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Abstract

Mean estimation under differential privacy is a fundamental problem, but worst-
case optimal mechanisms do not offer meaningful utility guarantees in practice
when the global sensitivity is very large. Instead, various heuristics have been
proposed to reduce the error on real-world data that do not resemble the worst-case
instance. This paper takes a principled approach, yielding a mechanism that is
instance-optimal in a strong sense. In addition to its theoretical optimality, the
mechanism is also simple and practical, and adapts to a variety of data characteris-
tics without the need of parameter tuning. It easily extends to the local and shuffle
model as well.

1 Introduction

Mean estimation is one of the most fundamental problems in statistics, optimization, and machine
learning. However, privacy concerns forbid us from using the exact mean in these applications,
and the problem of how to achieve the smallest error under a given privacy model has received
considerable attention in the literature. Differential privacy (DP) is a rigorous mathematical definition
for protecting individual privacy and has emerged as the golden standard in privacy-preserving data
analysis nowadays, which has been deployed by Apple [17], Google [23], and Microsoft [18].

Given a data set D := {xi}i∈[n] ⊂ Ud, where U = [u], i.e., each coordinate of the input vector
is an integer (real-valued coordinates can be handled by quantization; see remark 2), our goal is
to obtain a differentially private estimation M(D) for the mean f(D) = 1

n

∑n
i=1 xi with small `2

error ‖M(D) − f(D)‖2. Because f(·) has global `2 sensitivity GSf =
√
du/n, the standard DP

mechanism just adds Gaussian noise scaled to GSf to each coordinate of f(D), which results in an
`2 error proportional to du/n. This simple mechanism is worst-case optimal [29], but it is certainly
undesirable in practice, as people often conservatively use a large u (e.g., u = 232) but the actual
dataset D may have much smaller coordinates. Instead, the clipped-mean estimator [1] (see Section
3.1 for details) has been widely used as an effective heuristic, but two questions remain unresolved:
(1) how to choose the clipping threshold C; and (2) if it can yield any optimality guarantees. We
answer these questions in a fairly strong sense in this paper.

1.1 Instance Optimality

As worst-case optimality is theoretically trivial and practically meaningless for the mean estimation
problem when the global sensitivity is too large, one may aim at instance optimality. More precisely,
letM be the class of DP mechanisms and let

Rins(D) := inf
M ′∈M

inf{ξ | Pr[‖M ′(D)− f(D)‖2 ≤ ξ] ≥ 2/3}
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be the smallest error anyM ′ can achieve (with constant probability) onD, then the standard definition
of instance optimality requires us to design an M such that

Pr[‖M(D)− f(D)‖2 ≤ c · Rins(D)] ≥ 2/3 (1)

for every D, where c is called the optimality ratio. Unfortunately, for any D, one can design a trivial
M ′(·) ≡ f(D) that has 0 error on D (but fails miserably on other instances), soRins(·) ≡ 0, which
rules out instance-optimal DP mechanisms by a standard argument [22].

SinceRins(·) is unachievable, relaxed versions can be considered. The above trivialM ′ exists because
it is only required to work well on one instance D. Imposing higher requirements on M ′ would yield
relaxed notions of instance optimality. One natural requirement is that M ′ should work well not just
on D, but also on its neighbors, i.e., we raise the target error fromRins(D) to

Rnbr(D) := inf
M ′∈M

sup
D′:dham(D,D′)≤1

inf{ξ | Pr[‖M ′(D′)− f(D′)‖2 ≤ ξ] ≥ 2/3}.

Vahdan [37] observes thatRnbr(D) is exactly LSf (D), the local sensitivity of f at D, up to constant
factors. However, LSf (·) may not be an appropriate target to shoot at, depending on what f is. For
the MEDIAN problem, LSf (D) = 0 for certain D’s and no DP mechanisms can achieve this error
[35], while for mean estimation, LSf (D) = Θ(GSf ) = Θ(

√
du/n) for all D, so this relaxation turns

instance optimality into worst-case optimality.

The reason why the above relaxation is “too much” for the mean estimation problem is that D′
may change one vector of D arbitrarily, e.g., from (0, . . . , 0) to (u, . . . , u). We restrict this. More
precisely, letting supp(D) denote the set of distinct vectors in D, we consider the target error

Rin-nbr(D) := inf
M ′∈M

sup
D′:dham(D,D′)≤1,supp(D′)⊆supp(D)

inf{ξ | Pr[‖M ′(D′)−f(D′)‖2 ≤ ξ] ≥ 2/3},

namely, we require M ′ to work well only on D and its in-neighbors, in which a vector can only be
changed to another one already existing in D. Correspondingly, an instance-optimal M (w.r.t. the
in-neighborhood) is one such that (1) holds whereRins is replaced byRin-nbr.

We make a few notes on this notion of instance optimality: (1) This optimality is only about the utility
of the mechanism, not its privacy. We still require the mechanism to satisfy the DP requirement
between any D,D′ such that dham(D,D′) = 1, not necessarily one and its in-neighbors. (2) In
general, a smaller neighborhood leads to a stronger notion of instance optimality. Thus, the optimality
using in-neighbors is stronger than that using all neighbors, which is in turn stronger than worst-case
optimality (i.e., D′ can be any instance), while the latter two are actually the same for the mean
estimation problem. (3) For an instance-optimal M (by our notion), there still exist D,M ′ such
that M ′ does better on D than M , but it is not possible for M ′ to achieve a smaller error than the
error of M on D over all in-neighbor of D. This is more meaningful than ranging over all neighbors
of D, some of which (e.g., one with (u, . . . , u) as a datum) are unlikely to be the actual instances
encountered in practice.

1.2 Our Results

To design an M(D) for the mean function f(D) = 1
n

∑n
i=1 xi that achieves an error w.r.t.Rin-nbr(D)

for allD, we need an upper bound and a lower bound. For the lower bound, we show thatRin-nbr(D) =
Ω(w(D)/n), where w(D) := max1≤i<j≤n ‖xi − xj‖2 is the diameter of D. Thus, from the upper
bound side, it suffices to show that the mechanism’s error is bounded by c ·w(D)/n. This is achieved
in two steps. First, we use the clipped-mean estimator, but find the clipping threshold C that optimizes
its bias-variance trade-off, which is a certain quantile of the norms of the vectors in D. However, we
cannot use the optimal C directly, as it would violate DP. Thus, we use a simple binary search based
algorithm that can find any specific quantile privately with an optimal rank error. This results in a DP
mechanism with error Õ(

√
d/ρ) ·r(D)/n, where r(D) := maxi ‖xi‖2 and ρ is the privacy parameter

(formal definition given in Section 2). To reduce the error from r(D) to w(D), in the second step, we
rotate and shift D into a D̃ such that r(D̃) = O(w(D)) w.h.p., and apply the clipped-mean estimator
(with our privatized optimal clipping threshold) on D̃, leading to an error of Õ(

√
d/ρ) · w(D)/n for

n = Ω̃(
√
d/ρ). We also show that the optimality ratio c = Õ(

√
d/ρ) is optimal, i.e., any mechanism

M(D) having error c · w(D)/n for all D must have c = Ω̃(
√
d/ρ) for ρ < Õ(

√
d/n).
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Our mechanism has the following applications: (1) It can be applied directly to statistical mean
estimation, where the vectors in D are i.i.d. samples from a certain distribution and one would
like to estimate the mean of the distribution (in contrast, the version defined above is referred to
as empirical mean estimation). For concreteness, we show how this is done for the multivariate
Gaussian distributions N (µ,Σ). For the case Σ = I, our algorithm achieves an `2 error of α using
n = Õ( d

α2 + d
α
√
ρ ) samples for α ≤ O(1), matching the optimal bound in the statistical setting [9].

For a non-identity, unknown Σ, the error is proportional to ‖Σ1/2‖2 as in [9]. Our mechanism requires
only crude a priori bounds on µ and Σ (i.e., the error depends on these bounds logarithmically),
while [9] needs a constant-factor approximation of Σ, which can be obtained using n = Ω̃(d3/2/

√
ρ)

samples [27]. Note that this can be a
√
d-factor higher than the sample complexity of mean estimation.

Fundamentally, estimating Σ is harder than estimating µ, and we bypass the former so as to retain
the same sample complexity of the latter. In practice, estimating Σ first would consume the privacy
budget from the mean estimation problem itself. On the other hand, the benefit of estimating Σ first is
that one can obtain an error guarantee under the Mahalanobis distance [27], which cannot be achieved
by our method. (2) By simply changing the primitive operations, our mechanism easily extends to
the local and shuffle model of differential privacy. In doing so, we also extend the one-dimensional
summation/mean estimation protocol in the shuffle model [6] to high dimensions.

In addition to the theoretical optimality, our mechanism is also simple and practical. Most importantly,
there is no (internal) parameter to tune. Yet, our experimental results demonstrate that our mechanism
outperforms the state-of-the-art algorithm [9] with the best parameters tuned for each specific setting.

1.3 Related Work

Asi and Duchi [5] recently initialized the study on instance optimality under DP. They propose two
ways to relax (equivalently, strengthen the requirement on M ′) the strict instance optimality, which is
unachievable. The first is to require M ′ to be unbiased. This is not appropriate for mean estimation,
since many estimators, including clipped-mean, is not unbiased. The second is to require M ′ to work
well over all the r-distance neighbors of D for r ≥ 1. Thus, their optimality is weaker than using
Rnbr(·), hence not appropriate for the mean estimation problem (i.e., their optimality is the same as
worst-case optimality). Instance optimality has not been studied in the local or shuffle model; existing
protocols in these two models [8, 20, 6] all have errors proportional to the global sensitivity.

How to choose the clipping threshold C for the clipped mean estimator has been extensively studied
[3, 4, 36, 34], but existing methods do not offer any optimality guarantees. In particular, Andrew et al.
[4] also use a quantile (actually, median) as C, but as we shall see, median is actually not the optimal
choice. Furthermore, they use online gradient descent to find a privatized quantile, which does not
have any theoretical error guarantees. Amin et al. [3] attempt to select an optimal quantile as the
clipping threshold to truncate the number of contributions from each user, instead of clipping the
actual samples in high dimensions as in our paper.

In the statistical setting, where the data are i.i.d. samples from some specific distribution, there are
numerous methods [27, 9, 28, 30] that can avoid an error proportional to the global sensitivity, by
exploiting the concentration property of the distribution. In particular, Biswas et al. [9] provide a
simple and practical mechanism for multivariate Gaussian data. Levy et al. [32] propose a private
mean estimator with error scaling with the concentration radius τ of the distribution rather than the
entire range, but their algorithm requires τ to be publicly known in advance. In the local model, the
algorithm in [24] uses a quantile estimation procedure based on binary search as a subroutine for
one-dimensional Gaussian data.

Very recently, the relationship between the error of mean estimation and the diameter of the dataset
has been exploited in [16] for low-communication protocols, but they do not consider privacy. Our
DP protocols in the local and shuffle models have communication cost Õ(d) per user (we do not state
the communication costs in the theorems as they are not our major concern); it would be interesting
to see if ideas from [16] can be used to reduce it further.
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2 Preliminaries

2.1 Differential Privacy in the Central Model

Definition 1 (Differential Privacy (DP) [22]). For ε > 0 and δ ≥ 0, a randomized algorithm M :
Xn → Y is (ε, δ)-differentially private if for any neighboring datasetsD ∼ D′ (i.e., dham(D,D′) = 1)
and any E ⊆ Y ,

Pr[M(D) ∈ E] ≤ eε · Pr[M(D′) ∈ E] + δ.

Definition 2 (Concentrated Differential Privacy (zCDP) [11]). For ρ > 0, a randomized algorithm
M : Xn → Y is ρ-zCDP if for any D ∼ D′,

Dα(M(D)||M(D′)) ≤ ρα
for all α > 1, where Dα(M(D)||M(D′)) is the α-Rényi divergence between M(D) and M(D′).

Note that (ε, 0)-DP implies ε2

2 -zCDP, which implies ( ε
2

2 + ε
√

2 log 1
δ , δ)-DP for any δ > 0. To

release a numeric function f(D) taking values in Rd, the most common technique for achieving
zCDP is by masking the result with Gaussian noise calibrated to the `2-sensitivity of f .
Lemma 1 (Gaussian Mechanism [11]). Let f : Xn → Rd be a function with global `2-sensitivity
GSf := maxD∼D′ ‖f(D) − f(D′)‖2. For a given data set D ∈ Xn, the mechanism that releases

f(D) +N
(

0,
GS2

f

2ρ · Id×d
)

satisfies ρ-zCDP.

Lemma 2 (Composition Theorem [11, 22]). If M is an adaptive composition of differentially private
algorithms M1,M2, . . . ,Mk, then

1. If each Mi satisfies (εi, δi)-DP, then M satisfies (
∑
i εi,

∑
i δi)-DP.

2. For all ε, δ, δ′ ≥ 0, if each Mi satisfies (ε, δ)-DP, then M satisfies (ε′, kδ + δ′)-DP, where

ε′ =
√

2k log 1
δ′ ε+ kε(eε − 1).

3. If each Mi satisfies ρi-zCDP, then M satisfies (
∑
i ρi)-zCDP.

2.2 Differential Privacy in the Local Model and Shuffle Model

The above definitions of DP and zCDP assume that D is handled by a trusted curator and only the
output of the mechanism will be released to the public. Therefore, if the curator is corrupted, the
privacy of all users will be breached. For weaker trust assumptions, the most popular models are the
local model and the shuffle model, where each user holds their datum and locally privatizes (by some
randomized mechanism) the message before sending it out for analysis. Hence, there is no third-party
who has direct access to D. Formally, each user holds one datum xi ∈ D, and the protocol interacts
with the dataset using some local randomizer R : X → Y , and the privacy guarantee is defined over
the transcript (all messages sent during the protocol). For simplicity, we only present the definition
for one-round protocols; the privacy guarantee of multi-round protocols can be composed across
all rounds by the composition theorem. The definition below uses zCDP; other DP notions can be
defined similarly.
Definition 3 (Local Model (LDP)). A protocol using R(·) as the local randomizer satisfies ρ-zCDP
in the local model if for any x, x′ ∈ X , any α > 1, Dα(R(x)||R(x′)) ≤ ρα.

Due to the much stronger privacy requirement, the best accuracy guarantee of LDP protocols for
several fundamental problems [13, 7, 19, 33] is a

√
n-factor worse than that in the central model. The

shuffle model is established on an intermediary level of trust assumption between the local model
and the central model and aims for obtaining errors closer to the central model. The key feature of
the shuffle model is a trusted shuffler S, which can permute all messages randomly before sending
them to the analyzer, so that an adversary cannot identify the source of any message. Specifically, we
consider the multi-message shuffle model, where each local randomizer R : X → Ym outputs m
messages, and the transcript of the protocol ΠP (D) is a random permutation of all mn messages.
The following definition uses (ε, δ)-DP; the other two DP notions can also be defined similarly, but
they do not offer the improvements that we want over LDP protocols.
Definition 4 (Shuffle Model). A protocol P satisfies (ε, δ)-DP in the shuffle model if for anyD ∼ D′,
and any set E ⊆ Ymn, Pr[ΠP (D) ∈ E] ≤ eε · Pr[ΠP (D′) ∈ E] + δ.
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3 Our Method

3.1 Clipped-Mean Estimator

In the rest of the paper, we focus on the mean function f(D) = 1
n

∑n
i=1 xi. Since GSf is large, a

very natural idea is to clip each vector in its `2 norm by some threshold C. This reduces GSf to
2C/n, leading to the clipped-mean estimator [1]:

MC(D) =
1

n

n∑
i=1

min

{
C

‖xi‖2
, 1

}
· xi +N

(
0,

2C2

ρn2
I

)
. (2)

Lemma 3. For any given C, MC(D) satisfies ρ-zCDP, and has an expected `2 error at most

E [‖MC(D)− f(D)‖2] ≤ E(C;D) :=
1

n

n∑
i=1

max{‖xi‖2 − C, 0}+
C

n
·

√
2d

ρ
.

Proof. The privacy guarantee easily follows from Lemma 1. The error of MC(D) is composed
of two parts: the bias from clipping and the (square root of the) variance from the Gaussian noise
N (0, 2C2/(ρn) · I). Because the `2 clipping does not change the direction of the input vector, the
bias introduced by clipping is at most 1

n

∑
i max{‖xi‖2 − C, 0}. The variance introduced by the

Gaussian noise is at most C2/n2 · 2d/ρ by Jensen inequality.

An important remaining question is how to set the clipping threshold C. Setting it too low will result
in a large bias, while setting it too high will introduce a large amount of noise. We show how to
choose the optimal C to balance this bias-variance trade-off. It is easy to see that the error E(C;D)
is a convex function w.r.t. C, thus the optimal C can be found by setting the derivative of E(C;D) to
zero, i.e.,

∂E(C;D)

∂C
=

1

n
|{i ∈ [n] | ‖xi‖2 > C}| − 1

n
·
√

2d/ρ = 0.

Therefore, the optimal choice of C is the (n−
√

2d/ρ)-th quantile of {‖xi‖2}i∈[n].

3.2 Private Quantile Selection

However, we cannot use the optimal C directly, as it would violate DP. Instead, we find a privatized
quantile with small rank error. Specifically, for this problem, D consists of a sequence of ordered
integers 0 ≤ x(1) ≤ · · · ≤ x(n) ≤ u. We would like to design a DP mechanism that, for a given
m, returns an x (which is not necessarily an element in D) such that x(m−τ) ≤ x ≤ x(m+τ)

1 w.h.p.
Here τ is referred to as the rank error. Existing methods on private range counting queries [12, 21]
can be used for this purpose, but they actually find all quantiles, which is an overkill. Instead, we use
a simple binary search algorithm [26, 15], which not only simplifies the algorithm, but also reduces
the rank error (by polylog(u) factors) to nearly optimal. Our algorithm PrivQuant makes use of a
function NoisyRC([a, b],D) that returns a noisy count of |D ∩ [a, b]|.
The following lemma is straightforward:
Lemma 4. If |NoisyRC([0,mid],D)− |D ∩ [0,mid]|| ≤ τ for every call to NoisyRC([0,mid],D),
then Algorithm 1 returns a quantile with rank error τ .

In the central DP model, we simply use NoisyRC([0,mid],D) = |D ∩ [0,mid]|+N (0, log u/(2ρ)).
Theorem 1. The algorithm PrivQuant preserves ρ-CDP, and it returns a quantile with rank error τ

with probability at least 1− β for τ =
√

log u log log u
β /(2ρ).

Proof. It is clear that the range query |[0,mid] ∩ D| has sensitivity 1, thus adding noise drawn from
N (0, log u/(2ρ)) preserves ρ

log u -CDP for each invocation. Because there are log u iterations in the
while-loop, the privacy guarantee follows from the composition theorem of CDP.

1Define x(j) = 0 for j < 1 and x(j) = u for j > n.
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Algorithm 1 DP Quantile Selection by Binary Search; PrivQuant

Input: the data set D : 0 ≤ x(1) ≤ · · · ≤ x(n) ≤ u; m ∈ [n].
Output: a DP approximation to x(m).

1: left← 0, right← u
2: while left < right do
3: mid← b(left + right)/2c
4: c̃← NoisyRC([0,mid],D)
5: if c̃ ≤ m then
6: left← mid + 1
7: else
8: right← mid
9: return b(left + right)/2c

In the algorithm, we draw at most log u Gaussian noises whose absolute values are simultaneously
bounded by τ with probability 1− β by a union bound. Conditioned upon this event, the theorem
follows from Lemma 4.

In Section 4, we prove an Ω(
√

log u/ρ) lower bound (Corollary 2) on the rank error under zCDP for
constant β. Thus the algorithm is optimal up to just an O(

√
log log u)-factor.

We can now use PrivQuant to find an approximately optimal clipping threshold. Specifically,
we invoke PrivQuant with ρ′ = ρ/4 to find the max{n − max{

√
2d/ρ, τ}, 1}-th quantile of

{‖xi‖22}i∈[n]. They are integers no more than du2, so replacing u by du2 in Theorem 1 yields a rank

error of τ = 2
√

log(du) log log(du)
β /ρ. Then we set C̃ as the square root of the returned quantile.

Finally, we return the clipped mean estimator MC̃(D) with ρ′ = 3ρ/4. The following theorem
analyzes its error.

Theorem 2. Our mean estimation mechanism is ρ-zCDP and has `2 error O(
√
d/ρ+ τ) · r(D)/n

with probability 1− β, where τ = 2
√

log(du) log log(du)
β /ρ.

Proof. The privacy guarantee easily follows from the composition theorem of zCDP. Next, we analyze
the accuracy. By the rank error guarantee, at most

√
2d/ρ+ τ vectors are clipped by the threshold C̃.

Each clipped vector has norm at most r(D), so the bias is at most (
√

2d/ρ+ τ) · r(D)/n. For the
error due to the noise, we use the following tail bound of the multivariate Gaussian distribution:

Lemma 5 ([31]). If X ∼ N (0, I), then Pr

[
‖X‖2 ≥

√
d+ 2

√
d log(1/β) + 2 log(1/β)

]
≤ β.

Thus, with probability 1 − β, the norm of the noise is bounded by O
(√

d+ log 1
β ·

C̃
n
√
ρ

)
≤

O
(√

d/ρ+ τ
)
· r(D)/n. This inequality requires C̃ ≤ r(D), which holds as long as n >

max{
√

2d/ρ, τ}. If this is not the case (note that checking this condition is DP as it does not
involve D), we can just return 0, which trivially achieves error r(D) ≤ O(

√
d/ρ+ τ) · r(D)/n.

3.3 Shifted-Clipped-Mean Estimator

To reduce the error from being proportional to r(D) to being proportional to w(D), we perform a
random rotation onD followed by a translation. The rotation is done by x̂i := HDxi, where H is the
Hadamard matrix, D is a diagonal matrix whose diagonal entry is independently and uniformly drawn
from {−1,+1}. Note that for now we omit the normalization coefficient 1√

d
so that each coordinate

of x̂i is still an integer; we will apply the normalization to the final estimator instead. Then, for
each j ∈ [d], we invoke PrivQuant with ρ′ = ρ/(4d) to find an approximate median of {x̂i}i∈[n]
along dimension j, denoted as c̃j . Next, we shift the dataset to be centered around c̃ = (c̃1, . . . , c̃d),
obtaining D̃ = {x̃i := x̂i− c̃}i∈[n]. Note that c̃ has integer coordinates, so does x̃i. Finally, we apply

6



the clipped-mean estimator in Theorem 2 with ρ′ = 3
4ρ on D̃, obtaining an estimation ỹ, and return

y := ( 1√
d
HD)−1 1√

d
(ỹ + c̃) as the mean estimator over D.

Theorem 3. Set τ =
√

log(du) log d log(du)
β /ρ and assume n = Ω(τ

√
d). Our mean estimation

mechanism is ρ-zCDP, and has `2 error O
(

(
√
d/ρ+ τ)

√
log nd

β

)
·w(D)/n with probability 1− β.

Proof. The privacy guarantee follows from the composition theorem of ρ-zCDP, as
∑d
j=1 ρ/(4d) +

3ρ/4 = ρ. Next, we analyze the error. We need a lemma from [2], which intuitively says that the
random rotation “evenly spreads out” the norm to all the dimensions:

Lemma 6 ([2]). Let H and D be defined as above. Then, for any x ∈ Rd and any β > 0,

Pr

[∥∥∥∥ 1√
d
HDx

∥∥∥∥
∞
≥ ‖x‖2√

d
·

√
2 log

4d

β

]
≤ β.

Moreover, note that the transformation by 1√
d
HD or ( 1√

d
HD)−1 is orthogonal, so the `2 norm of

any vector will be preserved.

Applying Lemma 6 on xi − xj for all i, j ∈ [n] and a union bound, we have maxi,j ‖x̂i − x̂j‖∞ =

O(
√

log nd
β ) ·w(D) with probability 1−β/3. Over the rotated dataset {x̂i}i∈[n], we use PrivQuant

to find an approximate median c̃j along each dimension j ∈ [d] with privacy parameter ρ′ = ρ/(4d).
By the rank error guarantee of PrivQuant (Theorem 1) and a union bound, if n = Ω(τ

√
d),

we have mini x̂i,j ≤ c̃j ≤ maxi x̂i,j for all j ∈ [d] with probability 1 − β/3. Note that the

length of this interval is |mini x̂i,j − maxi x̂i,j | = O(
√

log nd
β ) · w(D). Thus the region (c̃1 ±

O(
√

log nd
β ) ·w(D), . . . , c̃d±O(

√
log nd

β ) ·w(D)) contains every data point x̂i, hence maxi ‖x̂i−

c̃‖2 = O(
√
d log nd

β ) · w(D). This means that the shifted data set D̃ = {x̂i − c̃}i∈[n] has r(D̃) =

O(
√
d log nd

β ) · w(D). Thus, when we apply the clipped-mean estimator in Theorem 2 over D̃ to

obtain its mean estimation ỹ, we have ‖(ỹ+ c̃)− 1
n

∑
i x̂i‖2 = O((

√
d/ρ+ τ)

√
d log nd

β ) ·w(D)/n.

Finally, we use y = ( 1√
d
HD)−1 1√

d
(ỹ + c̃) as the mean estimation for D, and conclude that∥∥∥∥∥y − 1

n

∑
i

xi

∥∥∥∥∥
2

=

∥∥∥∥∥
(

1√
d
HD

)−1
1√
d
·

(
(ỹ + c̃)− 1

n

∑
i

x̂i

)∥∥∥∥∥
2

= O

((√
d/ρ+ τ

)√
log

nd

β

)
· w(D)

n
.

Remark 1. The Hadamard transform requires d to be some power of 2. If this is not the case, we
can pad each xi with extra 0’s to dimension d̄ = 2dlog de, denoted as x̄i. If there is an estimation ȳ for
1
n

∑
i x̄i, we discard the last d̄− d coordinates of ȳ to obtain y as the estimation for 1

n

∑
i xi. Then,

we have ‖y −
∑
i xi/n‖2 ≤ ‖ȳ −

∑
i x̄i/n‖2, since the last d̄− d coordinates of each x̄i are 0. The

padding does not change w(D), so Theorem 3 still holds.

Remark 2. For a dataset with real coordinates bounded by R (in absoluate value), one can quantize
each coordinate to an integer using bucket size α/

√
d, for any 0 < α < R, and then apply our

algorithm over an integer universe of size u = 2R
√
d/α. This just brings an additive α error to the

error bound of Theorem 3.

3.4 Statistical Mean Estimation

Suppose D consists of i.i.d. samples drawn from the multivariate Gaussian distribution N (µ,Σ), and
we wish to estimate µ, assuming a priori bounds ‖µ‖2 ≤ R and σ2

minI � Σ � σ2
maxI. Note that

in the statistical setting, the privacy requirement should be satisfied between any two neighboring
instances (not i.i.d.), but utility is analyzed under the i.i.d. assumption.

7



We first clip each sample xi ← xi ·min{R′/‖xi‖2, 1} where R′ := R+ 2σmax

√
d+ log 4n

β . Then

all coordinates are bounded by R′ and we apply our mechanism with bucket size α/
√
d where

α = σmin

√
d/n. Privacy is straightforward, since two instances are neighbors after the R′-clipping

only if they are neighbors before the clipping. We analyze its error below:

Corollary 1. Set τ =
√

log(du) log 4d log(du)
β /ρ where u = 2R′

√
n/σmin, and assume n =

Ω(τ
√
d). Then our algorithm returns a µ̂ such that with probability 1− β,

‖µ̂− µ‖2 = O

(
‖Σ1/2‖2

√
d+ log

n

β
·

(
1√
n

+

√
d log nd

β√
ρn

+
τ log nd

β

n

))
.

Proof. We may assume that no sample gets clipped by R′, because by Lemma 5, with probability 1−
β/4, no sample has norm greater thanR′. The error consists of two parts, the statistical error ‖f(D)−
µ‖2 and the empirical error ‖µ̂− f(D)‖2. The former is bounded by O(‖Σ1/2‖2

√
d+ log n

β ·
1√
n

)

with probability 1−β/4 by standard statistical analysis. To bound the latter using Theorem 3, we note
that w(D) ≤ O(‖Σ1/2‖2

√
d+ log n

β ) with probability 1− β/4 by standard concentration analysis

of the multivariate Gaussian distribution. Plugging this into Theorem 3 yields the error bound in the
corollary. Note that the additive α error due to quantization is dominated by O(‖Σ1/2‖2

√
d/n).

Remark 3. When Σ = I and ignoring logO(1)(dnRβ ·
σmax

σmin
) factors, the error in Corollary 1 becomes

Õ
(√

d√
n

+ d√
ρn

)
, matching the known optimal bound for Gaussian mean estimation [9].

4 Lower Bounds

In this section we establish the instance optimality of Theorem 3 via three lower bounds: (1)
Rin-nbr(D) = Ω(w(D)/n) for all D; (2) an Ω̃(

√
d/ρ) lower bound on the optimality ratio, and (3)

that the condition n = Ω̃(
√
d/ρ) is necessary.

The first lower bound follows from an observation by Vadhan [37]:
Lemma 7 ([37]). For any f , any (ε, δ)-DP mechanism M ′, and any neighboring datasets D0 ∼ D1,
there is a b ∈ {0, 1} such that

Pr[‖M ′(Db)− f(Db)‖2 < ‖f(D0)− f(D1)‖2/2] <
1 + δ

1 + e−ε
.

Theorem 4. For ε < 0.1, δ < 0.1,Rin-nbr(D) = Ω(w(D)/n).

Proof. By the definition of Rin-nbr(D), it suffices to show that there exists an in-neighbor D′ of D
such that any M ′ must incur error Ω(w(D)/n) with probability at least 1/3 on either D or D′. Let
xi, xj be the two vectors in D that attain the diameter, i.e., ‖xi − xj‖2 = w(D). We let D′ be the
dataset obtained by changing xi to xj in D. It can be verified that ‖f(D)− f(D′)‖2 = w(D)/n for
the mean function f . Then plugging D0 = D,D1 = D′ into Lemma 7 proves the theorem.

The lower bound on the optimality ratio is by the reduction from statistical mean estimation, for
which there are known lower bounds:
Lemma 8 ([27]). For a Gaussian distribution with unknown mean µ ∈ [−R,R]d and known
covariance σ2I, any (ε, δ)-DP mechanism (for δ = Õ(

√
d/(nR))) for estimating µ must incur `2

error Ω̃(σd/(εn)) with constant probability.
Theorem 5. LetM be any ρ-zCDP mechanism for mean estimation that has `2 error c ·w(D)/n with
constant probability for any D = {xi}i∈[n] drawn from [u]d. If ρ < Õ(

√
d/n), then c = Ω̃(

√
d/ρ).

Proof. Lemma 8 implies a lower bound of Ω̃(σd/(n
√
ρ)) for ρ-zCDP mechanisms, since a ρ-zCDP

mechanism is (Õ(
√
ρ), δ)-DP. Since w(D) = Õ(σ

√
d) for Gaussian data N (µ, σ2I) w.h.p., the

8



reduction in Corollary 1 converts a c · w(D/n) error for empirical mean to an error of O(σ
√
d/n) +

c ·w(D)/n = O(σ
√
d/n(1 + c√

n
)) for Gaussian mean estimation. Comparing with the above lower

bound, we obtain

1 +
c√
n

= Ω̃

(√
d

ρn

)
.

If ρ = Õ(
√
d/n), the RHS is Ω̃(1), then c = Ω̃(

√
d/ρ).

For the lower bound on n, we consider a weaker problem (so the lower bound is stronger), which is
the d-dimensional version of the interior point problem [10]: Given a dataset D = {xi}i∈[n] drawn
from [u]d, the mechanism is only required to return a y ∈ [u]d such that mini xij ≤ yj ≤ maxi xij
for all j with constant probability.

Theorem 6. If there exists a ρ-zCDP mechanism that solves the interior point problem with success
probability 2/3, then n = Ω(

√
d log u/ρ).

Proof. We need a lemma from [11] to bound the mutual information of a ρ-zCDP mechanism.

Lemma 9 ([11]). Let M ′ : Xn → Y satisfy ρ-zCDP. Let X be a random variable in Xn. Then,
I(X;M ′(X)) ≤ ρn2, where I(·; ·) denotes mutual information.

Take X = [u]d and let M ′ be a ρ-zCDP mechanism for the interior point problem. Let X be n copies
of Z, which is uniformly drawn from X , i.e., X = {xi = Z}i∈[n]. Note that X is a random variable
drawn from a universe of size |X |, and by the accuracy guarantee of M ′, Z can be recovered from
M ′(X) with probability 2/3. Then, by the Fano’s inequality, we have

I(X;M ′(X)) = H(X)−H(X |M ′(X))

= log |X | −H(X |M ′(X))

≥ log |X | − log 2− 2

3
log |X | = Ω(log |X |).

Then the theorem follows from Lemma 9 and the fact that log |X | = d log u.

Given a quantile selection mechanism with rank error τ , by finding the median, the 1-dimensional
interior point problem can be solved when n = O(τ). The following corollary then follows from
Theorem 6.

Corollary 2. Any ρ-zCDP mechanism for the quantile selection problem must have rank error
Ω(
√

log u/ρ).

5 Extension to the Local Model and Shuffle Model

Our mean estimation framework can be summarized as follows: (1) Given D = {x1, . . . , xn},
perform a random rotation, obtaining D̂ = {x̂i := HDxi}i∈[n]; (2) For each j ∈ [d], find an
approximate median c̃j of D̂ along dimension j. Shift D̂ to be centered around c̃, obtaining D̃ =
{x̃i := x̂i − c̃}; (3) Find a clipping threshold C, which is the m-th quantile over the `2 norms
of the vectors in D̃. In the central model, the optimal choice is m = n −

√
2d/ρ; (4) Perform

`2 clipping over D̃ using C, and obtain a mean estimator ỹ of the clipped vectors. Finally, return
y = ( 1√

d
HD)−1 1√

d
(ỹ + c̃).

We note that each step has their counterparts in the local and the shuffle model: Step (1) is easy,
where the randomized diagonal matrix D can be generated using public randomness, or sent from the
aggregator to each user if public randomness is not available. Step (2) and (3) both rely on quantile
selection, which have alternatives in the local model and shuffle model. Step (4) is also easy since all
vectors have norms bounded by C. Below we elaborate on the details.
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5.1 The Local Model

For step (4), the standard LDP mechanism is that each user applies the Gaussian mechanism (Lemma
1) with GS = 2C to inject noise to their clipped vector, sends it out, and the aggregator adds them up
and divides the sum by n. Thus, the bias of the clipped-mean estimator is the same as that in Lemma
3, while the noise increases by a

√
n-factor, to C

√
2d
ρn . Correspondingly, the optimal choice of C

becomes the m = (n−
√

2dn/ρ)-th quantile.

For quantile selection in step (2) and (3), we use the LDP range counting protocol in [14]. This
one-round protocol returns a data structure from which any range counting query can be answered.
Lemma 10 ([14]). There is a one-round ρ-zCDP2 protocol in the local model that answers all range
counting queries within error O(

√
n/ρ log2 u log u

β ) with probability at least 1− β.

Putting things together, we obtain the following result:

Theorem 7. Set τ =
√
n/ρ log2(du) log du

β and assume n = Ω(τ
√
d). There is a 3-round ρ-zCDP

mean estimation mechanism in the local model, achieving an `2-error ofO
(

(
√
dn/ρ+ τ)

√
log nd

β

)
·

w(D)/n with probability 1− β.

Proof. The proof is the basically the same as that of Theorem 2 and 3, except that m and τ now take
different values. Step (2), (3), and (4) each require a round.

5.2 The Shuffle Model

We see that the error in the local model is worse than that in the central model by a
√
n-factor. It

turns out that in the shuffle model, we can match the result in the central model up to logarithmic
factors, albeit with (ε, δ)-DP. This is mostly due to highly accurate summation and range counting
protocols discovered recently for the shuffle model. We start with the summation protocol, restated
for 1D mean estimation:
Lemma 11 ([6]). Given n real values D = {xi}i∈[n] where |xi| ≤ C, there is an (ε, δ)-DP mean

estimation protocol in the shuffle model that returns a y such that E[(y − f(D))2] = O
((

C
εn

)2)
.

Directly applying this protocol in step (4) over C-clipped vectors along each dimension would
result in an `2 error of Õ(Cd/(εn)). Below we show how to reduce it to Õ(C

√
d/(εn)), hence

matching the error of the clipped-mean estimator in the central model. Given d-dimensional vectors
D = {xi}i∈[n] with `2 norm bounded by C (in the full algorithm, this would be the dataset after
rotation, shifting, and clipping, but we abuse the notation and still use D), we apply another random
rotation x̂i = HDxi. By Lemma 6, the coordinates of all x̂i are bounded (in absolute value) by
C ′ = O(C

√
log(nd)) w.h.p. Next, we clip each coordinate to C ′ and invoke Lemma 11 with privacy

parameter ε′ = ε/

(
2
√
d log d

δ

)
, δ′ = δ/d along each dimension. This yields a d-dimensional mean

estimator ŷ. Finally, we return y := ( 1√
d
HD)−1 1√

d
ŷ.

Lemma 12. Given D = {xi}i∈[n] ⊂ Rd where ‖xi‖2 ≤ C for all i, there is a one-
round (ε, δ)-DP mean estimation protocol in the shuffle model that returns a y such that

Pr

[
‖y − f(D)‖2 ≤ O

(
C
εn

√
log(nd) log d

δ

)]
≥ 2/3.

Proof. Privacy of this protocol follows directly from advanced composition (Lemma 2). Below we
analyze its accuracy. Conditioned upon the event that all coordinates are bounded by C ′, which
happens with probability 5/6, the C ′-clipping on each coordinate has no effects. Then

E[‖y − f(D)‖2] =
1√
d
E

[∥∥∥∥∥ŷ − 1

n

∑
i

x̂i

∥∥∥∥∥
2

]
2The protocol in [14] actually achieves (ε, 0)-DP, but we only need its zCDP version.
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=
1√
d
E


√√√√∑

j

(
ŷj −

1

n

∑
i

x̂i,j

)2


≤ 1√
d

√√√√√∑
j

E

(ŷj − 1

n

∑
i

x̂i,j

)2


≤ 1√
d
·

√√√√d ·O

((
C ′

ε′n

)2
)

= O

(
C

εn

√
d log(nd) log

d

δ

)
,

where the first inequality follows from Jensen’s inequality and the second inequality is by Lemma 11.
Then the theorem follows from the Markov inequality.

Replacing the clipped-mean estimator with the protocol above, the optimal choice for C becomes

the m =

(
n−Θ

(
1
ε

√
d log(nd) log d

δ

))
-th quantile. For the NoisyRC queries in the algorithm

PrivQuant, we can use the following range counting mechanism [25] in the shuffle model:
Lemma 13 ([25]). There is a one-round (ε, δ)-DP protocol in the shuffle model that answers all

range counting queries within error O
(

1
ε log2 u

√
log3 u

β log log(u/β)
δ

)
with probability 1− β.

Putting things together, we obtain the following result.

Theorem 8. Set τ = 1
ε log3.5(du)

√
log d log(du)

δ and assume n = Ω

(
τ
√
d log d

δ

)
. There is

a 3-round (ε, δ)-DP mean estimation mechanism in the shuffle model, achieving an `2-error of

O

((
1
ε

√
d log d

δ + τ

)√
log(nd)

)
· w(D)/n with probability 2/3.

6 Experiments
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Figure 1: Comparison with MVMRec. `2 error vs. d for N (µ, Id×d), where n = 4000, ρ = 0.5, R =

50
√
d.

We performed both statistical and empirical mean estimation experiments to evaluate our method.
For statistical mean estimation, we used multivariate Gaussian distributions with various µ and Σ.
All algorithms are given the same R, σmin, σmax. We tried various R, while fixing σmin = 0.1 and
σmax = R/

√
d. For empirical mean estimation, we used a real-world dataset, MNIST, which consists

of 70,000 images of handwritten digits, where each image is represented by a vector of dimension
d = 784 = 28× 28. We quantized the values to integers [u] for u = 210. We measured the `2 error
by taking the trimmed mean with trimming parameter 0.1 over 100 trials (as in [9]).

6.1 Results in the Central Model

For the central model, we compared with two versions of COINPRESS [9]. MVMRec, which is the mean
estimation algorithm in [9], and MVCRec-MVMRec, where we first scale the data by an estimated Σ
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(c) µ = 10 · 1d.

Figure 2: Comparison with MVMRec. `2 error vs. ρ for N (µ, Id×d), where n = 4000, d = 128, R =

50
√
d.

(obtained by MVCRec using half of the privacy budget ρ) and then apply MVMRec. Both MVMRec and
MVCRec start with a given confidence ball of radiusR and iteratively refine it. The number of iterations
t is an important internal parameter. Following the suggestions in [9], we tried t = 1, 2, 3, 4, 10 for
MVMRec; for MVCRec-MVMRec, we fixed t = 10 for MVMRec and tried tcov = 1, 2, 3, 4, 5. We also
note that MVCRec-MVMRec involves complex matrix operations (e.g., matrix inverse) and costs at least
Ω̃(nd2) time, in contrast to the Õ(nd) time of MVMRec and our algorithm.
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(c) κ = 1000.

Figure 3: Comparison with MVMRec. `2 error vs. d for N (0,Σ(κ)), where n = 4000, ρ = 0.5, R =

100
√
d.

24 25 26 27 28 29 210

d

10-1

100

101

102

103

104

105

` 2
 e

rr
o
r

Non-private
COINPRESS tcov = 1

COINPRESS tcov = 2

COINPRESS tcov = 3

COINPRESS tcov = 4

COINPRESS tcov = 5

Shifted-CM

(a) κ = 10.

24 25 26 27 28 29 210

d

10-1

100

101

102

103

104

105

106

` 2
 e

rr
o
r

Non-private
COINPRESS tcov = 1

COINPRESS tcov = 2

COINPRESS tcov = 3

COINPRESS tcov = 4

COINPRESS tcov = 5

Shifted-CM

(b) κ = 100.

24 25 26 27 28 29 210

d

100

101

102

103

104

105

106

` 2
 e

rr
o
r

Non-private
COINPRESS tcov = 1

COINPRESS tcov = 2

COINPRESS tcov = 3

COINPRESS tcov = 4

COINPRESS tcov = 5

Shifted-CM

(c) κ = 1000.

Figure 4: Comparison with MVCRec-MVMRec. `2 error vs. d for N (0,Σ(κ)), where n = 4000, ρ =

0.5, R = 100
√
d.

The results for statistical mean estimation are shown in Fig. 1 to 6, where the detailed parameter
settings are given in the captions. The covariance matrix is Σ(κ) = AΛ(κ)AT , where A is a
random rotation matrix and Λ(κ) is the diagonal matrix diag([σ2

1 , σ
2
2 , . . . , σ

2
d]), σ2

j ∼u.a.r. [1, κ] for
all j ∈ [d]. From these results we can make the following observations. (1) The best choice of t is
sensitive to the unknown Σ (see Fig. 3 and 4), making it difficult to tune in practice. (2) The error of
our method (Shifted-CM) is always at least as good as COINPRESS with the best t across a variety
of settings. (3) When Σ is not identity, our method outperforms MVMRec significantly (Fig. 3), and
yields errors close to the non-private estimator. (4) Estimating Σ first (i.e., MVCRec-MVMRec) reduces
the error in low dimensions, but the gain diminishes as d gets larger (Fig. 4), which agrees with the
analysis in [27] that Σ estimation needs Ω̃(d3/2/

√
ρ) samples. (5) MVCRec-MVMRec does not really
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Figure 5: Comparison with MVCRec-MVMRec. Mahalanobis error vs. d for N (0,Σ(κ)), where
n = 4000, ρ = 0.5, R = 100

√
d.

do better in terms of the Mahalanobis error (Fig. 5), again because Σ cannot be estimated well in high
dimensions. (6) Both our method and COINPRESS are translation-invariant. This can be verified from
Fig. 1, 2, and 6, where the results are not effected by µ. However, the approaches taken are different:
COINPRESS uses an iterative process, while we shift the dataset to be centered around an approximate
center point. In Fig. 1 and 2, we also include CM, our estimator without this shift operation, which is
indeed affected by µ.

500 1000 1500 2000

R

10-1

100

101

102

` 2
 e

rr
o
r

COINPRESS t= 1

COINPRESS t= 2

COINPRESS t= 3

COINPRESS t= 4

COINPRESS t= 10

Shifted-CM
Non-private

(a) µ = 0 · 1d.

500 1000 1500 2000

R

10-1

100

101

102

` 2
 e

rr
o
r

COINPRESS t= 1

COINPRESS t= 2

COINPRESS t= 3

COINPRESS t= 4

COINPRESS t= 10

Shifted-CM
Non-private

(b) µ = 5 · 1d.

500 1000 1500 2000

R

10-1

100

101

102

` 2
 e

rr
o
r

COINPRESS t= 1

COINPRESS t= 2

COINPRESS t= 3

COINPRESS t= 4

COINPRESS t= 10

Shifted-CM
Non-private
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Figure 6: `2 error vs. R for N (µ,Σ(10)), where n = 4000, ρ = 0.5, d = 128.
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Figure 7: Comparison with MVMRec. `2 error vs. ρ for various digits in MNIST, where d = 784, R =
50
√
d.

For empirical mean estimation on the MNIST dataset, we see in Fig. 7 and 8 that our method
outperforms COINPRESS for various privacy levels. This means that this dataset, as with most real-
world datasets, does not follow Gaussian distribution with an identity Σ. The instance-optimality of
our method is precisely the reason behind its robustness to different distributional assumptions, or the
lack of.

One important component of our method is the optimal clipping threshold C, which is the (n −√
2d/ρ)-th quantile of the norms. Note that this depends on d and ρ. Prior work [4] used a fixed

quantile (e.g., the median). To better see the relationship between the optimal C and d, ρ, we used
a synthetic dataset D = {i · 1d}i∈[n] with n = 500 and tried different quantiles as the clipping
threshold. The results in Fig. 9 confirm our theoretical analysis: The optimal C indeed depends on d
and ρ, while our choice attains the optimum.
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Figure 8: Comparison with MVCRec-MVMRec. `2 error vs. ρ for various digits in MNIST.
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(b) ρ = 0.5.
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Figure 9: `2 error vs. d for clipping at various quantiles of the norms on a synthetic dataset.

6.2 Results in the Local Model

In the local model, there is no prior work on high-dimensional mean estimation. The existing method
[24] works only for 1D data. To avoid disadvantaging their method, we used Gaussian distribution
with an identity Σ (a Σ with different components would make their method even worse), and
apply their method coordinate-wise. They adopt (ε, δ)-DP, so we compose across all dimensions by
the advanced composition theorem. We also convert our ρ-zCDP guarantee to (ε, δ)-DP for a fair
comparison and set δ = 10−9 in all the experiments.

Their method has two versions: KnownVar and UnkVar. The former requires σ to be known, while
the latter only requires σ ∈ [σmin, σmax], the same as our method. The results are reported in Fig.
10 to 12, where we vary d, ε, and R, respectively, on a set of n = 105 samples generated from
N (µ, Id×d). Our method even outperforms KnownVar, which is actually not a fair comparison.

However, compared with the central model, there is still a large gap from our LDP algorithm to
the non-private mean, due to the inherent hardness of the local model. By our theoretical analysis,
this gap can be greatly reduced in the shuffle model, once a practical implementation of the range
counting protocol from [25] is available.
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(a) µ = 0 · 1d.

21 22 23 24 25

d

10-3

10-2

10-1

100

101

102

103

` 2
 e

rr
o
r

UnkVar
KnownVar
Non-private
Shifted-CM

(b) µ = 5 · 1d.
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(c) µ = 10 · 1d.

Figure 10: `2 error vs. d for N (µ, Id×d) in the local model, where n = 105, ε = 1, R = 20
√
d.
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(a) µ = 0 · 1d.
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(b) µ = 5 · 1d.
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(c) µ = 10 · 1d.

Figure 11: `2 error vs. ε for N (µ, Id×d) in the local model, where n = 105, d = 8, R = 20
√
d.

100 200 300 400 500

R

10-3

10-2

10-1

100

101

102

103

` 2
 e

rr
o
r

UnkVar
KnownVar
Non-private
Shifted-CM

(a) µ = 0 · 1d.
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(b) µ = 5 · 1d.
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Figure 12: `2 error vs. R for N (µ, Id×d) in the local model, where n = 105, ε = 1, d = 8.
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