
1 Proof

Proposition 1. Let ηt = 1/t. Assume γ < 1/σ2
x. Both ψt in MAML (with one inner gradient step)

and θt in CommonMean converge to w̄ = Eτw∗τ .

Proposition 2. Assume that γ < 1/σ2
x. We have w̄ = argminθ EτESτEQτ

∑
(x,y)∈Qτ(x

>w
(prox)
τ −

y)2 =argminψ EτESτEQτ
∑

(x,y)∈Qτ (x>w
(gd)
τ − y)2.

We first prove Proposition 2 that the mean regressor is the unique minimizer. Then, we prove
Proposition 1 by showing that MAML (with one inner gradient step) and CommonMean algorithms
achieve global convergence.

1.1 Proof of Proposition 2

Proof. For each task τ , let vτ = w∗τ − w̄, then {vτ} are i.i.d. random variables with zero mean.
Denote Cτ =

(
λI + X>τ Xτ

)−1
. As w

(prox)
τ = Cτ

(
λθ + X>τ yτ

)
and yτ = Xτw

∗
τ + ξτ , it follows

that
EτESτEQτ

∑
(x,y)∈Qτ

(x>w(prox)
τ − y)2

=EτESτEQτ
∑

(x,y)∈Qτ

(λx>Cτθ + x>CτX
>
τ (Xτw

∗
τ + ξτ )− x>w∗τ − ξ)2

=EτESτEQτ
∑

(x,y)∈Qτ

(λx>Cτθ + x>CτX
>
τ (Xτ w̄ + Xτvτ + ξτ )− x>w̄ − x>vτ − ξ)2

=EτESτEQτ
∑

(x,y)∈Qτ

(λx>Cτθ + x>CτX
>
τ Xτ w̄ − x>w̄)2 + constant (1)

=EτESτEQτ
∑

(x,y)∈Qτ

(λx>Cτ (θ − w̄))2 + constant

=λ2σ2
xnqEτESτ (θ − w̄)>C2

τ (θ − w̄) + constant,
where we have used the setting that x, ξ,Xτ , ξτ , and vτ are independent to obtain (1). Since
EτESτC2

τ � λ−2I, we conclude that θ = w̄ is the unique optima.

For MAML with one gradient step w(gd)
τ = ψ − γX>τ (Xτψ − yτ ), it follows that

EτESτEQτ
∑

(x,y)∈Qτ

(x>w(gd)
τ − y)2

=EτESτEQτ
∑

(x,y)∈Qτ

(x>(I− γX>τ Xτ )ψ + γx>X>τ yτ − y)2

=EτESτEQτ
∑

(x,y)∈Qτ

(x>(I− γX>τ Xτ )ψ + γx>X>τ (Xτ w̄ + Xτvτ + ξτ )− x>w̄ − x>vτ − ξ)2

=EτESτEQτ
∑

(x,y)∈Qτ

(
x>(I− γX>τ Xτ )(ψ − w̄)

)2
+ constant

=nqσ
2
xEτESτ ‖(I− γX>τ Xτ )(ψ − w̄)‖2 + constant.

As γ < 1/σ2
x, we conclude that ψ = w̄ is the unique optima.

1.2 Proof of Proposition 1

Proof. (i) Notice that w(prox)
τ is affine in θ, thus, EτESτEQτ

∑
(x,y)∈Qτ (x>w(prox)

τ − y)2 is convex
in θ. The CommonMean algorithm is using stochastic gradient descent to minimize the population
risk, and the global convergence of θt follows from the stochastic convex optimization [1].

(ii) Similarly, w(gd)
τ is affine in ψ, thus, the loss EτESτEQτ

∑
(x,y)∈Qτ (x>w(gd)

τ − y)2 is convex in
ψ. Using stochastic gradient descent, ψt achieves global convergence [1]. By Proposition 2, w̄ is the
unique optima, and we finish the proof.
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1.3 Proof of Proposition 4

The task index τ ′ will be omitted for simplifying notations in Proposition 4.

Proposition 4. Eξ‖w(prox) −w∗‖2 = ‖b̃‖2 +
∑ns
j=1

(
λãj
λ+ν2

j

)2
+
∑ns
j=1

(
σξ

(λ/νj)+νj

)2
, where the

expectation is over the label noise vector ξ.

Proof. The ridge regression has a closed-form solution w(prox) =
(
λI + X>X

)−1 (
λθ + X>y

)
.

Using the SVD decomposition of X = UΣV> and y = Xw∗ + ξ, we obtain

w(prox) =
(
I + λ−1VΣ2V>

)−1 (
Va0 + V⊥b0 + λ−1VΣU>y

)
=
(
I + λ−1VΣ2V>

)−1 (
Va0 + V⊥b0 + λ−1VΣ2a∗ + λ−1VΣUξ

)
(2)

= V⊥b0 + V(I + λ−1Σ2)−1
(
a0 + λ−1Σ2a∗

)
+ V

(
λΣ−1 + Σ

)−1
U>ξ, (3)

where we have used U>y = U>(Xw∗+ ξ) = U>UΣV>(Va∗+ V⊥b∗) + U>ξ = Σa∗+ U>ξ
in (2) and the Woodbury identity in (3). Then the estimation error is

w(prox) −w∗ = V⊥(b0 − b∗) + V(I + λ−1Σ2)−1 (a0 − a∗) + V
(
λΣ−1 + Σ

)−1
U>ξ.

Taking the square `2-norm and then expectation over ξ on both sides, we have

Eξ‖w(prox) −w∗‖2

=‖V⊥(b0 − b∗)‖2 + ‖V(I + λ−1Σ2)−1 (a0 − a∗) ‖2 + Eξ‖V
(
λΣ−1 + Σ

)−1
U>ξ‖2 (4)

=‖b0 − b∗‖2 + ‖(I + λ−1Σ2)−1 (a0 − a∗) ‖2 + Eξ‖
(
λΣ−1 + Σ

)−1
U>ξ‖2

=‖b̃‖2 +

ns∑
j=1

(
λãj

λ+ ν2j

)2

+

ns∑
j=1

(
νjσξ
λ+ ν2j

)2

,

where (4) follows from the fact that V⊥ is V’s orthogonal complement and ξ is independent with X
(also the Σ, U and V).

1.4 Proof of Theorem 1

Lemma 1. Lmeta(θ,φ) is Lipschitz-smooth w.r.t. (θ,φ) with a Lipschitz constant βmeta.

Lipschitz-smoothness is a basic assumption to establish convergence of gradient descent algorithms
in stochastic non-convex optimization [4, 8] and meta-learning in non-convex settings [2, 11].

Proof of Lemma 1. As Lmeta(θ,φ) ≡
∑
τ∈T

∑
(x,y)∈Qτ `(ŷ, y), it suffices to show that `(ŷ, y) is

Lipschitz-smooth in (θ,φ).

Using the chain rule, we have

∇(θ,φ)`(ŷ, y) = ∇1`(ŷ, y)∇(θ,φ)ŷ, (5)

∇(θ,φ)ŷ = ∇(θ,φ)fθ(z) + (∇(θ,φ)K(Zτ , z))>ατ + (∇(θ,φ)ατ )>K(Zτ , z). (6)

The Lipschitz properties of direct derivatives ∇1`(ŷ, y),∇(θ,φ)fθ(z),∇(θ,φ)K(Zτ , z), and K(Zτz)
follow from the Assumption 1. It remains to claim ατ and ∇(θ,φ)ατ are Lipschitz. Let p =

[fθ(z1); . . . ; fθ(zns);K(Zτ , z1); . . . ;K(Zτ , zns)] ∈ Rns+n2
s be the input of the dual problem.

(i) Claim: ατ is Lipschitz w.r.t. (θ,φ) and ατ (p) is Lipschitz-smooth w.r.t. p. To show
ατ is Lipschitz w.r.t. (θ,φ), it suffices to show that ‖∇(θ,φ)ατ‖ is bounded. By
the chain rule, ∇(θ,φ)ατ = ∇pατ∇(θ,φ)p. Denote the dual objective by g(p,α).

By the implicit function theorem [9], ∇pατ = −
(
∇2
αg(p,ατ )

)−1 ∂2

∂p∂αg(p,ατ ),
where ∇2

αg(p,ατ ) =
∑

(xi,yi)∈Sτ ∇
2
1`(fτ (zi), yi)K(Zτ , zi)K(Zτ , zi)

> + K(Zτ ,Zτ ),
∂2

∂p∂αg(p,ατ ) =
[
K(Zτ ,Zτ )D | (K(Zτ ,Zτ )D)⊗α>τ + v> ⊗ I + I⊗α>τ

]
, D =

2



diag([∇2
1`(fτ (z1), y1); . . . ;∇2

1`(fτ (zns), yns)]), v = [∇1`(fτ (z1), y1); . . . ;∇1`(fτ (zns), yns)],
where ⊗ is the Kronecker product. It follows from the Assumption 1 that both ∇2

αg(p,ατ ) and
∂2

∂p∂αg(p,ατ ) are Lipschitz w.r.t. p. Hence, we conclude that ∇pατ (p) is Lipschitz, ατ (p) is
Lipschitz-smooth w.r.t. p, and ‖∇pατ (p)‖ is bounded. Again, the boundedness of ∇(θ,φ)p follows
from the Lipschitz-smoothness of p w.r.t. (θ,φ). We conclude that ατ is Lipschitz w.r.t. (θ,φ).

(ii) Claim: ∇(θ,φ)ατ is Lipschitz w.r.t. (θ,φ). Given (θ,φ) and (θ′,φ′), we show
‖∇(θ,φ)ατ (θ,φ) − ∇(θ,φ)ατ (θ′,φ′)‖ ≤ β‖(θ,φ) − (θ′,φ′)‖ for some β > 0. For nota-
tion simplicity, let ϕ = (θ,φ) and ϕ′ = (θ′,φ′), then we have

‖∇ϕατ (ϕ)−∇ϕατ (ϕ′)‖
=‖∇pατ (p(ϕ))∇ϕp(ϕ)−∇pατ (p(ϕ′))∇ϕp(ϕ′)‖
=‖∇pατ (p(ϕ))∇ϕp(ϕ)−∇pατ (p(ϕ′))∇ϕp(ϕ′)±∇pατ (p(ϕ))∇ϕp(ϕ′)‖
≤‖∇pατ (p(ϕ))‖‖∇ϕp(ϕ)−∇ϕp(ϕ′)‖+ ‖∇ϕp(ϕ′)‖‖∇pατ (p(ϕ))−∇pατ (p(ϕ′))‖.

As p(ϕ) and ατ (p) are Lipschitz-smooth, there exists β > 0 such that

‖∇ϕατ (ϕ)−∇ϕατ (ϕ′)‖ ≤ β‖ϕ−ϕ′‖+ β‖p(ϕ)− p(ϕ′)‖
≤ β‖ϕ−ϕ′‖+ β‖ϕ−ϕ′‖
= 2β‖ϕ−ϕ′‖.

We conclude that∇ϕατ is Lipschitz.

By (i) and (ii), ` is Lipschitz-smooth w.r.t. the meta-parameters ϕ. Therefore, Lmeta(ϕ) is Lipschitz-
smooth w.r.t. ϕ with a Lipschitz constant βmeta > 0.

Theorem 1. Let the step size be ηt = min(1/
√
T , 1/βmeta). Algorithm 3 satisfies

min1≤t≤T E‖∇(θt,φt)Lmeta(θt,φt)‖2 = O
(
σ2
g/
√
T
)
, where the expectation is taken over the random

training samples.

The proof is similar to non-convex stochastic programming [4].

Proof of Theorem 1. Let ϕ = (θ,φ). Let ζt = ∇ϕtLmeta(ϕt) − 1
b

∑
τ∈Bt gτ , where 1

b

∑
τ∈Bt gτ

is an unbiased estimation of∇ϕtLmeta(ϕt), Using the Taylor expansion, we have

Lmeta(ϕt+1)

≤ Lmeta(ϕt) +∇ϕtLmeta(ϕt)
>(ϕt+1 −ϕt) +

1

2
βmeta‖ϕt+1 −ϕt‖2

≤ Lmeta(ϕt)− ηt(1−
βmetaηt

2
)‖∇ϕtLmeta(ϕt)‖2 + ηt∇>ϕtLmeta(ϕt)ζt +

1

2
βmetaη

2
t σ

2
g.

Taking conditional expectation over ζt−1 on both sides and then take the expectation over the random
training samples, we have

ELmeta(ϕt+1) ≤ ELmeta(ϕt)−
ηt
2
E‖∇ϕtLmeta(ϕt)‖2 +

1

2
βmetaη

2
t σ

2
g, (7)

where we have used 1− βmetaηt
2 ≥ 1

2 . Rearranging the above inequality and summing over t, we have

T∑
t=1

ηt
2
E‖∇ϕtLmeta(ϕt)‖2 ≤ ELmeta(ϕ1) + βmetaσ

2
g

T∑
t=1

η2t . (8)

Since ηt = min(1/
√
T , 1/2βmeta), we have

∑T
t=1 η

2
t ≤ 1. Diving both sides by 1/

√
T , we conclude that

min1≤t≤T E‖∇ϕtLmeta(ϕt)‖2 = O
(
σ2
g/
√
T
)
.

1.5 Proof of Theorem 2

Theorem 2. Assume thatM(θ,φ) is uniform conditioning. (i) Let ηt = min(1/
√
T , 1/2βmeta). Algo-

rithm 3 satisfies min1≤t≤T ELmeta(θt,φt)−min(θ,φ) Lmeta(θ,φ) = O
(
σ2
g/
√
T
)
, where the expecta-

tion is taken over the random training samples. (ii) Let ηt = η < min(1/2βmeta, 4|T |/ρµ) and Bt = T .
Algorithm 3 satisfies Lmeta(θt,φt)−min(θ,φ) Lmeta(θ,φ) = O((1− ηρµ/4|T |)t).
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Proof of Theorem 2. Let ϕ = (θ,φ). By the chain rule, we have

∇ϕLmeta(ϕ) =
1

|T |
∑
τ∈T

∑
(x,y)∈Qτ

∇1`(ŷ, y)∇ϕŷ (9)

=
1

|T |
G(ϕ)>∇ϕM(ϕ), (10)

where G(ϕ) ≡ [· · · ∇1`(ŷ, y) · · ·] ∈ Rnq|T | stacks all gradients of the losses on query examples
as a vector. Hence, we establish the Polyak-Lojasiewicz (PL) inequality [7] as follows

‖∇ϕLmeta(ϕ)‖2 =
1

|T |2
∥∥G(ϕ)>∇ϕM(ϕ)

∥∥2
=

1

|T |2
G(ϕ)>∇ϕM(ϕ)∇>ϕM(ϕ)G(ϕ)

≥ µ

|T |2
‖G(ϕ)‖2 (uniform conditioning)

=
µ

|T |2
∑
τ∈T

∑
(x,y)∈Qτ

(∇1`(ŷ, y))2

≥ µρ

2|T |2
∑
τ∈T

∑
(x,y)∈Qτ

(`(ŷ, y)−min
y′

`(y′, y)) (strongly convex)

≥ µρ

2|T |

(
Lmeta(ϕ)−min

ϕ
Lmeta(ϕ)

)
.

The PL inequality is commonly used in proving the global convergence of nonconvex optimization [5,
6]. Then, min1≤t≤T ELmeta(ϕt)−minϕ Lmeta(ϕ) = O

(
σ2
g/
√
T
)

follows directly from Theorem 1.

For full gradient descent, the gradient noise ζt = ∇ϕtLmeta(ϕt)− 1
b

∑
τ∈Bt gτ = 0, thus, the noisy

gradient will be the true gradient. By the Taylor expansion, it follows that

Lmeta(ϕt+1)−min
ϕ
Lmeta(ϕ)

≤Lmeta(ϕt) +∇>ϕtLmeta(ϕt)(ϕt+1 −ϕt) +
βmeta

2
‖ϕt+1 −ϕt‖2 −min

ϕ
Lmeta(ϕ)

=Lmeta(ϕt)− η‖∇ϕtLmeta(ϕt)‖2 +
η2βmeta

2
‖∇ϕLmeta(ϕt)‖2 −min

ϕ
Lmeta(ϕ)

≤
(

1− ηµρ

4|T |

)
(Lmeta(ϕt)−min

ϕ
Lmeta(ϕ)),

and we obtain the exponential convergence.

2 Additional Experiments

2.1 Compared with MAML using a wide network on Sine

As the network width is critical to MAML, we perform few-shot regression experiments on Sine using
the setting in [10]. We compare MetaProx with MAML that uses a larger (denoted by LargeMAML)
and wider (denoted by VeryWideMAML) network. As can be seen from Table 1, MetaProx achieves
the best performance.

2.2 MetaProx with RBF kernel on Sine

In this section, we evaluate the performance of MetaProx with the radial basis function (RBF) kernel
on Sine. The RBF kernel is K(x1,x2) = exp

(
−‖x1−x2‖2

2σ2

)
, where σ > 0. Table 2 reports the

results when σ varies from {0.01, 0.05, 0.1, 0.5, 1.0, 5.0}. As can be seen, a simple linear kernel is
better.
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Table 1: Average MSE (with 95% confidence intervals) of few-shot regression on Sine using the
settings in [10]. Results of baselines are from [10].

method 5-shot 10-shot

OriginalMAML [3] 0.390± 0.156 0.114± 0.010
LargeMAML 0.208± 0.009 0.061± 0.004

VeryWideMAML 0.205± 0.013 0.059± 0.010
MetaFun [10] 0.040± 0.008 0.017± 0.005

MetaProx (proposed) 0.010± 0.001 0.002± 0.001

Table 2: Average MSE (with 95% confidence intervals) of MetaProx with different base kernels on
Sine (noise-free).

kernel 2-shot 5-shot

RBF (0.01) 2.92± 0.19 2.78± 0.18
RBF (0.05) 2.72± 0.18 2.36± 0.17
RBF (0.1) 2.50± 0.17 2.25± 0.14
RBF (0.5) 2.38± 0.16 1.71± 0.13
RBF (1.0) 2.36± 0.16 1.68± 0.12
RBF (5.0) 2.38± 0.15 1.72± 0.13

linear 0.11± 0.01 0.01± 0.00
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