
End-to-End Training of Multi-Document Reader and
Retriever for Open-Domain Question Answering

Devendra Singh Sachan1,2, Siva Reddy1,2, William Hamilton1,2, Chris Dyer3, Dani Yogatama3
1Mila - Quebec AI Institute

2School of Computer Science, McGill University
3DeepMind

sachande@mila.quebec, {siva, wlh}@cs.mcgill.ca

{cdyer, dyogatama}@deepmind.com

Abstract

We present an end-to-end differentiable training method for retrieval-augmented
open-domain question answering systems that combine information from multiple
retrieved documents when generating answers. We model retrieval decisions as
latent variables over sets of relevant documents. Since marginalizing over sets
of retrieved documents is computationally hard, we approximate this using an
expectation-maximization algorithm. We iteratively estimate the value of our latent
variable (the set of relevant documents for a given question) and then use this
estimate to update the retriever and reader parameters. We hypothesize that such
end-to-end training allows training signals to flow to the reader and then to the
retriever better than stage-wise training. This results in a retriever that is able
to select more relevant documents for a question and a reader that is trained on
more accurate documents to generate an answer. Experiments on three benchmark
datasets demonstrate that our proposed method outperforms all existing approaches
of comparable size by 2-3 absolute exact match points, achieving new state-of-the-
art results. Our results also demonstrate the feasibility of learning to retrieve to
improve answer generation without explicit supervision of retrieval decisions.

1 Introduction

Open-domain question answering (OpenQA) is a question answering task where the goal is to train a
language model to produce an answer for a given question. In contrast to many question answering
tasks, an OpenQA model is only provided with the question as its input without accompanying
documents that contain the answer. One of the most promising approaches to OpenQA is based on
augmenting the language model with an external knowledge source such as Wikipedia (often referred
to as the evidence documents). In this approach, the model consists of two core components (Chen
et al., 2017): (i) an information retrieval system to identify useful pieces of text from the knowledge
source (the retriever); and (ii) a system to produce the answer given the retrieved documents and the
question (the reader).

We can view such a model as a latent variable model, where the latent variables represent retrieved
documents that are used to produce answers given questions (Lee et al., 2019). End-to-end (joint)
training of this model is challenging since we need to learn both to generate an answer given retrieved
documents and what to retrieve. Previous work considers two potential solutions (see Table 1 for
a high-level summary). First, they adopt a stage-wise training, where the retriever is trained while
freezing the reader and vice versa (Karpukhin et al., 2020, Izacard and Grave, 2021b,a). Another

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Reader and Retriever Training
Model Multi-Doc

Reader
Retriever
Adaptation

Disjoint End-to-End Multi-Step Unsupervised
Retriever

REALM (Guu et al., 2020) 3 3 3
DPR (Karpukhin et al., 2020) 3
RAG (Lewis et al., 2020b) 3 3
FiD (Izacard and Grave, 2021b) 3 3
FiD-KD (Izacard and Grave, 2021a) 3 3 3

EMDR2 (Our Approach) 3 3 3 3

Table 1: Bird’s-eye view of the recent OpenQA approaches. Multi-Doc reader indicates whether
the reader architecture uses multiple documents or a single document. Retriever adaptation shows
whether the retriever gets feedback from the reader to update its parameters. Disjoint denotes that
first the retriever is trained and then the reader is trained. End-to-end denotes that the reader and
retriever are trained jointly in one cycle. Multi-step indicates that the reader and retriever are trained
iteratively in multiple cycles. Unsupervised retriever indicates whether the retriever is initialized
using unsupervised approaches or using supervised data.

alternative is to constraint the reader to condition on each retrieved document individually1 (Guu
et al., 2020)—sometimes with extra supervision for the latent variables in the form of the relevant
document for a question (Lewis et al., 2020b).

In this paper, we consider a retrieval-augmented question answering model that combines information
from multiple documents when generating answers. Expectation-maximization (Dempster et al.,
1977) offers a principled template for learning this class of latent variable models. We present
EMDR2: End-to-end training of Multi-Document Reader and Retriever (§2). EMDR2 iteratively uses
feedback from the model itself as “pseudo labels” of the latent variables for optimizing the retriever
and reader parameters. We use two estimates of the latent variables: (i) prior scores for updating the
reader parameters and (ii) approximate posterior scores given all observed variables for the retriever
parameters.

We evaluate our proposed method by experimenting on three commonly used OpenQA datasets:
Natural Questions, TriviaQA, and WebQuestions (§3). EMDR2 achieves new state-of-the-art results
for models of comparable size on all datasets, outperforming recent approaches by 2-3 absolute exact
match points. We also show that EMDR2 is robust to retriever initialization. It achieves high accuracy
with unsupervised initialization, suggesting that supervised training of the retriever may not be an
essential component of the training process as suggested in prior work (Karpukhin et al., 2020).

In summary, our contributions are as follows: (i) we present an end-to-end training method (EMDR2)
for retrieval-augmented question-answering systems; (ii) we demonstrate that EMDR2 outperforms
other existing approaches of comparable size without any kind of supervision on the latent variables;
(iii) we provide ablation studies for a better understanding of the contributions of different components
of our proposed method; and (iv) we release our code and checkpoints to facilitate future work and
for reproducibility.2

EMDR2 is a framework that can be used to train retrieval-augmented text generation models for any
task. We believe that our estimation technique in EMDR2 is also useful for learning similar latent
variable models in other domains.

2 Model

Our proposed model EMDR2 consists of two components: (i) a neural retriever and (ii) a neural
reader, which we train jointly in an end-to-end setting. Figure 1 shows an illustration of our model
and training procedure. We discuss each component and our training objective in detail below.

1This makes marginalization over the latent variables easier since we only need to consider one document at
a time rather than multiple documents at once.

2Our code is available at: https://github.com/DevSinghSachan/emdr2

2

2.1 Neural Retriever: Dual Encoder

Let the collection of evidence documents be denoted by D = {d1, . . . ,dM}. Given a question q,
the goal of the retriever module is to select a subset of documents Z ⇢ D to answer the question.
We model the retriever as a dual-encoder network (Bromley et al., 1994), where one encoder fq
encodes the question and another fd encodes the evidence document (to a vector). The retrieval score
is defined as the dot product between the two resulting vectors:

score(q,di;�) = fq(q;�q)
>
fd(di;�d), (1)

where � = [�q,�d] denotes the retriever parameters. We select top-K documents for the question q
from D based on the retrieval scores. We denote the set of retrieved documents by Z = {z1, . . . , zK}.

We use transformer encoders (Vaswani et al., 2017) as our fq and fd. Our transformer architecture
is similar to BERT with 12 layers and 768 hidden size (Devlin et al., 2019). We use the final
representation of the first token (i.e., the standard [CLS] token from BERT’s tokenization) as our
question (and similarly document) embedding. Initializing fq and fd with BERT weights has been
shown to lead to a poor retrieval accuracy (Lee et al., 2019, Sachan et al., 2021). Therefore, we
initialize the retriever with an unsupervised training procedure. We discuss our initialization technique
in detail in §3.2.

2.2 Neural Reader: Fusion-in-Decoder

The reader takes as input a question q and a set of retrieved documents (to be read) Z to generate an
answer. Our reader is based on the Fusion-in-Decoder (FiD; Izacard and Grave, 2021b) model, which
is built on top of T5 (Raffel et al., 2020). T5 is a pretrained sequence-to-sequence transformer that
consists of an encoder ge and a decoder gd.

In FiD, each retrieved document zk is first appended with its title (tzk) and the question:

xk = [CLS]q[SEP]tzk[SEP]zk[SEP],

where [CLS] is used to indicate the start of a document and [SEP] is used as a separator for the
different parts of the document as well as the final token.

Each xk is then independently given as an input to the T5 encoder ge. The output representations
corresponding to all of the retrieved documents are concatenated as:

XZ = [ge(x1); . . . ; ge(xK)] 2 R(N⇥K)⇥H
,

where N is the number of tokens in each xk
3 and H is the hidden size of the T5 encoder ge. In this

work, we use the T5-base configuration with N = 512 and H = 768.

XZ is then given as an input to the T5 decoder gd. When generating an answer token, the decoder
attends to both previously generated tokens (i.e., causal attention) as well as the tokens encoded in
XZ (i.e., cross attention). Since XZ contains information from multiple documents, the decoder has
the ability to aggregate useful signals contained in multiple documents and jointly reason over them.
We define the probability of the answer as:

p(a | q,Z;⇥) =
TY

t=1

p (at | a<t, q,Z;⇥) , (2)

where ⇥ denotes the reader parameters (i.e., T5 encoder and decoder) and T is the number of
answer tokens. We keep generating answer tokens until the decoder outputs a special EOS token or a
pre-specified maximum answer length is reached.

2.3 End-to-End Training of Reader and Retriever

In contrast to previous work on generative question answering, we train both the reader and the
retriever jointly in an end-to-end differentiable fashion.

Denote our latent variable which represents a set of retrieved documents by Z and let Z be a possible
value of Z. The marginal likelihood of an answer (marginalizing over all the possible values of Z)

3We truncate and pad as necessary such that every xk has the same length N . See §3.2 for details.

3

T5 EncodeU

T5 DecodeU
T5 DecodeU

... ConcaW

SG

ShaUed
PaUameWeUV

......

QXeVWion
EncodeU

TXeVWion

DiVWUibXWed EYidence
Doc Inde[oYeU GPUV

Wop-k MIPS

¬ Top-k DocV

EYidence
EncodeU

InneU PUodXcW

ReadeU TUaining

PUepUoceVVoU

ReWUieYeU TUaining

SWale EYidence
Doc EncodeU

EYidence DocV

AV\nchUonoXV
Inde[RefUeVh

Figure 1: An illustration of the different components of EMDR2. Colored blocks indicate components
which contain trainable parameters.

is: p(a | q;⇥,�) =
P

Z=Z p(a | q,Z;⇥)p(Z | q;�). The goal of our training procedure is to
find � and ⇥ that would maximize the above objective. Exactly optimizing Eq. 3 is intractable as
it is combinatorial in nature.4 For one particular value Z , the log-likelihood is simpler to compute:
log p(a | q,Z;⇥)p(Z | q;�) = log p(a | q,Z;⇥) + log p(Z | q;�).
Expectation-maximization (EM) algorithm (Dempster et al., 1977) offers a solution to learning this
latent variable model. In classical EM, we iteratively compute the posterior of Z given all observed
variables and use it to update ⇥ and �.

We propose using two estimates of Z—Zreader and Zretriever—for updating the two components of the
model (reader parameters ⇥ and retriever parameters �):

log p(a | q,Zreader;⇥)| {z }
reader

+ log p(Zretriever | q;�)| {z }
retriever

. (3)

In the first term, we set the value of the latent variable Z = Zreader based on the prior scores. In the
second term, we seek to maximize an approximate posterior of Z = Zretriever. We discuss them in
more detail below.

Reader parameters ⇥. For updating ⇥ (the first term of Eq. 3), we use the top-K documents with
the highest individual scores (as computed by Eq. 1 based on the current value of �) to construct
Zreader. This is equivalent to relying on the prior p(Z | q;�) to estimate Zreader (without using
information from the answer a). We choose to use the prior to train reader parameters since the
prior scores are also used at evaluation time to obtain the top-K documents. As a result, there is no
mismatch between training and test computations when computing p(a | q,Z;⇥) (i.e., Z that is
used at test time is obtained in exactly the same way as Zreader = Ztop-K).

Retriever parameters �. For updating � (the second term of Eq. 3), we propose to use the
posterior estimate. In other words, we use additional information from a when evaluating Zretriever to
train �. Using the posterior allows our retriever to learn from richer training signals as opposed to
relying only on the prior.

We need to be able to compute p(Zretriever | q,a;⇥,�) to maximize the retriever parameters. However,
computing this quantity is difficult since it is a probability of a set.5 Consider a set of K documents
(e.g., Ztop-K), where zk denotes a document in the set. We approximate the maximization of the
probability of the set by assuming that its probability is maximized if the sum of the probability of

4Contrast our objective with REALM (Guu et al., 2020), where the reader only conditions on one retrieved
document zk when generating an answer. In this case, the latent variable represents a document assignment
instead of a set of retrieved documents.

5This is true whether we choose to use the posterior probability or the prior probability.

4

each document in the set is maximized.6 With this approximation, we arrive at a simpler quantity:P
K

k=1 p(zk | q,a;⇥,�). Note that using Bayes rule, we can rewrite:7

p(zk | q,a;⇥,�) / p(a | q, zk;⇥)p(zk | q;�). (4)

The reader now only conditions on one document when computing the probability of an answer
p(a | q, zk;⇥). This simpler reader uses the same parameters as the more sophisticated one ⇥, but it
only uses one document zk instead of a set of documents.

To compute Eq. 4, we first obtain K documents with the highest scores as computed by Eq. 1 based
on the current value of �. We compute the probability of document zk 2 Ztop-K as:

p(zk | q,Ztop-K ;�) ⇡ exp(score(q, zk)/⌧ ;�)P
K

j=1 exp(score(q, zj)/⌧ ;�)
, (5)

where ⌧ is a temperature hyperparameter and the approximation assumes that documents beyond the
top-K contributes very small scores so we do not need to sum over all evidence documents M in
the denominator (which is in the order of tens of millions in our experiments). We then compute
p(a | q, zk;⇥) similarly to Eq. 2.

Overall training objective of EMDR2. Combining the above derivations, our end-to-end training
objective that we seek to maximize for a particular example becomes:

L = log p(a | q,Ztop-K ;⇥)
| {z }

reader

+ log
KX

k=1

SG (p(a | q, zk;⇥)) p(zk | q,Ztop-K ;�)

| {z }
retriever

, (6)

where SG is the stop-gradient operator so that the reader parameters ⇥ are not updated to also perform
well given a single document zk. The stop-gradient operator in the second term of EMDR2 has several
benefits. First, the FiD reader is trained from the first term of the EMDR2 objective in which its
likelihood is conditioned on all the retrieved documents, similar to how the reader is used at test
time. Second, it also makes training faster since the backward pass which is computationally more
expensive than the forward pass is not needed, which in turn reduces the usage of GPU RAM as
intermediate activations need not be saved.

Given a training example, we update ⇥ and � by taking gradients of Eq. 6 with respect to ⇥ and � in
an end-to-end fashion. Intuitively, we train the reader to generate the correct answer given K highest
scoring documents Ztop-K . For the retriever, we train it to select K documents which collectively
has a high score of generating an answer (since the sum over K is inside the log in the second term)
while taking into account feedback from the reader. Algorithm 1 summarizes our training algorithm.

Algorithm 1: End-to-end training of multi-document reader and retriever.
Input: Model parameters ⇥ and �, evidence documents D.
while not converged do

• Compute Ztop-K using the current retriever parameters �. // E-step

• Compute p(a | q, zk) for each zk using the current reader parameters ⇥. // E-step

• Update model parameters ⇥ and � to maximize the log-likelihood in Eq. 6. // M-step

end

3 Experiments

3.1 Datasets

We experiment with three commonly used open-domain question answering datasets:
6The intuition is that each element of the set contributes independently, which greatly simplifies the computa-

tion to find the maximum of the set.
7We choose not to normalize with p(a | q;⇥,�) since computing this quantity would require summing over

all evidence documents M . While this makes the resulting objective that we optimize not correspond to a proper
probability distribution anymore, we observe that our training method still behaves well in practice.

5

• Natural Questions (NQ; Kwiatkowski et al., 2019). NQ contains questions asked by users
of the Google search engine. Similar to Lee et al. (2019), we use the short answer subset.

• TriviaQA (Joshi et al., 2017). TriviaQA is a collection of trivia question-answer pairs that
were collected from multiple sources on the web.

• WebQuestions (WebQ; Berant et al., 2013). WebQ questions were collected using Google
Suggest API and the answers were annotated using Mechanical Turk. We use the version
from Chen et al. (2017) where Freebase IDs in the answers are replaced by entity names.

Evidence documents D. We use the preprocessed English Wikipedia dump from December 2018
released by Karpukhin et al. (2020) as our evidence documents. Each Wikipedia article is split into
non-overlapping 100 words long segments. Each segment corresponds to a document in our case.
There are a total of 21,015,324 documents in total.

We provide descriptive statistics and other preprocessing details in Appendix A.

3.2 Implementation Details

Hardware and library. We run all of our experiments on a machine with 96 CPUs, 1.3TB physical
memory, and 16 A100 GPUs. We use PyTorch (Paszke et al., 2019) to implement our proposed
model and relevant baselines.

Model configurations. For both the retriever and reader, we use the base configuration that consists
of 12 layers, 768 dimensional hidden size, and 12 attention heads. In all experiments, we retrieve
50 documents, unless stated otherwise. We only use the base configuration in our experiments
due to GPU memory constraints. However, we believe that our results would generalize to larger
configurations as well.

Retrieval. To support fast retrieval, we pre-compute evidence document embeddings and store them
in a distributed fashion over all the GPUs. We refer to these document embeddings as the document
index. For each question, we retrieve documents in an online (on-the-fly) manner by performing
exact maximum inner product search (MIPS), implemented using asynchronous distributed matrix
multiplication over the document index. These documents are converted to subwords using BERT’s
tokenization and are given as input to the T5 reader. If a tokenized document is shorter than 512
tokens, it is padded using the tokens from the neighboring documents until the maximum token limit
is reached. Such padding additionally helps to provide an extended context for answer generation.

Initialization and training details. We initialize the parameters of the model with unsupervised
pre-training before performing supervised training using the question-answer training examples.
Unsupervised pre-training is essential as it helps to warm-start the retriever so that it outputs relevant
documents for a given question.

We first pre-train the retriever parameters with unsupervised Inverse Cloze Task training (Lee et al.,
2019) for 100,000 steps. We then extract sentences containing named entities from the evidence
documents. Next, we replace 15% of the named entity tokens with masked tokens, which are often
referred to as masked salient spans (MSS; Guu et al., 2020). The masked sentence can be considered
as the question and its salient spans (i.e, named entities) can be considered as the answer to train the
model with Eq. 6. We train the model on these question-answer (masked sentence-named entities)
pairs for 82,000 steps with a batch size of 64 using Adam (Kingma and Ba, 2015). We refer to this
initialization method as unsupervised pre-training with masked salient spans. We provide further
description in Appendix C.

After MSS training, we finetune the model on the dataset-specific question-answer training examples
with EMDR2. We perform training for 10 epochs on NQ and TriviaQA with a batch size of 64, and
for 20 epochs on WebQ with a batch size of 16. During training, we save a checkpoint every 500
steps and select the best checkpoint based on its performance on the development set.

During end-to-end training, since the parameters of the document encoder (fd) are also updated at
every step, the pre-computed document embeddings become stale as training progresses. We use the
most recent document encoder checkpoint to compute fresh document embeddings asynchronously
with which the document index is updated after every 500 training steps to prevent staleness.

6

Model top-K NQ TriviaQA WebQ # of
dev test dev test dev test params

Closed-Book QA Models
T5-base (Roberts et al., 2020) 0 - 25.7 - 24.2 - 28.2 220M
T5-large (Roberts et al., 2020) 0 - 27.3 - 28.5 - 29.5 770M
T5-XXL (Roberts et al., 2020) 0 - 32.8 - 42.9 - 35.6 11B
GPT-3 (Brown et al., 2020) 0 - 29.9 - - - 41.5 175B

Open-Book QA Models
BM25 + BERT (Lee et al., 2019) 5 24.8 26.5 47.2 47.1 27.1 21.3 220M
ORQA (Lee et al., 2019) 5 31.3 33.3 45.1 45.0 36.8 30.1 330M
REALM (Guu et al., 2020) 5 38.2 40.4 - - - 40.7 330M
DPR (Karpukhin et al., 2020) 25 - 41.5 - 56.8 - 34.6 330M
RECONSIDER (Iyer et al., 2021)† 30 - 43.1 - 59.3 - 44.4 440M
RAG-Sequence (Lewis et al., 2020b)† 50 44.0 44.5 55.8 56.8 44.9 45.2 626M
Individual Top-K (Sachan et al., 2021) - - 45.9 - 56.3 - - 440M
Joint Top-K (Sachan et al., 2021) 50 - 49.2 - 64.8 - - 440M
FiD (Izacard and Grave, 2021b) 100 - 48.2 - 65.0 - - 440M
FiD-KD (Izacard and Grave, 2021a) 100 48.0 49.6 68.6 68.8 - - 440M

Our Implementation (Base Configuration)
FiD / T5-base 0 26.0 25.1 26.7 27.8 31.0 32.4 220M
FiD (DPR retriever, T5 reader) 1 37.3 38.4 50.8 50.4 40.2 38.3 440M
FiD (DPR retriever, T5 reader) 50 47.3 48.3 65.5 66.3 46.0 45.2 440M
FiD (MSS + DPR retriever, T5 reader) 50 48.8 50.4 68.0 68.8 43.5 46.8 440M

FiD (MSS retriever, MSS reader) 50 38.5 40.1 60.0 59.8 39.1 40.2 440M
EMDR2 (MSS retriever, MSS reader) 50 50.4 52.5 71.1 71.4 49.9 48.7 440M

Table 2: Exact match scores on three evaluation datasets. Top-K denotes the number of retrieved
documents that are used by the reader to produce an answer. To provide a fair comparison with
our reimplementations, we show results from other papers with the base configuration, except for
RAG-Sequence that uses BART-large (Lewis et al., 2020a). † indicates that their results on WebQ
use NQ training data to pretrain the model.

Inference. We use greedy decoding for answer generation at inference time.

3.3 Baselines

We compare our model to other approaches for OpenQA that can be categorized under the following
two classes:

• Closed-book QA models. Large-scale language models capture a lot of world knowledge
in their parameters derived from the corpus they have been trained on (Petroni et al., 2019).
We compare with the work of Roberts et al. (2020) who show that larger T5 models—when
finetuned with question-answer pairs—can perform remarkably well. We also compare with
the few-shot results of GPT-3 (Brown et al., 2020).8

• Open-book QA models. Similar to this work, these models consist of retriever and reader
components and adopt the retrieve then predict approach for answering questions given
a collection of evidence documents. These models mainly differ in how the retriever
is initialized (ORQA; Lee et al., 2019, DPR; Karpukhin et al., 2020), whether the reader
processes a single document (ORQA, DPR, RAG; Lewis et al., 2020b) or multiple documents
(FiD; Izacard and Grave, 2021b), or whether the reader and retriever are trained jointly or in
a multistage process (REALM; Guu et al., 2020, FiD-KD; Izacard and Grave, 2021a).

7

3.4 Results

We follow standard conventions and report exact match (EM) scores using the reference answers
included in each dataset. Table 2 shows our main results. We divide the table into three main sections:
closed-book QA models, open-book QA models, and our implementation. The first two sections
contain results from other papers, which we include for comparisons. The last section includes results
from our proposed model, as well as our reimplementation of relevant baselines to control for our
experimental setup.

Our reimplementation of T5-base provides strong baselines when the number of retrieved documents
is set to 0 (no retrieval) and 1. From Table 2, we see that the setting of top-1 vastly improves
performance over the setting with no retrieved documents, signifying the importance of retrieval for
OpenQA tasks. When further increasing the top-k documents to 50, the performance of the FiD
models substantially improves over the top-1 retrieval, verifying the observation from (Izacard and
Grave, 2021b) about the importance of modeling the retrieved documents as a set.

Comparing EMDR2 with our reimplementation of FiD illustrates the benefit of our end-to-end training
approach. The underlying model is similar in both cases, but the training method is different. FiD
adopts a two-stage approach to first train the retriever and then the reader. We have three variants of
FiD: (i) the reader and retriever are initialized with MSS training, (ii) the retriever is initialized with
DPR training, which is the setting used in the original paper (Izacard and Grave, 2021b), and (iii) the
retriever is initialized with MSS + DPR training from (Sachan et al., 2021), as it further improves
DPR recall. EMDR2 outperforms all the variants by large margins on all the datasets.

The current best approach for training multi-document reader and retriever is FiD-KD (Izacard and
Grave, 2021a). FiD-KD is a complex training procedure that requires multiple training stages and
performs knowledge distillation with inter-attention scores. We take the results from the original paper
when comparing our model with FiD-KD. EMDR2 outperforms the reported numbers of FiD-KD by
more than 2.5 points on NQ and TriviaQA to obtain new state-of-the-art results on these benchmarks.

In addition to better performance, EMDR2 also has three other advantages compared to FiD-KD:
(i) EMDR2 is more efficient since it only uses 50 evidence documents, whereas FiD-KD leverages
100 documents; (ii) FiD-KD is based on a distillation approach which requires multiple cycles of
retriever and reader training, while EMDR2 only requires one cycle of end-to-end training; and (iii)
FiD-KD relies on supervised initialization of the retriever to achieve its best performance. EMDR2

is more robust to the retriever initialization, as demonstrated by state-of-the-art results even with
unsupervised initialization of the retriever.

For the WebQ dataset, the training set size is much smaller compared to the other datasets (Table 5).
Previous approaches such as RAG rely on supervised transfer (i.e., they finetune a model pre-trained
on NQ) to obtain good results. In contrast, EMDR2 improves over the results from this RAG model
by 3.5 points without the supervised transfer step. This result demonstrates the applicability of our
approach to the low-resource setting where we only have a limited number of training examples.

We also perform qualitative analysis of the model outputs, which is included in Appendix E.

3.5 Ablations

Number of retrieved documents. We investigate the performance of EMDR2 and FiD as we vary
the number of retrieved documents K in Figure 2. We observe that when the number of retrieved
documents is increased, both EMDR2 and FiD improve in performance. When K is small, the gap
between EMDR2 and FiD is larger. This indicates the efficacy of EMDR2 in a more constrained setting
where we can only retrieve a small number of documents (e.g., due to memory limitations).

Retriever initialization. We explore the effect of different parameter initialization strategies when
training with EMDR2: (i) unsupervised MSS pre-training, (ii) supervised retriever training (DPR), and
(iii) MSS pre-training followed by supervised retriever training (MSS + DPR; Sachan et al. (2021)).
Table 3 shows our results. We can see that on NQ, MSS pre-training being unsupervised leads to a
lower initial retriever recall than DPR. After EMDR2 training, the recall improves by 20% (highlighted
in yellow cells). Training with DPR initialization leads to the same final recall as obtained by MSS

8We note that GPT-3 is not trained on the full training examples that we use, so the results are not directly
comparable.

8

0 5 10 20 50
number of top-k documents

30

40

50

E
xa

ct
M

at
ch

sc
or

e

Natural Questions (dev)

EMDR2

FiD

0 5 10 20 50
number of top-k documents

30

40

50

60

70

E
xa

ct
M

at
ch

sc
or

e

TriviaQA (dev)

EMDR2

FiD

0 5 10 20 50
number of top-k documents

30

40

50

E
xa

ct
M

at
ch

sc
or

e

WebQuestions (dev)

EMDR2

FiD

Figure 2: Performance on NQ, TriviaQA, and WebQ as we vary the number of retrieved documents.

NQ (dev) TriviaQA (dev) WebQ (dev)
Retriever
Initialization

Reader
Initialization

R@50 EM R@50 EM R@50 EM
B.T. A.T. B.T. A.T. B.T. A.T.

MSS pre-training MSS pre-training 66.4 86.3 50.4 74.8 86.2 71.1 59.8 88.6 49.9
MSS pre-training T5 66.4 86.3 50.3 74.8 86.3 70.9 59.8 88.6 47.7
DPR training T5 82.3 86.3 50.0 83.2 86.2 70.5 84.2 88.6 49.0
MSS + DPR MSS pre-training 84.5 86.3 50.5 85.3 86.3 71.2 85.0 88.6 49.9

Table 3: R@50 denotes the retrieval recall from the top-50 retrieved documents. B.T. and A.T.
indicates R@50 score Before Training and After Training the model, respectively.

pre-training, suggesting that DPR initialization of the retriever may not be an essential component
to obtain good performance in OpenQA tasks. Similar trends are also observed on TriviaQA and
WebQ. Similarly, MSS + DPR initialization has a better initial recall but leads to a marginal or no
improvements in answer extraction performance over MSS pre-training. Finally, we also observe
that MSS pre-training also provides an improvement of 2 points in answer extraction on WebQ when
compared to the T5 reader (shown in orange cells), highlighting its importance in the low-resource
OpenQA tasks.

3.6 Alternative End-to-End Training Objectives

We compare EMDR2 objective (Eq. 6) to two alternative formulations for end-to-end training.

Method top-k NQ TriviaQA WebQ
FiD 50 47.3 65.5 46.0
EMDR2 50 50.4 71.1 49.9
Lalt-1 50 14.1 11.9 28.0
Lalt-2 50 49.9 69.6 28.8

Table 4: EM scores on the development
set for alternative training objectives.

In the first alternative formulation, when training the re-
triever parameters �, we simply factorize p(Z | q;�) =Q

K

k=1 p(zk | q;�) to arrive at the following objective:

Lalt-1 = log p(a | q,Z;⇥) +
KX

k=1

log p(zk | q,Z;�).

The second term in this objective is maximised by a uni-
form retrieval, in other words, by removing any discrim-
ination between documents in the retriever. We include it
to show the impact of an adversarial objective.

In the second formulation, for each retrieved document, we approximate its posterior under the as-
sumption that we have a uniform prior over the set of retrieved documents: p̃(zk | q,a,Ztop-K ;⇥) /
p(a | q, zk;⇥) ⇥ 1

K
. We use this to train reader and retriever parameters as follows:

Lalt-2 = log p(a | q,Z;⇥) +KL(SG (p̃(zk | q,a,Ztop-K ;⇥)) || p(zk | q,Z;�)).

Intuitively, we try to match the probability of retrieving a document zk with the “contribution” of
that document to the generated answer a, regardless of whether the retriever is relatively more or less
likely to retreieve the document a priori.

Table 4 shows our results on the development set of NQ. We observe that training with the adversarial
Lalt-1 objective diverges, leading to poor performance, as expected. This shows that harming the
retriever during training can significantly harm performance of the QA system. In contrast, although
it disregards the estimated prior, the Lalt-2 objective still improves over the FiD baseline for NQ and

9

TriviaQA. However, it still lags behind EMDR2. On WebQ, the Lalt-2 objective diverges and leads to a
poor performance. We leave further analysis on the convergence of Lalt-2 objective as a part of future
work.

4 Related Work

Our work is based on end-to-end training of neural readers and retrievers, which we discuss in §1, §2,
and §3. Here we instead focus on discussing previous work related to standalone neural retrievers,
neural readers, and their application in other natural language processing tasks.

Neural retrievers. There are two broad classes of neural retrievers based on the number of embed-
dings computed for a document: dual encoders (Yih et al., 2011, Lee et al., 2019) and multivector
encoders (Khattab and Zaharia, 2020, Luan et al., 2021). Dual encoders store one embedding for
each evidence document. Multivector encoders require multiple embeddings, which can be computa-
tionally expensive for large-scale retrieval. Due to the large size of the evidence document collection
in OpenQA, our work uses the more efficient dual-encoder. Sachan et al. (2021) show that the
performance of supervised dual encoders in OpenQA can be improved when pre-training with the
Inverse Cloze Task for the high-resource setting or masked salient spans for the low-resource setting.

Neural readers. Neural readers output an answer given retrieved documents as its input. There are
also two broad classes of neural readers: extractive and generative. Extractive readers (Clark and
Gardner, 2018, de Masson d’Autume et al., 2019, Wang et al., 2019, Guu et al., 2020, Karpukhin
et al., 2020) extract a span from a retrieved document to produce an answer. Generative readers
(Izacard and Grave, 2021b), on the other hand, generates an answer conditioned on the retrieved
documents.

Other application areas. In addition to question answering, retrieval-augmented methods have been
successfully applied to other natural language processing tasks. In left-to-right language modeling,
retrieving similar words from an external memory has been shown to improve perplexity (Khandelwal
et al., 2020, Yogatama et al., 2021). In machine translation, retrieving domain-specific target language
tokens has improved performance in domain adaptation (Khandelwal et al., 2021). Finally, in dialog
modeling, retrieving knowledge-informed text has helped improve factual correctness in the generated
conversations (Fan et al., 2021).

We provide a detailed comparison of EMDR2 with some of the previous work in Appendix C and D.

5 Discussion

Summary of contributions. We presented EMDR2, an end-to-end training method for retrieval-
augmented question answering systems. We showed how to arrive at our training objective using
the expectation-maximization algorithm. We demonstrated that EMDR2 achieves state-of-the-art
performance on three benchmark OpenQA datasets.

Technical limitations. EMDR2 shares a few limitations with other retrieval-augmented question
answering models. In particular, as evidence documents are stored in an uncompressed format,
maintaining them and searching for relevant documents can be expensive (both in terms of compute
and memory consumption). In our experiments, we only focused on open-domain question answering.
It would be interesting to see how EMDR2 performs for other text generation models as well. We also
note that training is relatively resource-heavy (requiring 16 GPUs), potentially having environmental
concerns.

Potential negative societal impacts. While EMDR2 has the potential to improve language models
in the low-resource setting (as demonstrated by our results on WebQ in §3.4), it could exhibit typical
biases that are associated with large language models. For example, our model does not have an
explicit mechanism to generate answers that are calibrated for fairness across all spectra. As a
retrieval-augmented method, it also could be more prone to generating fake answers if an attacker
manages to have access and modify information in the collection of evidence documents.

10

Acknowledgements

The authors would like to thank the DeepMind Language team, Mila’s students, and anonymous
reviewers for providing us valuable feedback and useful suggestions about this work that helped us
improve the paper.

Funding Statement

DSS was supported by the Canada CIFAR AI Chair held by Prof. William Hamilton.

References
Berant, J., Chou, A., Frostig, R., and Liang, P. (2013). Semantic parsing on Freebase from question-

answer pairs. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994). Signature verification using a
"siamese" time delay neural network. In Advances in Neural Information Processing Systems.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020).
Language models are few-shot learners. In Advances in Neural Information Processing Systems.

Chen, D., Fisch, A., Weston, J., and Bordes, A. (2017). Reading Wikipedia to answer open-domain
questions. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Clark, C. and Gardner, M. (2018). Simple and effective multi-paragraph reading comprehension. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers).

de Masson d’Autume, C., Ruder, S., Kong, L., and Yogatama, D. (2019). Episodic memory in lifelong
language learning. In Advances in Neural Information Processing Systems.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete data via the
em algorithm. Journal of the Royal Statistical Society, Series B, 1(39), 1–38.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Fan, A., Gardent, C., Braud, C., and Bordes, A. (2021). Augmenting Transformers with KNN-Based
Composite Memory for Dialog. Transactions of the Association for Computational Linguistics, 9.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M. (2020). Retrieval augmented language model
pre-training. In Proceedings of the 37th International Conference on Machine Learning.

Iyer, S., Min, S., Mehdad, Y., and Yih, W. (2021). Reconsider: Re-ranking using span-focused
cross-attention for open domain question answering. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers).

Izacard, G. and Grave, E. (2021a). Distilling knowledge from reader to retriever for question
answering. In International Conference on Learning Representations.

Izacard, G. and Grave, E. (2021b). Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume.

11

Joshi, M., Choi, E., Weld, D., and Zettlemoyer, L. (2017). TriviaQA: A large scale distantly supervised
challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).

Karpukhin, V., Oğuz, B., Min, S., Wu, L., Edunov, S., Chen, D., and Yih, W.-t. (2020). Dense
passage retrieval for open-domain question answering. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP).

Khandelwal, U., Levy, O., Jurafsky, D., Zettlemoyer, L., and Lewis, M. (2020). Generalization
through memorization: Nearest neighbor language models. In International Conference on
Learning Representations.

Khandelwal, U., Fan, A., Jurafsky, D., Zettlemoyer, L., and Lewis, M. (2021). Nearest neighbor
machine translation. In International Conference on Learning Representations.

Khattab, O. and Zaharia, M. (2020). Colbert: Efficient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In The 2015
International Conference for Learning Representations.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein, D.,
Polosukhin, I., Kelcey, M., Devlin, J., Lee, K., Toutanova, K. N., Jones, L., Chang, M.-W., Dai, A.,
Uszkoreit, J., Le, Q., and Petrov, S. (2019). Natural questions: a benchmark for question answering
research. Transactions of the Association of Computational Linguistics.

Lee, K., Chang, M.-W., and Toutanova, K. (2019). Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., and
Zettlemoyer, L. (2020a). BART: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih,
W.-t., Rocktäschel, T., Riedel, S., and Kiela, D. (2020b). Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Advances in Neural Information Processing Systems.

Luan, Y., Eisenstein, J., Toutanova, K., and Collins, M. (2021). Sparse, Dense, and Attentional
Representations for Text Retrieval. Transactions of the Association for Computational Linguistics,
9.

Min, S., Chen, D., Hajishirzi, H., and Zettlemoyer, L. (2019). A discrete hard EM approach for
weakly supervised question answering. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China. Association for Computational
Linguistics.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,
S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems.

Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., and Miller, A. (2019).
Language models as knowledge bases? In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP).

Qi, P., Zhang, Y., Zhang, Y., Bolton, J., and Manning, C. D. (2020). Stanza: A Python natural
language processing toolkit for many human languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations.

12

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
(2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research, 21(140), 1–67.

Roberts, A., Raffel, C., and Shazeer, N. (2020). How much knowledge can you pack into the
parameters of a language model? In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends in Information Retrieval.

Sachan, D. S., Patwary, M., Shoeybi, M., Kant, N., Ping, W., Hamilton, W. L., and Catanzaro, B.
(2021). End-to-end training of neural retrievers for open-domain question answering. In Joint
Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (ACL-IJCNLP).

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., and Catanzaro, B. (2019). Megatron-lm:
Training multi-billion parameter language models using gpu model parallelism. arXiv preprint
arXiv:1909.08053.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems.

Wang, S., Yu, M., Guo, X., Wang, Z., Klinger, T., Zhang, W., Chang, S., Tesauro, G., Zhou, B., and
Jiang, J. (2018). R3: Reinforced ranker-reader for open-domain question answering. In AAAI.

Wang, Z., Ng, P., Ma, X., Nallapati, R., and Xiang, B. (2019). Multi-passage BERT: A globally
normalized BERT model for open-domain question answering. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP).

Yih, W.-t., Toutanova, K., Platt, J. C., and Meek, C. (2011). Learning discriminative projections for
text similarity measures. In Proceedings of the Fifteenth Conference on Computational Natural
Language Learning.

Yogatama, D., de Masson d’Autume, C., and Kong, L. (2021). Adaptive Semiparametric Language
Models. Transactions of the Association for Computational Linguistics, 9, 362–373.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] Please see the model (§2) and result (§3) sections that
solidify the claims made in the abstract and introduction sections.

(b) Did you describe the limitations of your work? [Yes] Please see limitations in §5.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Please see

negative societal impact in §5.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We include the
code, data, and instructions in the supplemental material and §3.2.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] We specify these details in the appendix included in the supplementary
material.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Our experiments are compute expensive and it is not
feasible to perform multiple runs of the same experiment with different seeds. All our
training runs use the same seed value (1234). As an alternative to running multiple
seeds, we perform a number of ablation studies (§3.5).

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Please see §3.2 under hardware
and library.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Please see §3.1 for

the details.
(b) Did you mention the license of the assets? [Yes] Our work is based on open-source data

and framework. When applicable, we describe the license information in the appendix.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include our code in the supplementary material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

