
Supplementary materials for
“Optimizing Information-theoretical Generalization Bound via

Anisotropic Noise in SGLD”
The supplementary materials are organized as follows. In Appendix A, we provide some basic
lemmas which are used throughout the proofs in the rest of the materials. In Appendix B, we provide
the proof of Lemma 2. In Appendix C, D, and E, we provide the detailed proofs of Lemmas and
Theorems respectively in Section 3.2, Section 4 , and Section 5. In Appendix F, we provide the
detailed settings of the experiments in the main text together with an additional experiments to justify
the result of Theorem 2.

A Preliminaries

In this section, we provide some basic lemmas that will be used throughout the proof both from
probability theory and from matrix analysis.

A.1 Preparations in Probability Theory

The first lemma is a standard result characterizing the KL divergence between two Gaussian distribu-
tions.
Lemma 5 (KL divergence between Gaussian distributions). Let P1 and P2 are multivariate Gaussian
distributions on Rd with mean and covariance respectively µ1, Σ1 and µ2, Σ2. Then the KL
divergence between P1 and P2 are given as follows:

KL(P1||P2) =
1

2

(
tr
(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

⊤
Σ−1

2 (µ2 − µ1)− d+ ln

(
detΣ2

detΣ1

))
.

We then provide a lemma which gives the expected difference between two uniform sampling
variables.
Lemma 6 (Two step sampling). Suppose z is a discrete random variable with P(z = zi) = 1

N ,
∀i = 1, 2, · · · , N , where the support set isZ = {z1, · · · , zN} ⊂ Rd. Suppose further U is a random
index set with size b and sampled uniformly without replacement from [N ]. Suppose V is another
random index set independent of U with size N − 1 and sampled uniformly without replacement from
[N ]. Denote subset of Z with index in U ∩ V c and V respectively as ZU∩V c = {zi, i ∈ U ∩ V c},
ZV = {zi, i ∈ V }, and the average of ZU∩V c and ZV respectively as Z̄U∩V c and Z̄V . Then the
following equation holds:

EU ,V

(
(b− |U ∩ V |)2

b2
(Z̄V − Z̄U∩V c)(Z̄V − Z̄U∩V c)⊤

)
=

1

Nb

(
N

N − 1

)2

Cov(z).

Proof. We rewrite EU ,V

(
(b−|U∩V |)2

b2 (Z̄V − Z̄U∩V c)(Z̄V − Z̄U∩V c)⊤
)

by taking conditional ex-
pectation with respect to |U ∩ V | as follows:

EU ,V

(
(b− |U ∩ V |)2

b2
(Z̄V − Z̄U∩V c)(Z̄V − Z̄U∩V c)⊤

)
= E|U∩V c|E

|U∩V c|
U ,V

(
|U ∩ V c|2

b2
(Z̄V − Z̄U∩V c)(Z̄V − Z̄U∩V c)⊤

)
= P(|U ∩ V c| = 1)E|U∩V c|=1

U ,V

(
1

b2
(Z̄V − Z̄V c)(Z̄V − Z̄V c)⊤

)
= P(|U ∩ V c| = 1)EV

(
1

b2
(Z̄V − Z̄V c)(Z̄V − Z̄V c)⊤

)
=

1

Nb

(
N

N − 1

)2

Cov(z).

The proof is completed.
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We provide the following lemma for computing the KL divergence between two joint distributions.

Lemma 7. Let X , Y , and Z be three random variables with X and Y having the same support set.
Then the KL divergence between the joint distribution of (X,Z) and (Y ,Z) can be decomposed
into

KL ((X,Z)∥(Y ,Z)) = EZ KL ((X|Z)∥(Y |Z)) .

Proof. By the definition of KL divergence,

KL ((X,Z)∥(Y ,Z)) =

∫
P(X,Z) log

P(X,Z)

P(Y ,Z)

=

∫
P(Z)PZ(X) log

PZ(X)P(Z)

PZ(Y )P(Z)

=

∫
P(Z)

∫
PZ(X) log

PZ(X)

PZ(Y )

=EZ KL ((X|Z)∥(Y |Z)) .

The proof is completed.

In the end of this section, we provide a proof of Lemma 1 using Lemma 7 for the completeness of
this paper.

Proof of Lemma 1. By Lemma 7, we have

KL(Q0:T ∥P0:T )

= KL(Q0:T ∥P0:T )−KL(Q0:T ∥(Q0:T−1, PT |[T−1])) + KL(Q0:T ∥(Q0:T−1, PT |[T−1]))

=

∫
Q0:T log

Q0:T

P0:T
−
∫

Q0:T log
Q0:T

Q0:T−1PT |[T−1]
+ EQT−1

KL
(
QT |[T−1]∥PT |[T−1]

)
=

∫
Q0:T log

Q0:T−1

P0:T−1
+ EQT−1

KL
(
QT |[T−1]∥PT |[T−1]

)
=

∫
Q0:T−1 log

Q0:T−1

P0:T−1
+ EQT−1

KL
(
QT |[T−1]∥PT |[T−1]

)
= KL (Q0:T−1 ∥P0:T−1 ) + EQT−1

KL
(
QT |[T−1]∥PT |[T−1]

)
.

The proof is then completed by induction.

Remark 1. In this paper, we focus on the case where Q0:T and P0:T obeys the Markov Property, i.e.,
for any t,

Qt|[t−1] = Qt|(t−1), Pt|[t−1] = Pt|(t−1).

Therefore, the result in Lemma 1 becomes

KL(Q0:T ||P0:T ) =
T∑

t=1

EQ0:t−1

[
KL

(
Qt|(t−1)∥Pt|(t−1)

)]
.

A.2 Technical Lemmas in Matrix Analysis

We first provide a sufficient and necessary condition of that two symmetric matrices commute, and
the proof can be found from any Linear Algebra Textbook (e.g. [32]).

Lemma 8. Let A and B be two d × d real symmetric matrices. Then, A and B commute (i.e.,
AB = BA), if and only if there exists an orthogonal matrix O which can diagonalize A and B
simultaneously, i.e., both O⊤AO and O⊤BO are diagonal.

The next lemma is a key technique to obtain the optimal noise covariance of Theorem 2 and Theorem
3.
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Lemma 9. Let B ∈ Rd×d be a (fixed) positive definite matrix with eigenvalues (β1, · · · , βd), where
βi ≥ 0. Let G ∈ Rd×d be a positive definite matrix variable with fixed trace trG = c, where c is
a positive constant and c ≤ tr(B). Then the minimum of tr(G−1B) + ln det(G) is achieved at
G = O⊤ Diag(α1, · · · , αd)O, where

α∗
i =

√
1− 4λ∗βi − 1

−2λ∗ ,

O is any orthogonal matrix which diagonalize B as

B = O⊤ Diag(β1, · · · , βd)O,

and λ∗ ≤ 0 is the unique solution of

d∑
i=1

2βi

1 +
√
1− 4λ∗βi

= c. (11)

Remark 2. f(λ) =
∑d

i=1
2βi

1+
√
1−4λβi

is a monotonously increasing function with respect to λ, which
guarantees the uniqueness of the solution of f(λ) = c.

Lemma 9 is proved via two steps: 1) we first prove for G with fixed eigenvalues, trG−1B+ln det(G)
is optimized if and only if G and B share the same eigenvectors; 2) we then calculate the eigenvalues
of the optimal G using the method of Lagrange multipliers. Theorem 3 can then be obtained by

applying Lemma 9 and setting G = Σt(S,W ) and B = σtI+ η2
t

Nbt

(
N

N−1

)2
Σsd

S,W . We first prove
the eigenvectors of G agree with those of B.
Lemma 10. Let G ∈ Rd×d be a positive definite matrix variable with fixed eigenvalues (αi)

d
i=1.

Specifically, let α1 ≥ α2 ≥ · · · ≥ αd > 0 be all the eigenvalues of G, and G can be any element
from the following set

{Q⊤ Diag(α1, · · · , αd)Q : Q is orthogonal}.

Let B be a fixed positive semi-definite matrix, with eigenvalues (βi)
d
i=1 satisfies β1 ≥ β2 · · · ≥ βd ≥

0. Then, the optimal (minimal) value of g(G) = tr(G−1B) is achieved when

G∗ = O⊤ Diag(α1, · · · , αd)O,

where O is any orthogonal matrix which diagonalizes B as

B = O⊤ Diag(β1, · · · , βd)O

and the optimal value of g(G) is
∑d

i=1
βi

αi
.

Proof. Let G∗ be a optimal point of tr(G−1B). We will then obtain the condition of G∗ by adding
a disturbance. Specifically, let A be an anti-symmetric matrix. Then,

(I− εA)(I− εA)T = I+ ε2AA⊤.

As ε is small enough, I + ε2AA⊤ is inevitable, and positive definite. Therefore, (I − εA)(I +
ε2AA⊤)−

1
2 is orthogonal. As ε→ 0,

lim
ε→0

(I− εA)(I+ ε2AA⊤)−
1
2 = I,

and
(I− εA)(I+ ε2AA⊤)−

1
2 − I = −εA+ o(ε).

Since G∗ is an optimal point of tr(G−1B), we have

tr((G∗)−1B) ≤ tr

(
(I− εA)(I+ ε2AA⊤)−

1
2 (G∗)−1

(
(I− εA)(I+ ε2AA⊤)−

1
2

)⊤
B

)
=tr

(
(I− εA)(I+ ε2AA⊤)−

1
2 (G∗)−1(I+ ε2AA⊤)−

1
2 (I+ εA)B

)
,
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which further leads to

−ε tr
(
A(G∗)−1B

)
+ ε tr

(
(G∗)−1AB

)
+ o(ε) ≥ 0.

By letting ε→ 0, we further have

− tr
(
A(G∗)−1B

)
+ tr

(
(G∗)−1AB

)
= 0,

which further leads to

0 =− tr
(
A(G∗)−1B

)
+ tr

(
(G∗)−1AB

)
=tr

(
A⊤(G∗)−1B

)
+ tr

(
B(G∗)−1A

)
=2 tr

(
B(G∗)−1A

)
. (12)

Since Eq.(12) holds for any anti-symmetry matrix A, let A = Ei,j −Ej,i, where i, j ∈ [d] and i ̸= j.
By Eq.(12), we have (

B(G∗)−1
)
i,j

=
(
B(G∗)−1

)
j,i

,

which further leads to

B(G∗)−1 =
(
B(G∗)−1

)⊤
= (G∗)−⊤B⊤ = (G∗)−1B.

By simple rearranging, we have

G∗B = BG∗.

Therefore, by Lemma 8, we have that there exists an orthogonal matrix O0, such that both O0G
∗O⊤

0

and O0BO⊤
0 are diagonal. By multiplying a permutation matrix, we further have there exists an

orthogonal matrix Õ such that ÕG∗Õ⊤ is diagonal, and

ÕBÕ⊤ = Diag(β1, · · · , βd). (13)

Since ÕG∗Õ⊤ is diagonal, there exists a permutation mapping T : [d]→ [d], such that

ÕG∗Õ⊤ = Diag
(
αT (1), · · · , αT (d)

)
. (14)

Denote the order of βi (i = 1, 2, · · · , d) as

β1 = · · · = βs1 > βs1+1 = · · · = βs1+s2 > · · · > β∑k−1
i=1 si+1 = · · · = β∑k

i=1 si
> 0, (15)

where
∑k

i=1 si = d, and we denote s0 = 0. Since G∗ is the optimal point of tr((G∗)−1B), for any
1 ≤ i < j ≤ d and βi > βj , we have αT (i) > αT (j): otherwise, let

G′ = Õ⊤ Diag
(
αT (1), · · · , αT (i−1), αT (j), αT (i+1), · · · , αT (j−1), αT (i), αT (j+1), · · · , αT (d)

)
Õ,

we have
tr((G∗)−1B) > tr((G′)−1B),

which contradicts that G∗ is optimal.

Therefore, T (
∑j

i=1 si + 1), · · · , T (
∑j+1

i=1 si) is then a permutation of
∑j

i=1 si + 1, · · · ,
∑j+1

i=1 si,
and there exists permutation matrix Q such that

Q = Diag (Q1, · · · ,Qk) , (16)

where Qi is a si × si permutation sub-matrix, such that,

QDiag
(
αT (1), · · · , αT (d)

)
Q⊤ = Diag (α1, · · · , αd) . (17)

Furthermore, by Eq.(16) and Eq.(15), we have

QDiag (β1, · · · , βd)Q
⊤ = Diag (β1, · · · , βd) . (18)
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Therefore, by Eqs.(13), (14), (17), and (18), we have

QÕB
(
QÕ

)⊤
= Diag (β1, · · · , βd) ,

QÕG∗
(
QÕ

)⊤
= Diag (α1, · · · , αd) .

Furthermore,

tr
(
G−1B

)
= tr

((
QÕ

)⊤
Diag

(
α−1
1 , · · · , α−1

d

) (
QÕ

)(
QÕ

)⊤
Diag (β1, · · · , βd)

(
QÕ

))
=

d∑
i=1

βi

αi
.

Therefore, the optimal value of tr(G−1B) is
∑d

i=1
βi

αi
, and the corresponding optimal point G∗

belongs to the following set

G = {O⊤ Diag(α1, · · · , αd)O : B = O⊤ Diag(β1, · · · , βd)O}.

On the other hand, it is easy to verify that for any element G ∈ G,

tr(G−1B) =

d∑
i=1

βi

αi
.

The proof is completed.

Lemma 10 indicates that with eigenvalues fixed, the eigenvectors of G should agree with those
of B by the order of eigenvalues. We then provide the following lemma to determine the optimal
eigenvalues.
Lemma 11. Let β1, β2, · · · , βd be a series of fixed positive reals. Let α1, α2, · · · , αd ∈ R+ be
a series of real variables with constraint

∑d
i=1 αi = c, where c is a positive real constant which

satisfies c ≤
∑d

i=1 βi. Then the minimum of function

f(α1, · · · , αd) =

d∑
i=1

βi

αi
+

d∑
i=1

lnαi

is achieved at

α∗
i =

√
1− 4λ∗βi − 1

−2λ∗ ,

where λ∗ ≤ 0 is the unique solution of

d∑
i=1

2βi

1 +
√
1− 4λ∗βi

= c.

Proof. We find the minimum of f under the constraint that α1 + · · · + αd = c by the method
of Lagrange Multiplier. Specifically, as for any i ∈ [d], αi → 0+ or αi → c− will lead to
f(α1, · · · , αd)→∞, we have that for any global optimal (minimal) point (α∗

1, · · · , α∗
d) of f under

the constraint α1 + · · ·+αd = c, we have that there exist a real λ∗, such that ((α∗
1, · · · , α∗

d), λ
∗) is a

saddle point of L((α1, · · · , αd), λ), which is defined as

L((α1, · · · , αd), λ) = f(α1, · · · , αd) + λ(c− α1 − · · · − αd).

By taking partial derivative of L with respect to αi, we have

−λ∗ = − 1

αi
+

βi

α2
i

=
βi − αi

α2
i

, (19)
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which further leads to
d∑

i=1

βi − c =

d∑
i=1

(βi − αi) = −λ∗

(
d∑

i=1

α2
i

)
.

Since
∑d

i=1 βi ≥ c, we have λ∗ ≤ 0. Therefore, for any i ∈ [d], the quadratic equation βix
2 − x+

λ∗ = 0 has only one positive solution 1+
√
1−4λ∗βi

2βi
, and

α∗
i =

2βi

1 +
√
1− 4λ∗βi

=

√
1− 4λ∗βi − 1

−2λ∗ .

On the other hand, by taking derivative of L with respect to λ∗, we have

d∑
i=1

α∗
i =

d∑
i=1

2βi

1 +
√
1− 4λ∗βi

= c. (20)

Since
∑d

i=1 α
∗
i =

∑d
i=1

2βi

1+
√
1−4λ∗βi

is a monotonously increasing function of λ∗, there is only one
solution of λ∗ of Eq.(20).

The proof is completed.

The proof of Lemma 9 can then be obtained by combining Lemma 10 and Lemma 11 together.

Proof of Lemma 9. The original optimization problem can be written as

min
tr(G)=c

tr
(
G−1B

)
+ ln (detG) ,

which can be further decomposed into

min
tr(G)=c

tr
(
G−1B

)
+ ln (detG)

= min∑d
i=1 αi=c

α1≥···≥αd>0

min
O∈O(d)

(
tr
(
O⊤ Diag

(
α−1
1 , · · · , α−1

d

)
OB

)
+

d∑
i=1

lnαi

)

(∗)
= min∑d

i=1 αi=c

(
d∑

i=1

βi

αi
+

d∑
i=1

lnαi

)
(∗∗)
=

d∑
i=1

1 +
√
1− 4λ∗βi

2
+

d∑
i=1

ln
2βi

1 +
√
1− 4λ∗βi

,

where Eq. (∗) is due to Lemma 10, Eq. (∗∗) is due to Lemma 11, and λ∗ ≤ 0 is the unique solution
of

d∑
i=1

2βi

1 +
√
1− 4λ∗βi

= c.

Furthermore, the optimal point of tr(G−1B) + ln(detG) can be calculated as

arg min
tr(G)=c

tr
(
G−1B

)
+ ln (detG)

=

{
O⊤ Diag

(√
1− 4λ∗β1 − 1

−2λ∗ , · · · ,
√
1− 4λ∗βd − 1

−2λ∗

)
O : B = O⊤ Diag(β1, · · · , βd)O,

λ∗ = argλ

(
d∑

i=1

2βi

1 +
√
1− 4λβi

= c

)}
.

The proof is completed.
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B Supplementary Materials of Section 3.1

Proof of Lemma 2. The β-smooth condition gives

RS(Wt+1) ≤ RS(Wt) + ⟨∇RS(Wt),Wt+1 −Wt⟩+
β

2
∥Wt+1 −Wt∥2. (21)

Based on the update rule Eq.(3), we have

Wt+1 −Wt = −ηt+1∇RSVt+1
(Wt) + εt+1, (22)

where εt+1 ∼ N (0,Σt+1(S,Wt)).

Take expectation on Eq.(21) with respect to Wt+1|Wt, by EWt(∇RSVt+1
(Wt)) = ∇RS(Wt),

EWt [RS(Wt+1)] ≤ RS(Wt)− ηt+1∥∇RS(Wt)∥2 +
β

2
EWt∥Wt+1 −Wt∥2. (23)

Furthermore,

EWt∥Wt+1 −Wt∥2

= EWt∥ − ηt+1∇RSVt+1
(Wt) + εt+1∥2

(∗)
= EWt∥ − ηt+1∇RSVt

(Wt)∥+ EWt∥εt+1∥2

= η2t+1EWt∥∇RSVt+1
(Wt)−∇RS(Wt) +∇RS(Wt)∥2 +Σt+1(S,Wt)

= η2t+1EWt∥∇RSVt+1
(Wt)−∇RS(Wt)∥2 + η2t+1∥∇RS(Wt)∥2 +Σt+1(S,Wt)

=
η2t+1

N − 1

N − bt+1

bt+1
Σsd

S,Wt
+ η2t+1∥∇RS(Wt)∥2 +Σt+1(S,Wt), (24)

where Eq.(∗) is due to εt+1 is independent of Vt+1, and EWtεt+1 = 0.

Applying Eq.(24) back to Eq.(23) completes the proof.

C Supplementary Materials of Section 3.2

C.1 Example to illustrate the difficulty to apply Proposition 1 to solve Problem 1

In this section, we show an example to demonstrate the difficulty for tackling Problem 1 through
Proposition 1. To start with, by the definition of state-dependent SGLD (Eq.(3)), covariance Σ[T ] is
independent of J and V[T ]. Therefore, the square root separates the expectation with respect to V[T ]

and J from the KL divergence term in the generalization bound

ES,V[T ],J

√√√√ (a2 − a1)2

2

T∑
s=1

E
Q

S,V[T ]
s−1

KL
(
Q

S,V[T ]

s|(s−1)

∥∥∥PJ,SJ ,V[T ]

s|(s−1)

)
,

which makes the dependency of the bound on Σ[T ] even more complex. However, even though we
change the optimization target into

ES

√√√√ (a2 − a1)2

2
EV[T ],J

T∑
s=1

E
Q

S,V[T ]
s−1

KL
(
Q

S,V[T ]

s|(s−1)

∥∥∥PJ,SJ ,V[T ]

s|(s−1)

)
, (25)

which is still a generalization bound by Jensen’s Inequality, we demonstrate that the dependency on
Σ[T ] is still too complex to tackle as follows.

To optimize Eq.(25) with respect to Σ[T ](S, ·) for fixed S, we are actually seeking the optimal point
of the following optimization problem:

Σ∗
[T ](S, ·) = arg min

Σ[T ](S,·)

√√√√EV[T ],J

T∑
s=1

E
Q

S,V[T ]
s−1

KL
(
Q

S,V[T ]

s|(s−1)

∥∥∥PJ,SJ ,V[T ]

s|(s−1)

)
. (26)
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However, we will show it is technically hard to solve Eq. (26). As discussed in Section
3.2.1, for any fixed index i ∈ [T ], Eq.(26) depends on Σs(S, ·) through both EV[T ],JEQ

S,V[T ]
s−1

KL(Q
S,V[T ]

s|(s−1)∥P
J,SJ ,V[T ]

s|(s−1) ) and EV[T ],JEQ
S,V[T ]
i−1

KL(Q
S,V[T ]

i|(i−1)∥P
J,SJ ,V[T ]

i|(i−1) ) for ∀i > s. Specifically,

we adopt the update rule for prior for all the steps and posterior for all steps t ̸= s to be the isotropic
SGLD in [25], i.e.,

Posterior: Wt = Wt−1 − ηt∇RSVt
(Wt−1) +N (0, σtI)

Prior: Wt = Wt−1 − ηt

(
|Vt ∩ J |
|Vt|

∇RSVt∩J (Wt−1) +
|Vt ∩ Jc|

|Vt|
∇RSJ (Wt−1)

)
+N (0, σtI) ,

while we only optimize the noise covariance Σs(S, ·) of step s:

Ws = Ws−1 − ηs∇RSVs
(Ws−1) +N (0,Σs(S,Ws−1)).

By simple calculation, for any step t ∈ [T ], given the same Wt−1, Vt, J , and S, the mean between
the prior and posterior can be calculated as

µS,Vt,J,Wt−1

= −ηt
(
|Vt ∩ J |
|Vt|

∇RSVt∩J
(Wt−1) +

|Vt ∩ Jc|
|Vt|

∇RSJ
(Wt−1)

)
+ ηt∇RSVt

(Wt−1)

= ηt
|Vt ∩ Jc|
|Vt|

(
∇RSVt∩Jc (Wt−1)−∇RSJ

(Wt−1)
)
. (27)

Therefore, by Lemma 5 and Lemma 6, the expected KL divergence EV[T ],JEQ
S,V[T ]
i−1

KL

(Q
S,V[T ]

i|(i−1)∥P
J,SJ ,V[T ]

i|(i−1) ) can be calculated as

EV[T ],JEQ
S,V[T ]
i−1

KL
(
Q

S,V[T ]

i|(i−1)

∥∥∥PJ,SJ ,V[T ]

i|(i−1)

)
=

1

2
EV[T ],JEQ

S,V[T ]
i−1

(
σ−1
i µS,Vt,J,Wi−1

(
µS,Vt,J,Wi−1

)⊤)
=

1

2σi

1

Nbi

(
N

N − 1

)2

EV[i−1]
E
Q

S,V[i−1]
i−1

Σsd
S,Wi−1

.

Therefore, the exact form of EV[T ],JEQ
S,V[T ]
i−1

KL(Q
S,V[T ]

i|(i−1)∥P
J,SJ ,V[T ]

i|(i−1) ) requires taking expecta-

tion to Σsd
S,Wi−1

with respect to Gaussian distribution with covariance Σs, and can be complex
due to the complex structure of the model. Specifically, if i = s + 1, then EV[T ],JEQ

S,V[T ]
i−1

KL(Q
S,V[T ]

i|(i−1)∥P
J,SJ ,V[T ]

i|(i−1) ) can be further written as

EV[T ],JEQ
S,V[T ]
s

KL
(
Q

S,V[T ]

s+1|s

∥∥∥PJ,SJ ,V[T ]

s+1|s

)
=
1

2

1

Nbs+1

(
N

N − 1

)2

EV[s]
E
Q

S,V[s−1]
s−1

EQS,Vs
s|(s−1)

Σsd
S,Ws

.

Therefore, we need to optimize EVs
EQS,Vs

s|(s−1)
Σsd

S,Ws
, which can be further written as

EVs
EQS,Vs

s|(s−1)
Σsd

S,Ws
= EVs

EN (−ηs∇RSVs
(Ws−1),Σs(S,Ws−1))Σ

sd
S,Ws

.

The explicit form of EVsEN (−ηs∇RSVs
(Ws−1),Σs(S,Ws−1))Σ

sd
S,Ws

can be obtained only when
Σsd

S,Ws
is some simple functions with respect to Ws (e.g. quadratic functions), which makes the

optimal of EVsEN (−ηs∇RSVs
(Ws−1),Σs(S,Ws−1))Σ

sd
S,Ws

complicated due to the complex structure
ofRS and Σsd

S,W in pratical learning problems.
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C.2 Proof of Theorem 1

Proof of Theorem 1. For any two random measures PJ,SJ ,V[T ] , QS,V[T ] , by the Donsker-Varadhan
variational formula [3], for any function g satisfying QS,V[T ](exp g) <∞, we have

KL(PJ,SJ ,V[T ] ||QS,V[T ]) ≥ PJ,SJ ,V[T ](g)−QS,V[T ](g)− logQS,V[T ]
(
exp(g −QS,V[T ](g))

)
.

Letting g(W ) = λ
(
R̂SJc (W )−RD(W )

)
, we further have

KL(PJ,SJ ,V[T ] ||QS,V[T ])

≥ λ
(
RD(Q

S,V[T ])− R̂SJc (Q
S,V[T ])−

(
RD(P

J,SJ ,V[T ])− R̂SJc (P
J,SJ ,V[T ])

))
− logQS,V[T ]

(
exp

(
λ
(
R̂SJc −RD −

(
R̂SJc (Q

S,V[T ])−RD(Q
S,V[T ])

))))
.

On the other hand, since ℓ ∈ [a1, a2], λ
(
R̂SJc (W )−RD(W )

)
is λ(a2−a1)

2 subgaussian. There-
fore, (

RD(Q
S,V[T ])− R̂SJc (Q

S,V[T ])
)
−
(
RD(P

J,SJ ,V[T ])− R̂SJc (P
J,SJ ,V[T ])

)
≤ inf

λ>0

KL(PJ,SJ ,V[T ] ||QS,V[T ]) + 1
8λ

2(a2 − a1)
2

λ
.

Since PJ,SJ ,V[T ] is independent of SJc then we have
ESJ ,J,V[T ]

[
RD(P

J,SJ ,V[T ])− R̂SJc (PJ,SJ ,V[T ])
]

= 0. Hence, by averaging over SJc

(equivalently, taking the conditional expectation conditional on (SJ ,J ,V[T ])) we have, with
probability one

ESJ ,J,V[T ]

[
RD(Q

S,V[T ])− R̂SJc (Q
S,V[T ])

]
= ESJ ,J,V[T ]

[
RD(Q

S,V[T ])− R̂SJc (Q
S,V[T ])−

(
RD(P

J,SJ ,V[T ])− R̂SJc (P
J,SJ ,V[T ])

)]
≤ ESJ ,J,V[T ]

(
inf
λ>0

KL(PJ,SJ ,V[T ] ||QS,V[T ]) + 1
8λ

2(a2 − a1)
2

λ

)
Finally, by taking the full expectation, since J ⊥⊥ QS,V[T ] we get:

ES,V[T ]

[
RD(Q

S,V[T ])− R̂S(Q
S,V[T ])

]
≤ ES,V[T ],J

[
inf
λ>0

KL(PJ,SJ ,V[T ] ||QS,V[T ]) + 1
8λ

2(a2 − a1)
2

λ

]
where the final KL(PJ,SJ ,V[T ] ||QS,V[T ]) on the right hand side is between two random measures,
and hence is a random variable depending on (S,J ,V[T ]); and the expectation on the right hand side
integrates over (S,J ,V[T ]).

Since

KL(PJ,SJ ,V[T ] ||QS,V[T ]) + 1
8λ

2(a2 − a1)
2

λ
≥
√

1

2
(a2 − a1)2 KL(PJ,SJ ,V[T ] ||QS,V[T ]),

the proof is completed.

D Supplementary of Section 4

In this section, we provide the proof of Theorem 2. Specifically, as mentioned in the main body,
optimizing GenT with greedily selected prior involves three steps. (1). we first prove Lemma 3,
which provides the optimal solution of noise covariance and prior for one single KL divergence term
in the generalization bound GenT ; (2). as the optimal solution of noise covariance in Lemma 3 is
independent of SJ , V[T ], and V[T ], we are then able to obtain the greedy prior by Lemma 4; (3).
applying the greedy prior back to GenT , we are finally able to derive Theorem 2.

We start by restating Lemma 12 and providing its proof.
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Lemma 12 (Lemma 3, restated). For any s ∈ [T ], J , SJ , and V[T ], under Constraint 1,

min
P

J,SJ ,Vs
s|(s−1)

ESJc∼D KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
(28)

(1). is independent of Σs when Vs ∩ Jc = ∅, and (2). is minimized at Σs(W ) = λs(W ) (Σpop
W )

1
2 ,

∀W , when Vs ∩ Jc ̸= ∅, where λs(W ) = cs(W )/ tr((Σpop
W )

1
2 ).

Proof. We first calculate min
P

J,SJ ,Vs
s|(s−1)

ESJc∼D KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
for any Σs. By applying

the definition of the KL divergence, we have

arg min
P

J,SJ ,Vs
s|(s−1)

ESJc∼D KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,V[T ]

s|(s−1)

)

= arg min
P

J,SJ ,Vs
s|(s−1)

ESJc∼D

∫
PJ,SJ ,Vs

s|(s−1) (Ws) log
PJ,SJ ,Vs

s|(s−1) (Ws)

Q
S,V[T ]

s|(s−1)(Ws)
dWs

(∗)
= arg min

P
J,SJ ,Vs
s|(s−1)

∫
PJ,SJ ,Vs

s|(s−1) (Ws) log
PJ,SJ ,Vs

s|(s−1) (Ws)

e
ESJc∼D logQ

S,V[T ]

s|(s−1)
(Ws)

dWs, (29)

where Eq. (∗) is due to the independence of P on SJc .

Let

Q̃
J,SJ ,V[T ]

s|(s−1) (W ) =
e
ESJc∼D logQ

S,V[T ]

s|(s−1)
(W )∫

e
ESJc∼D logQ

S,V[T ]

s|(s−1)
(W̃ )

dW̃

, (30)

and Q̃
J,SJ ,V[T ]

s|(s−1) (W ) is then a probability measure on Rd. Applying Eq. (30) back to Eq. (29), we
obtain

arg min
P

J,SJ ,Vs
s|(s−1)

∫
PJ,SJ ,Vs

s|(s−1) (Ws) log
PJ,SJ ,Vs

s|(s−1) (Ws)

Q̃
J,SJ ,V[T ]

s|(s−1) (Ws)
dWs

−
∫

PJ,SJ ,Vs

s|(s−1) (Ws) log

(∫
e
ESJc∼D logQ

S,V[T ]
s|(s−1)

(W̃ )
dW̃

)
dWs

)

=arg min
P

J,SJ ,Vs
s|(s−1)

∫
PJ,SJ ,Vs

s|(s−1) (Ws) log
PJ,SJ ,Vs

s|(s−1) (Ws)

Q̃
J,SJ ,V[T ]

s|(s−1) (Ws)
dWs − log

(∫
e
ESJc∼D logQ

S,V[T ]
s|(s−1)

(W̃ )
dW̃

))

=arg min
P

J,SJ ,Vs
s|(s−1)

∫
PJ,SJ ,Vs

s|(s−1) (Ws) log
PJ,SJ ,Vs

s|(s−1) (Ws)

Q̃
J,SJ ,V[T ]

s|(s−1) (Ws)
dWs


=arg min

P
J,SJ ,Vs
s|(s−1)

KL
(
P∥Q̃J,SJ ,V[T ]

s|(s−1)

)
. (31)

The minimum of Eq.(31) is achieved if and only if PJ,SJ ,Vs

s|(s−1) = Q̃
J,SJ ,V[T ]

s|(s−1) , and we only

need to calculate the exact form of Q̃
J,SJ ,V[T ]

s|(s−1) . Since Ws|(Ws−1,S,Vs) ∼ N (Ws−1 −
ηs∇Ws−1

RSVs
(Ws−1), Σs(Ws−1)), we have

expESJc∼D logQ
S,V[T ]

s|(s−1)(W )

= exp

(
ESJc∼D

(
−1

2
(W −Ws−1 + ηs∇Ws−1RSVs

(Ws−1))
⊤Σs(Ws−1)

−1(W −Ws−1

+ηs∇Ws−1RSVs
(Ws−1))−

d

2
log 2π − 1

2
log det(Σs(Ws−1))

))
= exp

(
ESJc∼D

(
− 1

2
(W −Ws−1 + ηs∇Ws−1RSVs

(Ws−1))
⊤Σs(Ws−1)

−1(W −Ws−1

+ηs∇Ws−1RSVs
(Ws−1)

)
− d

2
log 2π − 1

2
log det(Σs(Ws−1))

)
. (32)
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On the other hand,

ESJc∼D

(
−1

2
(W −Ws−1 + ηs∇Ws−1RSVs

(Ws−1))
⊤Σs(Ws−1)

−1(W −Ws−1

+ηs∇Ws−1RSVs
(Ws−1))

)
= −1

2
ESJc∼D

(
W −Ws−1 + ηs

(
|Vs ∩ J |
|Vs|

∇RSVs∩J (Ws−1) +
|Vs ∩ Jc|

|Vs|
∇RSVs∩Jc (Ws−1)

))⊤

·Σs(Ws−1)
−1

(
W −Ws−1 + ηs

(
|Vs ∩ J |
|Vs|

∇RSVs∩J (Ws−1) +
|Vs ∩ Jc|

|Vs|
∇RSVs∩Jc (Ws−1)

))
= −1

2

(
W −Ws−1 + ηs

(
|Vs ∩ J |
|Vs|

∇RSVs∩J (Ws−1) +
|Vs ∩ Jc|

|Vs|
∇RD (Ws−1)

))⊤

·Σs(Ws−1)
−1

(
W −Ws−1 + ηs

(
|Vs ∩ J |
|Vs|

∇RSVs∩J (Ws−1) +
|Vs ∩ Jc|

|Vs|
∇RD (Ws−1)

))
− 1

2
ESJc∼Dη2

s
|Vs ∩ Jc|2

|Vs|2
(
∇RD (Ws−1)−∇RSVs∩Jc (Ws−1)

)⊤
Σs(Ws−1)

−1

·
(
∇RD (Ws−1)−∇RSVs∩Jc (Ws−1)

)
. (33)

By combining Eq.(32) and Eq.(33), we further have

expESJc∼D logQ
S,V[T ]

s|(s−1)(W )

=
1

(2π)−
d
2 det(Σs(Ws−1))

1
2

exp

(
−1

2

(
W −Ws−1 + ηs

(
|Vs ∩ J |
|Vs|

∇RSVs∩J (Ws−1)

+
|Vs ∩ Jc|

|Vs|
∇RD (Ws−1)

))⊤

Σs(Ws−1)
−1

(
W −Ws−1 + ηs

(
|Vs ∩ J |
|Vs|

∇RSVs∩J (Ws−1)

+
|Vs ∩ Jc|

|Vs|
∇RD (Ws−1)

))
expESJc

(
− 1

2
η2
s
|Vs ∩ Jc|2

|Vs|2
(
∇RD (Ws−1)−∇RSVs∩Jc (Ws−1)

)⊤
·Σs(Ws−1)

−1 (∇RD (Ws−1)−∇RSVs∩Jc (Ws−1)
))

. (34)

Therefore, by taking integration with respect to W̃ , we have,

∫
e
ESJc∼D logQ

S,V[T ]

s|(s−1)
(W̃ )

dW̃

= expESJc

(
−1

2
η2s
|Vs ∩ Jc|2

|Vs|2
(
∇RD (Ws−1)−∇RSVs∩Jc (Ws−1)

)⊤
Σs(Ws−1)

−1

·
(
∇RD (Ws−1)−∇RSVs∩Jc (Ws−1)

))
. (35)

Therefore, by Eq.(30), Eq.(34), and Eq.(35), we have

arg min
P

J,SJ ,Vs
s|(s−1)

ESJc∼D KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,V[T ]

s|(s−1)

)
= Q̃

J,SJ ,V[T ]

s|(s−1) (36)

∼ N
(
Ws−1 − ηs

(
|Vs ∩ J |
|Vs|

∇RSVs∩J
(Ws−1) +

|Vs ∩ Jc|
|Vs|

∇RD (Ws−1)

)
,Σs(Ws−1)

)
.
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Applying Eq. (36) back to ESJc∼D KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,V[T ]

s|(s−1)

)
, we obtain

min
P

J,SJ ,Vs
s|(s−1)

ESJc∼D KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,V[T ]

s|(s−1)

)
= ESJc∼D KL

(
Q̃

J,SJ ,V[T ]

s|(s−1)

∥∥∥QS,V[T ]

s|(s−1)

)

=

∫
Q̃

SJ ,V[s]

t|(t−1) (Ws) log
Q̃

SJ ,V[s]

t|(t−1) (Ws)

e
ESJc∼D logQ

S,V[s]

t|(t−1)
(Ws)

dWs

(◦)
= −

∫
Q̃

SJ ,V[s]

t|(t−1) (Ws) log

∫
e
ESJc∼D logQ

S,V[s]

t|(t−1)
(W̃ )

dW̃dWs

= − log

∫
e
ESJc∼D logQ

S,V[s]

t|(t−1)
(W̃ )

dW̃

(•)
=

1

2
η2tESJc∼D

|Vt ∩ Jc|2

|Vt|2
(
∇RD (Wt−1)−∇RSVt∩Jc (Wt−1)

)⊤
Σt(Wt−1)

−1

·
(
∇RD (Wt−1)−∇RSVt∩Jc (Wt−1)

)
=

1

2
η2tESJc∼D tr

(
Σt(Wt−1)

−1 |Vt ∩ Jc|2

|Vt|2
(
∇RD (Wt−1)−∇RSVt∩Jc (Wt−1)

)⊤
·
(
∇RD (Wt−1)−∇RSVt∩Jc (Wt−1)

))
(♢)
=


0 ,Vt ∩ Jc = ∅;
1

2

η2tN

bt(N − 1)2
tr

(
Σt(Wt−1)

−1Σpop
Wt−1

)
,Vt ∩ Jc ̸= ∅.

(37)

where Eq. (◦) is due to the definition of Q̃
SJ ,V[s]

t|(t−1) (Eq.(30)), Eq. (•) is due to Eq.(35) and Eq. (♢) is
due to Lemma 6.

Therefore, when Vt ∩ Jc = ∅, Eq.(28) is independent of Σs. On the other hand, if Vt ∩ Jc ̸= ∅, we
only need to solve

Σs(W )∗ = arg min
tr(Σs(W ))=cs(W )

tr

(
Σs(W )−1Σpop

W

)
, subject to Constraint 1. (38)

We complete the proof by solving Problem (38). Specifically, let the eigenvalues of Σpop
W be (ωpop

i )di=1
(the value is by non-increasing order with respect to index) we first fix the eigenvalues of Σs(W ) to
be α[d] with αi ≥ 0 (the value is by non-increasing order with respect to index), i ∈ [d]. Then, by

Lemma 10, the minimum of tr
(
Σs(W )−1Σpop

W

)
is achieved when

Σs(W ) ∈
{
P⊤ (α[d]

)
P : P is orthogonal and Σpop

W = P⊤
(
ωpop
[d]

)
P
}
, (39)

and

tr

(
Σs(W )−1Σpop

W

)
=

d∑
i=1

ωpop
i

αi
.

We then optimize
∑d

i=1
ωpop

i

αi
under the constraint

∑d
i=1 αi = cs(Ws−1). By the Cauchy-Schwarz

inequality,

cs(Ws−1)

(
d∑

i=1

ωpop
i

αi

)
=

(
d∑

i=1

ωpop
i

αi

)(
d∑

i=1

αi

)
(∗)
≥

(
d∑

i=1

√
ωpop
i

)2

, (40)

where equality in inequality (∗) holds when α2
i /ω

pop
i is invariant of i. By combining Eq.(39) and

Eq.(40), the proof is completed.

By Lemma 12, the optimal noise covariances Σs of all KL divergence terms
ESJc∼D KL

(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
are the same regardless of Vs, J , and SJ , which helps

us to obtain Lemma 4.
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Proof of Lemma 4. To begin with, denote the optimal noise covariance of first s-step in terms of the
generalization bound Gens as Σs under Constraint 1, i.e.,

Σs
[s]

△
= argmin

Σ[s]

(
min
P

Gens(P,Σ[s])
)
, subject to: Constraint 1,

we also define Qs accordingly as the posterior distribution with noise covariance Σs. Also, recall
that P s is the optimal prior in terms of the generalization bound Gens under Constraint 1, i.e.,

P s = argmin
P

(
min
Σ[s]

Gens(P,Σ[s])

)
, subject to: Constraint 1.

We would like to derive the form of Σs
s and P s

s|(s−1).

Specifically, we have

P s
s|(s−1) = argmin

Ps|(s−1)

(
Gens(P,Σ

s
[s])
)
, subject to: Pt|(t−1) = P s

t|(t−1)(t < s),

and

Σs
s = argmin

Σs

(
Gens(P

s,Σ[s])
)
, subject to: Constraint 1 and Σt = Σs

t|(t−1)(t < s).

That is, to obtain the desired Σs
s and P s

s|(s−1), we only need to solve

min
Σs,P s

s|(s−1)

Gens(P,Σ[s]), subject to: Pt|(t−1) = P s
t|(t−1)(t < s) and Σt = Σs

t|(t−1)(t < s).

On the other hand, with Pt|(t−1) = P s
t|(t−1)(t < s) and Σt = Σs

t|(t−1)(t < s) and under Constraint
1, we have

min
Σs,Ps|(s−1)

Gens(P,Σ[s])

= min
Σs,Ps|(s−1)

ESJ ,V[s],J

√
(a2 − a1)2

2
ESJc KL

(
PJ,SJ ,V[s]

∥∥QS,V[s]
)

= min
Σs,Ps|(s−1)

ESJ ,V[s],J

√√√√ (a2 − a1)2

2
ESJc

s∑
t=1

E
P

J,SJ ,V[s]
t−1

KL
(
PJ,SJ ,Vs

t|(t−1)

∥∥∥QS,Vs

t|(t−1)

)

= min
Σs,Ps|(s−1)

ESJ ,V[s],J

√√√√ (a2 − a1)2

2
ESJc

s∑
t=1

E
P s

J,SJ ,V[s]
t−1

KL
(
P sJ,SJ ,Vs

t|(t−1)

∥∥∥QsS,Vs

t|(t−1)

)

+
(a2 − a1)2

2
ESJcE

P
J,SJ ,V[s]
s−1

KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)]
(∗)
≥ ESJ ,V[s],J

√√√√ (a2 − a1)2

2
ESJc

s∑
t=1

E
P s

J,SJ ,V[s]
t−1

KL
(
P sJ,SJ ,Vs

t|(t−1)

∥∥∥QsS,Vs

t|(t−1)

)

+
(a2 − a1)2

2
ESJcE

P
J,SJ ,V[s]
s−1

min
Σs,P

J,SJ ,Vs
s|(s−1)

KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

) .

By Lemma 12, min
Σs,P

J,SJ ,Vs
s|(s−1)

KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
is attained at Σs(W ) =

λs(W ) (Σpop
W )

1
2 , which is not dependent on J ,SJ ,Vs, and

PJ,SJ ,Vs

s|(s−1) ∼ N
(
Ws−1 − ηs

(
|Vs ∩ J |
|Vs|

∇RSVs∩J (Ws−1) +
|Vs ∩ Jc|

|Vs|
∇RD (Ws−1)

)
, λs(W ) (Σpop

W )
1
2

)
.

Therefore, Inequality (∗) holds, and the proof is completed.
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By Lemma 4, we obtain the form of P ∗, i.e.,

P ∗J,SJ ,Vs

s|(s−1) ∼ N
(
Ws−1 − ηs

(
|Vs ∩ J |
|Vs|

∇RSVs∩J (Ws−1) +
|Vs ∩ Jc|

|Vs|
∇RD (Ws−1)

)
, λs(W ) (Σpop

W )
1
2

)
,

which allows us to further derive Theorem 2.

Proof of Theorem 2. By the definition of GenT , with prior the greedy prior and under Constraint 1,
we have

min
Σ[T ]

GenT (P
∗,Σ[T ])

= min
Σ[T ]

ESJ ,V[T ],J

√
(a2 − a1)2

2
ESJc KL

(
P ∗J,SJ ,V[T ]

∥∥QS,V[T ]

)

= min
Σ[T ]

ESJ ,V[T ],J

√√√√ (a2 − a1)2

2
ESJc

T∑
t=1

E
P∗

J,SJ ,V[t−1]
t−1

KL
(
P ∗J,SJ ,Vt

t|(t−1)

∥∥∥QS,Vt

t|(t−1)

)
(•)
≥ ESJ ,V[T ],J

√√√√ (a2 − a1)2

2

T∑
t=1

E
P∗

J,SJ ,V[t−1]
t−1

min
Σt

ESJc KL
(
P ∗J,SJ ,Vt

t|(t−1)

∥∥∥QS,Vt

t|(t−1)

)
(∗)
= ESJ ,V[T ],J

√√√√ (a2 − a1)2

2

T∑
t=1

E
P∗

J,SJ ,V[t−1]
t−1

min
Σt,P

J,SJ ,Vt
t|(t−1)

ESJc KL
(
PJ,SJ ,Vt

t|(t−1)

∥∥∥QS,Vt

t|(t−1)

)
,

where Eq. (∗) is due to that by the proof of Lemma 4, P ∗J,SJ ,Vs

s|(s−1) is the same as

the prior minimizing ESJc∼D KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
for any given J ,SJ ,Vs. Therefore,

minΣt ESJc KL
(
P ∗J,SJ ,Vt

t|(t−1)

∥∥∥QS,Vt

t|(t−1)

)
is attained when Σt(W ) = λs(W )(Σpop

W )
1
2 , which is

independent of J ,SJ ,Vs, and Inequality (•) holds. Therefore, minΣ[T ]
GenT (P

∗,Σ[T ]) is also
attained at Σt(W ) = λs(W )(Σpop

W )
1
2 .

The proof is completed.

E Supplementary materials of Section 5

E.1 Formal Description of the Prior in Section 5

In this section, we provide a detailed description of the update rule of the prior defined by Eq.(10).

Algorithm 1: Iteration of Prior
Input: Sample set S with size N , initialization distributionW0, total step T , learning rate

(ηt)
T
t=1

Output: W[T ], J
1 Initialize W0 according toW0; initialize J by uniformly sampling N − 1 elements from [N ]

without replacement; set t = 0
2 while t < T do
3 Uniformly sample index set Vt ⊂ [N ] such that |Vt| = bt without replacement and

independent of J
4 if Vt ⊂ J then
5 Wt = Wt−1 − ηt∇RSVt

(Wt−1) +N (0, σtId)
6 else
7 Wt = Wt−1 − ηt

bt−1
bt
∇RSVt∩J

(Wt−1)− ηt
1
bt
∇RSJ

(Wt−1) +N (0, σtId)
8 t = t+ 1
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E.2 Calculation of the Generalization Bound

To obtain the optimal noise covariance of (P2), we first derive the explicit form of the generalization
bound G̃enT with the prior given by Eq. (10) as the following lemma:

Lemma 13 (Calculate G̃enT ). Let Assumption 1 hold. Let the prior P is given by the update rule Eq.
(10). Then, the generalization bound G̃enT can be represented as

G̃enT = ESJ

√√√√ (a2 − a1)2

2

T∑
t=1

ESJc ,V[t−1]
E
P

J,SJ ,V[s−1]
s−1

At(S,Wt−1),

where At(S,W ) is given as

At(S,W )
△
=
1

2

(
σt(W ) tr

(
Σt(S,W )−1)+ ln (detΣt(S,W ))− d

)
+

η2
t

2Nbt

(
N

N − 1

)2

tr
(
Σt(S)−1Σsd

S,Wt−1

)
− 1

2
d lnσt(W ).

Proof. By the definition of G̃enT , we have

G̃enT = ES

√
(a2 − a1)2

2
EV[T ],J KL

(
PJ,SJ ,V[T ]

∥∥QS,V[T ]
)
,

which by the decomposition of KL divergence (Lemma 1) further leads to

G̃enT =ES

√√√√ (a2 − a1)2

2
EV[T ],J

T∑
s=1

E
P

J,SJ ,V[T ]
s−1

KL
(
P

J,SJ ,V[T ]

s|(s−1)

∥∥∥QS,V[T ]

s|(s−1)

)

=ES

√√√√ (a2 − a1)2

2

T∑
s=1

EV[s],JEP
J,SJ ,V[s−1]
s−1

KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
(∗)
=ES

√√√√ (a2 − a1)2

2

T∑
s=1

EV[s−1]
E
P

J,SJ ,V[s−1]
s−1

EVs,J KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
(∗∗)
= ES

√√√√ (a2 − a1)2

2

T∑
s=1

EV[s−1],JEP
J,SJ ,V[s−1]
s−1

EVs,J KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
,

where in Eq. (∗) we exchange the order between E
P

J,SJ ,V[s−1]
s−1

and EVs,J due to Assumption 1,

and Eq. (∗∗) is due to that E
P

J,SJ ,V[s−1]
s−1

EVs,J KL
(
PJ,SJ ,Vs

s|(s−1)

∥∥∥QS,Vs

s|(s−1)

)
is independent of J by

Assumption 1.

Therefore, we only need to prove EVt,J KL
(
PJ,SJ ,Vt

t|(t−1)

∥∥∥QS,Vt

t|(t−1)

)
= A(t), which can be obtained

by

26



EVt,J KL
(
PJ,SJ ,Vt

t|(t−1)

∥∥∥QS,Vt

t|(t−1)

)
(•)
=

1

2
EVt,J

((
µS,Vt,J,Wt−1

)⊤
Σt(S,Wt−1)

−1µS,Vt,J,Wt−1 + ln
detΣt(S,Wt−1)

σt(Wt−1)d

+ tr
(
σt(Wt−1)Σt(S,Wt−1)

−1
))
− d

2

=
1

2
EVt,J

(
tr
(
Σt(S,Wt−1)

−1µS,Vt,J,Wt−1
(
µS,Vt,J,Wt−1

)⊤)
+ ln

detΣt(S,Wt−1)

σt(Wt−1)d

+ tr
(
σt(Wt−1)Σt(S,Wt−1)

−1
))
− d

2

=
1

2
tr
(
Σt(S,Wt−1)

−1EJ,Vt
µS,Vt,J,Wt−1

(
µS,Vt,J,Wt−1

)⊤)
+

1

2
ln

detΣt(S,Wt−1)

σt(Wt−1)d

+
1

2
tr
(
σt(Wt−1)Σt(S,Wt−1)

−1
)
− d

2
(◦)
=

1

2

(
σt(Wt−1) tr

(
Σt(S,Wt−1)

−1
)
+ ln (detΣt(S,Wt−1))− d

)
− 1

2
d lnσt(Wt−1)

+
η2t

2Nbt

(
N

N − 1

)2

tr
(
Σt(S,Wt−1)

−1Σsd
S,Wt−1

)
,

where Eq. (•) is due to Lemma 5, where µS,Vt,J,Wt−1 is defined by Eq.(27), and Eq. (◦) is obtained
by Lemma 6.

The proof is completed.

By Lemma 13, for any t ∈ [T ], S, and Wt−1, Gen[T ] depend on Σt(W ,Gen[T ]) only through
At(S,W ), and the solution of optimizing At with respect to Σt under Constraint 1 has already been
given by Lemma 9. We then complete the proof of Theorem 3 in the next section by combining
Lemma 13 and Lemma 9 together.

E.3 Proof of Theorem 3

In this section, we first restate Theorem 3 with explicit form of ω̃S,W
i (omitted in the main text). We

then provide the proof of the theorem by Lemma 13 and Lemma 9.

Theorem 4. Let prior and posterior be defined as Eq.(10) and Eq.(3), respectively. Then, with
Assumption 1, the solution of (P2) is given by

Σ∗
t (S,W ) = Qsd

S,W Diag(ω̃S,W
t,1 , · · · , ω̃S,W

t,d )
(
Qsd

S,W

)⊤
,

where

ω̃S,W
t,i =

√
1− 4λ∗

(
EJσt(SJ ,W ) +

η2
t

Nbt

(
N

N−1

)2
ωS,W
i

)
− 1

−2λ∗ ,

λ∗ is determined by
∑d

i=1 ω̃
S,W
t,i = ct (S,W ), and Qsd

S,W is the orthogonal matrix that diagonalizes
Σsd

S,W as

Σsd
S,W = Qsd

S,W Diag(ωS,W
1 , · · · , ωS,W

d )
(
Qsd

S,W

)⊤
.
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Proof of Theorem 3. By Lemma 13, GenT depends on Σt(S,W ) only through At(S,W ), and we
have

Σ∗
s(S,W )

= arg min
Constraint 1

As(S,W )

= arg min
tr(Σ)=cs(S,W )

1

2

(
tr

(
Σ−1

(
σs(SJ ,Ws−1)I+

η2s
Nbs

(
N

N − 1

)2

Σsd
S,Ws−1

))

− d lnσs(SJ ,Ws−1)− d+ ln (detΣ)

)
= arg min

tr(Σ)=cs(S,W )

1

2

(
tr

(
Σ−1

(
σs(SJ ,Ws−1)I+

η2s
Nbs

(
N

N − 1

)2

Σsd
S,Ws−1

))

+ ln (detΣ)

)
.

Applying Lemma 9 completes the proof.

E.4 Smaller Condition Number

In this section, we demonstrate why the optimal noise of Theorem 3 has smaller condition number
than Σsd as the following corollary.
Corollary 1. The optimal noise covariance Σ∗ given by Theorem 3 has smaller condition number
than Σsd.

Proof. We prove this claim following two steps.

Firstly, the noise covariance of the prior is isotropic, has condition number 1, and push the condition

number of σtI+ η2
t

Nbt

(
N

N−1

)2
Σsd

S,W smaller than Σsd
S,W .

Secondly, the optimal solution G of Lemma 9 always has a smaller condition number than B, which

implies that Σ∗
t (S,W ) has smaller condition number than B = σtI+ η2

t

Nbt

(
N

N−1

)2
Σsd

S,W . Hence

the condition number of Σ∗
t (S,W ) is smaller than Σsd

S,W .

F Experiments

In this section, we introduce the settings of the experiments in Fig. (1) Fig.(2), Fig.(3), and Fig.(4).
We further include an additional experiment comparing the generalization error between SGLD with
square rooted empirical gradient covariance (SREC-SGLD) (the optimal noise covariance in Theorem
2) and SGLD with empirical gradient covariance (EC-SGLD) subject to Constraint 1.

F.1 Experiment settings

For both Fig. (1), Fig.(2), Fig. (3), and Fig. (4), we adopt the same setting as the Fashion-MNIST
experiment of [40, Section D.3] despite enlarging the training set. Specifically, we use the 4-layer
convolutional neural network as our model to conduct multi-class classification on Fashion-MNIST
[35]. Concretely, this convolutional neural network can be expressed in order as: convolutional layer
with 10 channel and filter size 5× 5, max-pool layer with kernel size 2 and stride 2, convolutional
layer with 10 channel and filter size 5× 5, max-pool with kernel size 2, two fully connected layer
with width 50. Our training set consists of 10,000 examples uniformly sampled without replacement
from the Fashion-MNIST dataset. Our training set is larger than that in [40] (which only contains
1200 samples), but is still one sixth of the whole Fashion-MNIST dataset due to the computational
burden of gradient descent (without mini-batch) in the SGLD. The learning rates of all SGLD are set
to 0.07, which is exactly the same as [40]. We also set the learning rate of SGD in Fig. (1) to 0.07 for
fair comparison with SGLD.
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Empirical gradient covariance: We use top 100 eigenvalues to approximate the empirical gradient
covariance matrix. Specifically, we decompose the matrix Σsd

S,W into (QS,W )⊤(ωS,W
[d] )QS,W , and

use (QS,W )⊤(ωS,W
[100] ,0d−100)QS,W to approximate Σsd

S,W .

Noise Scale: In Fig. (1) and Fig.(2), the traces of all SGLDs are set to be tr(Σsd
S,W ); in Fig. (3), the

traces are set to be tr((Σsd
S,W )1/2) and 5 tr((Σsd

S,W )1/2), respectively in (a) and (b); in Fig. (4), the
traces are set to be tr((Σsd

S,W )1/2).

Noise frequency: Similar to [40], we re-estimate the noise structure of all SGLDs every 10 epochs
to ease the computational burden.

F.2 Comparison between EC-SGLD and SREC-SGLD

We further conduct an experiment to compare the generalization performance between Iso-SGLD,
EC-SGLD and SREC-SGLD, with the traces of the covariance are all set to be 5 tr((Σsd

S,W )1/2),
and all other settings consistent with Appendix F.1. The generalization error along the iteration
of SREC-SGLD, Iso-SGLD, and EC-SGLD is plotted as Fig. 5, where one can easily observe the
generalization error of SREC-SGLD is the smallest, which supports Theorem 2.

Figure 5: Comparison of generalization error for SGLDs with different noise structures. Traces of
the covariances are all set to be 5 tr((Σsd

S,W )1/2).
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