos |Cφ|
cos |∆φy|

(
1− sin |Cφ|2

(
1− cos |Cφ| sin |∆φy|

sin |Cφ| cos |∆φy|

))

We can simplify the equation by assuming cos |φy| is close to one, which means |φy| is small. This
is due to the fact that |φy| is the angle between the correct class weight and x, which means as training
ensues, the angle converges to 0 and thus the cosine similarity converges to 1. (Please see Sec. A.2
for empirical support.)

cos |Cφ| sin |∆φy|
sin |Cφ| cos |∆φy|

=
sin (|∆φy|+ |Cφ|) + sin |φy|
sin (|∆φy|+ |Cφ|)− sin |φy|

≈ 1 (5)

Therefore, Eq. 4, omitting the absolute value on angles because cos is an even function, simplifies:

‖x‖2 cosφy ≈ (‖∆x‖2 + Cx)
1

cos Cφ
cos ∆φy (6)

=

(
1

cos Cφ
‖∆x‖2 +

1

cos Cφ
Cx
)

cos ∆φy

=

(
1

α
‖∆x‖2 +

β

α

)
cos ∆φy

Because cos Cφ and Cx are instance-independent, we denote them as α and β respectively. This
geometric decomposition of norm and cosine similarity inspires us to include α and β as free
trainable parameters in a new network and the network can learn to predict the more input-
sensitive ‖∆x‖2 and ∆φy instead of the original ‖x‖2 and φy . While both the angle and norm
can be decomposed we direct the focus to the norm as the angle is already calibrated to accuracy [11].
In other words, angles have been shown to be sensitive to input changes in [11].

3.3 Disentangled Training

Following the derivation in Eq 6, we replace the norm, ‖x‖2, in Eq. 1 by
(

1
α‖∆x‖2 + β

α

)
and φy by

∆φy . ‖∆x‖2 and ∆φy are now learned outputs from a new network instead as shown in Eq. 6:

P (y|x) =
exp ly∑c
j=1 exp lj

=
exp (‖wy‖2

(
1
α‖∆x‖2 + β

α

)
cos ∆φy)∑c

j=1 exp (‖wj‖2
(

1
α‖∆x‖2 + β

α

)
cos ∆φj)

(7)
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(a) Temperature Scaling (b) Ours: calibration Step 1 (c) Ours: Calibration Step 2

Figure 1: Calibration Procedure (a): Temperature Scaling [4] changes the slope of the effective
norm based on in-distribution (IND) data (See A.9 in Appendix)

The new model can be trained using the same training procedures as the vanilla network without ad-
ditional hyperparameter tuning, changing the architecture or extended training time. Even though the
outputs of the new network, ‖∆x‖2 and ∆φy , only approximate the original geometric relationships
with Eq. 6, the effect of α and β reflects the decomposition in Eq. 3 and Eq. 2.

• β encodes an instance-independent scalar Cx of the norm. A larger β corresponds to a
smaller instance-dependent component ‖∆x‖2.

• α encodes the cosine of a relaxation angle Cφ. A larger arccosα corresponds to a larger Cφ
and therefore a larger ∆φj .

Because β encodes the independent component, the new feature norm ‖∆x‖2 becomes sensitive to
input changes and maps OOD data to lower norms than IND data as we can see in Fig. 3a, 3b. We
regularize α such that the instance-independent component Cφ is small. Specifically, we penalize
‖α− 1‖22 because α = cos Cφ, i.e., if α ≈ 1, Cφ ≈ 0. We empirically found that a larger relaxation
angle Cφ deteriorates performance because the angular similarity already correlates well with difficulty
of data [11] and we do not need to encourage a large relaxation. Sec. 4.3 will empirically verify this.

3.4 Disentangled Inference

The decomposition theory in Sec. 3.2 provides a geometric perspective on the sensitivity of the norm
and the angular similarity to input changes and inspires a disentangled model in Sec. 3.3. The new
model uses a learnable affine transformation on the norm ‖∆x‖2. Let’s denote the affine transformed
norm as the effective norm N (∆x)

.
= 1

α‖∆x‖2 + β
α . However, the training only separates the

sensitive components of the norm and angular similarity, the model can still be overconfident due
to the existence of insensitive components. Therefore, we can improve calibration by modifying
insensitive components, e.g., β in our case. We propose a two-step calibration procedure that
combines in-distribution calibration (Fig. 1b) and out-of-distribution detection (Fig. 1c) based
on two observations: 1) overconfident IND data can be easily calibrated on a validation set, similar to
temperature scaling [4]. 2) for OOD data, without access to a calibration set for OOD data, the best
strategy is to map them far away from the IND data given that the model clearly distinguishes them.

The first step is calibrating the model on IND validation set (note our method does not rely on OOD
validation data), similar to temperature calibration [4]. However, instead of tuning a temperature
parameter as shown in Fig. 1a, we simply tune the offset parameter β on the validation set in one
of two ways: 1) grid-search based on minimizing Expected Calibration Error (see Sec. 4) 2) SGD
optimization based on Negative Log Likelihood [4]. Because these are post-training procedure, both
methods are very efficient. We denote the new parameter as β′. As shown in Fig. 1b, by changing the
offset, we decrease the magnitude of the norms after the affine transformation. Formally,

N (∆x) =
1

α
‖∆x‖2 +

β

α
→ N (∆x) =

1

α
‖∆x‖2 +

β′

α
(8)

The second step approximates the calibrated affine mapping in Eq. 8 by a non-linear function which
covers a wider range of the effective norm as shown in Eq. 9 and maps OOD data further away from
IND data. Intuitively, when a sample is more likely IND, the non-linear function maps it closer to the

5



calibrated transformation. When a sample is OOD, the non-linear function maps it more aggressively
to a smaller magnitude, exponentially away from the IND samples.

N (∆x) =
1

α
‖∆x‖2 +

β′

α
(1− e−c‖∆x‖2) (9)

where c is a hyperparameter which can be calculated as in Eq. 10. The non-linear function grows
exponentially close to the calibrated affine mapping in Eq. 8 dictated by 1− e−c‖∆x‖2 as shown in 1c.
Therefore, e−c‖∆x‖2 can be viewed as an error term that quantifies how close the non-linear function
is to the calibrated affine function in Eq. 8. Let µx and σx denote the mean and standard deviation
of the distribution of the norm of IND sample embedding calculated on the validation set. We use
the heuristic that when evaluated at one standard deviation below the mean, ‖∆x‖2 = µx − σx, the
approximation error e−c(µx−σx) = 0.1. Even though the error threshold is a hyperparameter, using
an error of 0.1 lead to state-of-the-art results across all models applied.

c =
−ln(1− error)

µx − σx
=
−ln(0.9)

µx − σx
(10)

In summary, the sensitive norm ‖∆x‖2 is used both as a soft threshold for OOD detection and
as a criterion for calibration. While similar post-processing calibration procedure exists, such as
temperature scaling [4] (illustrated in Fig. 1a and further introduced in A.9) it only provides good
calibration on IND data and does not provide any mechanism to improve calibration on shifted
data [5]. Our calibration procedure can improve calibration on both IND and OOD data, without
access to OOD data, because the training method extracts the sensitive component in a principled
manner. Just as temperature scaling, the non-linear mapping needs only to be calculated once and
adds no computation at inference.

4 Experiments

4.1 Experiments on Calibration

Table 1: ResNet-28-10 on CIFAR10 averaged over 10 seed. † denotes results from [9]. Our method
outperforms other single-pass methods and is comparable to Deep Ensemble [14] on corrupted data.
While the ensembled version of our model beats all multi-pass models.

Method Accuracy ↑ ECE ↓ NLL ↓
Clean Corrupted Clean Corrupted Clean Corrupted

Single-Pass

Vanilla† 96.0±0.01 72.9±0.01 0.023±0.002 0.153±0.011 0.158±0.01 1.059±0.02
DUQ† 94.7±0.02 71.6±0.02 0.034±0.002 0.183±0.011 0.239±0.02 1.348±0.01
SNGP† 95.9±0.01 74.6±0.01 0.018±0.001 0.090±0.012 0.138±0.01 0.935±0.01

Ours β′ Grid-Searched 95.9±0.01 74.9±0.05 0.018±0.003 0.067±0.010 0.148±0.003 0.826±0.03
Ours β′ Optimized 95.9±0.01 74.9±0.05 0.008±0.002 0.085±0.012 0.140±0.004 0.853±0.04

Multi-Pass
Deep Ensembles† 96.6±0.01 77.9±0.01 0.010±0.001 0.087±0.004 0.114±0.01 0.815±0.01

MC Dropout† 96.0±0.01 70.0±0.02 0.021±0.002 0.116±0.009 0.173±0.001 1.152±0.01
Ours β′Grid-Searched 96.62 77.9 0.007 0.069 0.108 0.773

Table 2: ResNet-28-10 on CIFAR100 averaged over 10 seeds. † denotes results from [9]. Our
method outperforms other single-pass methods and Deep Ensemble [14] on corrupted data. While
the ensembled version of our model beats all multi-pass models

Method† Accuracy↑ ECE ↓ NLL ↓
Clean Corrupted Clean Corrupted Clean Corrupted

Single-Pass

Vanilla† 79.8±0.02 50.5±0.04 0.085±0.004 0.239±0.020 0.872±0.01 2.756±0.03
DUQ† 78.5±0.02 50.4±0.02 0.119±0.001 0.281±0.012 0.980±0.02 2.841±0.01
SNGP† 79.9±0.03 49.0±0.02 0.025±0.012 0.117±0.014 0.847±0.01 2.626±0.01

Ours β′ Grid-Searched 79.8±0.03 49.8 ± 0.003 0.027±0.003 0.081 ± 0.007 0.787±0.009 2.23±0.02
Ours β′ Optimized 79.8±0.03 49.8±0.03 0.027±0.003 0.088±0.007 0.784±0.011 2.236±0.021

Multi-Pass
Deep Ensembles† 80.2±0.01 54.1±0.04 0.021±0.004 0.138±0.013 0.666±0.02 2.281±0.03

MC Dropout† 79.6±0.02 42.6±0.08 0.050±0.003 0.202±0.010 0.825±0.01 2.881±0.01
Ours β′ Grid-Searched 83.09 54.1 0.018 0.086 0.614 2.042

The ultimate goal of the paper is to improve model calibration under distribution shift by improving
sensitivity. Popular metrics for measuring calibration include: Negative Log-Likelihood (NLL [18]),
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Table 3: Generalizability Experiments Our method is effective with different feature backbones.

Clean Corrupt/Rotate

model dataset accuracy↑ ECE↓ NLL↓ Brier↓ accuracy↑ ECE↓ NLL↓ Brier↓
ResNet34 CIFAR10 95.63% 0.026 0.186 0.007 81.96% 0.164 1.114 0.039

GSD ResNet34 CIFAR10 95.9% 0.005 0.148 0.006 76.54% 0.088 0.882 0.037
ResNet50 CIFAR10 95.32% 0.03 0.203 0.008 76.32% 0.17 1.23 0.039

GSD ResNet50 CIFAR10 95.82% 0.008 0.147 0.007 76.23% 0.057 0.766 0.033
ResNet101 CIFAR10 95.61% 0.028 0.197 0.007 77.59% 0.154 1.118 0.037

GSD ResNet101 CIFAR10 95.62% 0.007 0.158 0.007 77.21% 0.075 0.852 0.036
ResNet152 CIFAR10 95.7% 0.028 0.196 0.007 75.2% 0.179 1.337 0.041

GSD ResNet152 CIFAR10 95.63% 0.007 0.151 0.007 76.58% 0.058 0.765 0.033
ResNet34 CIFAR100 78.81% 0.071 0.868 0.003 51.16% 0.19 2.387 0.007

GSD ResNet34 CIFAR100 78.02% 0.037 0.938 0.003 49.27% 0.098 2.361 0.007
ResNet50 CIFAR100 79.28% 0.075 0.861 0.003 49.71% 0.213 2.477 0.007

GSD ResNet50 CIFAR100 78.97% 0.033 0.879 0.003 50.12% 0.08 2.264 0.006
ResNet101 CIFAR100 80.17% 0.092 0.846 0.003 58.19% 0.253 2.575 0.007

GSD ResNet101 CIFAR100 79.82% 0.034 0.834 0.003 53.14% 0.082 2.11 0.006
ResNet152 CIFAR100 80.71% 0.090 0.815 0.003 54.2% 0.233 2.45 0.007

GSD ResNet152 CIFAR100 79.85% 0.036 0.827 0.003 53% 0.078 2.12 0.006

Table 4: Importance of Norm While norm is poorly calibrated, it is important for calibration.

ECE NLL Brier Entropy Accuracy

Vanilla (‖wy‖‖x‖ cosφy) 0.025±0.001 0.186±0.006 0.001±0.0 0.082±0.002 95.4±0.1%
No Weight Norm (w/o ‖wy‖) 0.061±0.0003 0.206±0.006 0.001±0.0 0.527±0.014 95.4±0.1%

No x Norm (w/o ‖x‖) 0.893±0.002 2.837±0.005 0.009±0.0 4.537±0.001 95.4±0.1%
Only Cosine (w/o ‖wy‖,‖x‖) 0.914±0.001 3.235±0.001 0.009±0.0 4.546±0.000 95.3±0.1%

Brier [19] and Expected Calibration Error (ECE [20]). Our goal is for our model is to produce values
close to 0 in these metrics, which maximizes calibration. Please refer to Sec. A.3 (Appendix) for
more detailed discussion on these metrics. Following prior works [9, 8, 5], we will use CIFAR10 and
CIFAR100 as the in-distribution training and testing dataset, and apply the image corruption library
provided by [1] to benchmark calibration performance under distribution shift. The library provides
16 types of noises with 5 severity scales. In this section, we show that our model outperforms other
deterministic methods (despite their significant complexity

Compared Methods We compare to several popular state-of-the-art models including stochastic
Bayesian methods (multi-pass): Deep Ensemble [14] and MC dropout [7], and recent deterministic
methods (single pass): SNGP [9] and DUQ [8].

Results In Tab. 1 and 2, we compare our model to the most recent state of art deterministic methods
SNGP and DUQ using Wide ResNet 28-10 [21] as the model backbone and each model evaluated us-
ing the average of 10 seeds. We report accuracy, ECE and NLL on clean and corrupted CIFAR10/100
datasets [1]. Our method outperforms all single-pass methods on calibration when data is corrupted,
and even surpass ensembles on error metrics for corrupted data. We had 2 versions of our model:
Grid Searched: grid search β′ on the validation set to minimize ECE and Optimized: optimize
β′ on the validation set via gradient decent to minimize NLL for 10 epochs, similar to temperature
scaling. We report additional results with ResNet18 in Sec. A.4 and Sec. A.5 (Appendix) with image
noise and rotation respectively.

Generalizability We explored how generalizable our method (Grid Searched) is by applying it to
12 different models and 4 different datasets in Tab. 3. We can see consistently that our model had
stronger calibration across all models and metrics, including models known to be well calibrated like
LeNet [22]. All models were tested on CIFAR10C and CIFAR100C datasets offered by [1] where
the original CIFAR10 and CIFAR100 were pre-corrupted; these were used for consistent corruption
benchmarking across all models. All non-CIFAR datasets were corrupted via rotation from angles
[0,350] with 10 step angles in between and the average calibration and accuracy was taken across all
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(a) CIFAR100 Accuracy (b) CIFAR100 ECE (c) CIFAR100 Norm (d) CIFAR100 Cosine

Figure 2: Accuracy, ECE, norm and cosine similarity on CIFAR100 validation set with clean
and Gaussian noise trained on vanilla ResNet. In the shaded region, increase in norm is responsible
for increase in ECE because cosine similarity is relatively flat. Throughout training, sensitivity of the
cosine similarity improves while that of the norm remains insensitive.

Table 5: Pearson Correlation of Cosine Similarity and Norm vs. ECE during training on
CIFAR100. Norm is consistently positively correlated with ECE whereas the similarity is either
negatively or not correlated with ECE.

ResNet18 ResNet34 ResNet101 ResNet152
shot Gaussian Defocus shot Gaussian Defocus shot Gaussian Defocus shot Gaussian Defocus

Cosine Sim 0.09 0.03 0.73 0.09 0.03 0.32 -0.03 -0.04 -0.88 -0.97 0.04 -0.81
Norm 0.82 0.82 0.78 0.82 0.81 0.78 0.87 0.87 0.85 0.86 0.85 0.81

degrees of rotation. Our models included: DenseNet [23], LeNet [22] and 6 varying sizes of ResNet,
which are described in [24]. The datasets we experimented on CIFAR10 [25], CIFAR100 [25],
MNIST [26] and SVHN [27], CIFAR10C [1], CIFAR100C [1]. We report Optimized results in
Tab. 14 in A.7 (Appendix). Both tuning methods yield similar performance.

Qualitative Comparison The current state-of-the-art single pass models for inference on OOD
data, without training on OOD data, are SNGP [9] and DUQ [8]. The primary disadvantages
of these models are: 1) Hyperparameter Combinatorics: Both DUQ and SNGP require many
hyperparameters as shown in Tab. 13 in A.6 (Appendix). Our model only has one hyperparameter that
is tuned post-training, which is quicker and less costly than the other methods that require pre-training
tuning. 2) Extended Training Time: DUQ requires a centroid embedding update every epoch,
while SNGP requires sampling potentially high dimensional embeddings of training points, thus
increasing training time while our model trains in the same amount of time as the model it is applied
to. Bayesian MCDO [7] and Deep Ensemble [14] are considered the current state-of-the-art methods
for multi-pass calibration. Bayesian MCDO requires multiple passes with dropout during inference.
Deep Ensembles requires N times the number of parameters as the single model it is ensembling
where N is the number of models ensembled. The main disadvantage of multi-pass models is high
inference complexity while our model adds no overhead computation at inference.

Importance of the Norm While we have shown and conjectured that the norm of x is uncalibrated
to OOD data and not always well calibrated to IND data, one might suggest to simply remove the
norm. We show in Tab. 4 though the norm is uncalibrated it is still important for inference. We trained
ResNet18 on CIFAR10 and then ran inference with ResNet18 modified in the following: dividing out
the norms of the weights for each class, dividing out the norm of the input and then dividing out both.
As we can see the weight norm contributes minimally to inference as accuracy decreased by 0.03%
without it and as previous work has shown the angle dominates classification. We can see with ||x||
removed the entropy is at it’s highest while calibration is very poor, implying the distribution is much
more uniform when it should be peaked, as a larger entropy implies a more uniform distribution.
Thus the root of the issue does not lie in the existence of the norm, but it’s lack of sensitivity.

4.2 Reasons for Bad Calibration under Distribution Shift

To identify the cause of bad calibration, we record the accuracy, ECE, norm and cosine similarity of
a model during training of a vanilla ResNet model. Specifically, we record the evaluation statistics
on clean data and also on data corrupted with Gaussian noise on CIFAR100. Fig. 2a and 2b show
the accuracy and ECE respectively. We observe that evaluation on Gaussian noise corrupted data
yields lower accuracy and higher ECE compared to evaluation on clean data. This demonstrates that
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(a) CIFAR10 vs. SVHN (b) CIFAR100 vs. SVHN

Figure 3: Histogram of Norm Distribution Our model (α-regularized) improves separation of norm
between IND and OOD data.

the model’s confidence fails to adapt to the decreasing accuracy. Fig. 2c and 2d show the change of
average norm and average cosine similarity throughout training. The difference between Gaussian
noised data and clean data is also reported. We observe that the norm of clean data and the norm of
Gaussian noised data are close and the difference remains constantly low whereas the cosine similarity
of the two diverges with training. This indicates that sensitivity of cosine similarity increases whereas
sensitivity of the norm remains low with training. In the shaded region of Fig. 2b-2d where ECE
increases the most, we observe that the norm also increases but the cosine similarity only increases
slowly. The observation also holds for other noises and architectures. We further present Pearson
correlation between ECE and cosine similarity or norm on 4 models and 3 noises in Tab. 5. A
large correlation coefficient indicates a higher positive correlation. Norm is consistently positively
correlated with ECE whereas the similarity is either negatively or not correlated with ECE. This
shows that the worsening of ECE (large ECE) is correlated with the increasing norm. Based on
supporting literature [12], [11] and this correlation, the observation supports the conjecture that the
insensitivity of the norm is responsible for bad calibration.

4.3 Empirical Support for the Disentangled Training

Table 6: OOD AUROC↑ using Norm and Similarity We show OOD detection results using norm
and cosine similarity. SVHN [27] is used as the OOD dataset. Our method (α-regularized) signifi-
cantly increases the sensitivity of feature norm.

ResNet18 Criterion CIFAR10 CIFAR10 (Incorrect)

Vanilla Norm 90.48 67.23
Similarity 93.87 56.98

α- regularized Norm 99.05 93.16
Similarity 97.09 74.82

α- unregularized Norm 98.20 88.29
Similarity 94.72 60.63

(a) CIFAR10 vs. SVHN AUROC

ResNet18 Criterion CIFAR100 CIFAR100 (Incorrect)

vanilla Norm 79.38 62.66
Similarity 82.26 55.54

α- regularized Norm 94.46 86.67
Similarity 85.68 63.24

α- unregularized Norm 84.78 73.11
Similarity 72.61 42.90

(b) CIFAR100 vs. SVHN AUROC

In the first set of experiments, we show that α and β reflect the effects of the geometric decomposition
as claimed in Sec. 3.2 with different α− β configurations. From Fig. 4a - 4d, we observe that the
norm decreases linearly with β for fixed α. From Fig. 4e - 4h, we observe that the angle increases
linearly with arccos(α). The observations are consistent with the original geometric motivation. β
encodes an instance-independent portion, Cx, of the norm. As β increases, Cx increases and therefore
the magnitude of the dependent component, ‖∆x‖2 decreases linearly. α encodes the inverse of the
cosine of a relaxation angle, Cφ. As arccos(α) increases, the resulting angle, ∆φ increases linearly
due to the increased relaxation angle encoded by α.

In the second set of experiments, we show that the new model effectively increases the sensitivity of
both the norm and the angle to input distribution shift as claimed in Sec. 3.3. Specifically, we measure
OOD detection performance of the models using both the norm and the cosine similarity with the
Area Under the Receiver Operating Characteristic (AUROC) curve metric. We use CIFAR10/100 as

Table 7: Average norm and accuracy across different corruptions on GSD ResNet18. The table
is organized in decreasing accuracy order.

ResNet GSD clean brightness fog elastic snow defocus frost motion blur jpeg zoom blur pixelate contrast shot glass blur impulse Gaussian

accuracy 95.33 93.82 88.75 85.09 83.87 82.95 80.41 79.71 79.31 78.48 76.4 75.29 59.46 59.29 57.26 47.33
norm 0.73 0.66 0.52 0.42 0.46 0.46 0.44 0.37 0.39 0.35 0.5 0.39 0.34 0.27 0.3 0.28
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(a) α = 1 (b) α = 1.5 (c) α = 2.0 (d) α = 2.5

(e) β = 0 (f) β = 2 (g) β = 2 (h) β = 3

Figure 4: Properties of ‖∆x‖2 and ∆φ. (a) - (b): ‖∆x‖2 decreases linearly with β for fixed α
reflecting Eq. 2 and 6. (e) - (h) ∆φ increases linearly with arccos(α) for fixed β reflecting Eq. 3
and 6. All plots include R-squared values to indicate goodness-of-fit of the linear relationship.

the IND data and SVHN [27] as the OOD data. In Tab. 6a and 6b we show two configurations of
models in addition to vanilla ResNet18: (α-regularized) we regularize α such that it stays close to
one as described in Sec. 3.3; (α-unregularzed) we optimize both α and β freely without constraints.
Compared to vanilla ResNet, the norms predicted by our models achieve significant improvement
in separating IND data from OOD data. Additionally, we visualize the distribution of norms in
Fig. 3a and 3b. The separation between IND and OOD data increases significantly compared to
vanilla ResNet18. However, a large α (see α-unregularzed in Tab. 6a and 6b) leads to marginal
cosine similarity sensitivity improvement on CIFAR10 and CIFAR100. This indirectly confirms our
observations in Sec. 4.2 and in prior works [11] that cosine similarity correlates well with distribution
shift. Introducing further angle relaxation might not be always beneficial. While we mainly focus on
calibration, our method also strengthens its base model’s ability for OOD detection.

The assumption that OOD data have smaller norms is based on the expectation that a model should be
less confident on OOD data. Practically, the norm acts as a temperature in softmax as shown in Eq. 1.
Intuitively, larger always yields more peaked/confident predictions, and smaller always yields flatter
predictive distributions. Therefore, we expect less confident data such as OOD data to have smaller
because we expect the output distribution to be flatter. The assumption is supported by the following
empirical evidence. In Tab. 7 we show the norm of in-distribution and out-of-distribution data on
CIFAR10 using ResNet50-GSD (ours). The OOD data is produced by the 15 corruptions used in the
paper. OOD data have consistently smaller norms and the accuracy decreases with decreasing norm
with a Pearson correlation of 0.9 as an indicator of more out-of-distribution.

5 Conclusion

In this paper, we studied the geometry of the last linear decision layer and identified the insensitivity
of the norm as the culprit of bad calibration under distribution shift. To encourage sensitivity, we
derived a general theory to decompose the norm and angular similarity. Inspired by the theory, we
proposed a simple yet very effective training and inference scheme that encourages the norm to reflect
distribution changes. The model outperforms other deterministic single pass-methods in calibration
metrics with much fewer hyperparameters. We also demonstrated its superior generalizability on a
variety of popular neural networks. Note that our problem and method have positive societal impact,
as calibration under shift improves overall confidence and robustness of these models.
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