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Abstract

Semi-supervised learning (SSL) is an effective means to leverage unlabeled data
to improve a model’s performance. Typical SSL methods like FixMatch assume
that labeled and unlabeled data share the same label space. However, in practice,
unlabeled data can contain categories unseen in the labeled set, i.e., outliers, which
can significantly harm the performance of SSL algorithms. To address this problem,
we propose a novel Open-set Semi-Supervised Learning (OSSL) approach called
OpenMatch. Learning representations of inliers while rejecting outliers is essential
for the success of OSSL. To this end, OpenMatch unifies FixMatch with novelty
detection based on one-vs-all (OVA) classifiers. The OVA-classifier outputs the
confidence score of a sample being an inlier, providing a threshold to detect
outliers. Another key contribution is an open-set soft-consistency regularization
loss, which enhances the smoothness of the OVA-classifier with respect to input
transformations and greatly improves outlier detection. OpenMatch achieves state-
of-the-art performance on three datasets, and even outperforms a fully supervised
model in detecting outliers unseen in unlabeled data on CIFAR10. The code is
available at https://github.com/VisionLearningGroup/OP_Match.

1 Introduction
Semi-supervised learning (SSL) leverages unlabeled data to improve a model’s performance [27, 38,
2, 1, 35, 22, 37]. An SSL model can propagate the class information of a small set of labeled data
to a large set of unlabeled data, which significantly improves the recognition accuracy without any
additional annotation cost. A common assumption of SSL is that the label spaces of labeled and
unlabeled data are identical, but, in practice, the assumption is easily violated. Depending on how it
was collected, the unlabeled data may contain novel categories unseen in the labeled training data,
i.e., outliers. Since these outliers can significantly harm the performance of SSL algorithms [14],
detecting them is necessary to make SSL more practical. Ideally, a model should classify samples of
known categories i.e., inliers, into correct classes while identifying samples of novel categories as
outliers. This task is called Open-set Semi-supervised Learning (OSSL) [44]. While OSSL is a more
realistic and practical scenario than standard SSL, it has not been as widely explored.

Existing strong SSL methods [35, 41] do not work well for OSSL. For example, FixMatch [35]
generates pseudo-labels using the model’s predictions on weakly augmented unlabeled images and
trains the model to match its predictions on strongly augmented images with the pseudo-labels. This
method exploits the advantage of pseudo-labeling as well as regularizing a model with the consistency
between differently augmented images. But, in OSSL, this risks assigning pseudo-labels of known
categories to outliers, which degrades the recognition accuracy. A possible solution is to compute the
SSL objective only for unlabeled samples considered to be inliers, where confidence thresholding is
used to pick inliers. For instance, MTC [44] regards some proportion of samples as outliers by using
Otsu thresholding [25]. However, this is not robust to varying proportions of outliers as discussed in
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Figure 1: An illustration of our proposed open-set soft-consistency loss used to enhance outlier
detection. Two differently augmented inputs are fed into the network to obtain the predictions of
the outlier detector. The detector consists of one-vs-all classifiers and is able to detect outliers in an
unsupervised way. The consistency loss is computed in a soft manner, i.e., without sharpening logits.

[44]. DS3L [14] proposes meta-optimization that attempts to pick unlabeled data useful to improve
generalization performance. But, this method does not have an objective to separate inliers from
outliers.

Given the limitations of the existing methods, we aim to learn representations that separate outliers
from inliers in a feature space and a threshold effective for detecting outliers. The challenge is
learning such representations with a small number of labeled inliers and no supervision to find
outliers. Moreover, choosing an accurate threshold value is not a trivial problem.

We propose a new framework, OpenMatch, to address the above drawbacks of OSSL. First, we
propose to utilize a One-Vs-All (OVA) network [32] that can learn a threshold to distinguish outliers
from inliers. A separate OVA-classifier is trained for each class, and a sample is labeled an outlier
if all of the classifiers determine it to be one. Thus, this technique allows us to identify outliers
in an unsupervised way. We call this an outlier detector. Second, we propose a novel open-set
soft-consistency loss to learn more effective representations for detecting outliers. We first transform
an unlabeled input in two ways and obtain two logits from the outlier detector. Then, we minimize the
distance between the two logits to encourage consistency (See Fig. 1). The main difference between
SSL and OSSL is that unlabeled outliers do not have any neighboring labeled samples, which makes
it risky to perform hard-labeling such as pseudo-labeling. The outlier detector outputs a distance from
inliers given an input, and enhancing the smoothness of this function allows us to improve its ability
to find outliers. Empirically, this objective provides significant improvements in detecting outliers.
Finally, to correctly classify inliers, we propose to apply FixMatch [35] to unlabeled samples that are
considered to be inliers by the outlier detector.

The resulting framework shows consistent gains over baselines on various datasets and settings of
OSSL. For example, OpenMatch achieves a 10.4% error rate on CIFAR10 with 300 labeled examples
compared to the previous state-of-the-art of 20.3%. Surprisingly, OpenMatch demonstrates good
performance in detecting outliers unseen in unlabeled training data. For instance, in the experiments
on CIFAR10 with 100 labels per class, OpenMatch achieves a 3.4% higher AUROC in detecting
outliers than a supervised model trained with all training samples. To summarize, our contributions
are as follows:

• A soft open-set consistency regularization (SOCR), to improve outlier detection in OSSL.

• A new framework, OpenMatch, which combines a OVA-classifier, SOCR, and FixMatch.

• A new state-of-the-art in both correctly classifying inliers and detecting outliers, even when
the outliers are unseen in unlabeled training data.

2 Related Work

Semi-supervised Learning. Pseudo-labeling (PL) is a strong baseline in semi-supervised learn-
ing [23], and methods like FixMatch [35] or UDA [41] combining data augmentation and PL show
the highest performance on many benchmark datasets. However, even with these strong methods,
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performance drops when a model is exposed to noisy unlabeled data that includes novel categories.
On the other hand, methods based on soft consistency regularization enforce smoothness of the
decision boundary with respect to stochastic transformations [34] or models [22, 37]. By "soft",
we mean that no sharpening or pseudo-labeling is applied to logits to propagate training signals
through soft targets. The soft consistency regularization can be understood as approximated Jacobian
regularization method [12, 31]. We propose to apply soft consistency regularization to our outlier de-
tector, which we call soft open-set consistency regularization. Training a model with self-supervised
learning and SSL achieves label-efficient training [5, 46]. Self-supervised learning and SSL seem
to be complementary to each other to improve the recognition accuracy. But, unlabeled data with
outliers will hurt the performance of these approaches since they rely on existing SSL objectives.
Since our work focuses on the aspect of SSL, we hope it is complementary to self-supervised learning.

Open-set SSL methods include MTC [44], D3SL [14], and UASD [6]. MTC updates the network
parameters and the anomaly score of unlabeled data alternately. In addition, it minimizes SSL loss
(MixMatch [2] for a part of unlabeled data that is considered to be inliers. D3SL selectively employs
unlabeled data to optimize SSL loss as well as optimizing a function that selects unlabeled data.
UASD generates soft targets of the classifier for inliers (closed-set classifier) by averaging over many
temporally ensembled networks’ predictions. By contrast, OpenMatch does not have to store the
temporal ensembles and applies soft consistency loss to the outlier detector. Our empirical results
show that the consistency loss for the outlier detector outperforms that for the closed-set classifier by
a lot (See Sec. 4.4).

Open-set Domain Adaptation (ODA). OSSL is similar to open-set domain adaptation [3, 33] in
that the unlabeled data contains novel categories. A key difference is that the unlabeled and labeled
data follow different data distributions. Another key difference is that we aim to train a model from
scratch while the domain adaptation task assumes access to models pre-trained on ImageNet [9].
Since the ImageNet contains 1,000 diverse categories, the pre-trained models have discriminative
representations useful to detect outliers. In this point, our task is more challenging than ODA. To
detect outliers in an unsupervised way, we employ a OVA-classifier model [32] proposed for this task.

Novelty Detection. Novelty detection or open-set classification aims to identify outliers that are
completely unseen during training [17, 24, 10, 11]. Self-supervised learning such as rotation predic-
tion and contrastive learning is shown to be useful to separate outliers from inliers [19, 36, 40]. The
task assumes plenty of labeled inliers in training data. Padhy et al. employ OVA-classifiers for this
task [30]. Hendrycks et al. reveal that exposing a model to outlier data allows it to effectively detect
anomalies [18] and train it on out-of-distribution training data in a supervised way. But, collecting
such useful out-of-distribution data is not always possible. In OSSL, a model cannot be trained on
many labeled samples and needs to detect which samples are inlier or outliers in unlabeled data. In
this sense, OSSL is more challenging and more realistic.

3 OpenMatch

Problem Setting. Our task is to learn a classifier using open-set semi-supervised learning. For a
K-way classification problem, let X = {(xb, yb) : b ∈ (1, ...B)} be a batch of B labeled examples
xb randomly sampled from the labeled training set, S, where yb ∈ (1, ...K) is the corresponding
label. Let U = {(ub) : b ∈ (1, ...µB)} be a batch of µB data randomly sampled from the unlabeled
training set, Su, where µ is a hyper-parameter that determines the relative sizes of X and U . Unlike
in SSL, which assumes all unlabeled data come from the K known classes, in our OSSL setting they
may come from unknown outlier classes. The goal of OSSL is to classify inliers into the correct
classes while learning to detect the outliers.

Approach Overview. Our model has three components: (1) a shared feature extractor F (·), (2) an
outlier detector consisting of K one-vs-all (OVA) sub-classifiers Dj(·), j ∈ {1, ...,K}, and (3) a
closed-set classifier C(·) which outputs a probability vector ∈ RK for K-class classification. At
test time, the closed-set classifier is first applied to predict the K-way label, ŷ. If Dŷ predicts an
inlier, then the output class is ŷ, otherwise, the output is "outlier". The main technical novelty comes
from the choice of OVA-classifiers for outlier detection as well as training them with soft open-set
consistency regularization. We first describe the training of the OVA-classifiers [32] before describing
the remaining details of our framework.
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Figure 2: (a) SSL with pseudo-labels. Hard labels such as pseudo-labels are often used in SSL
to propagate training signals from labeled samples to neighboring unlabeled ones. (b) OSSL with
pseudo-labels. However, in OSSL, the outlier unlabeled samples do not have any labeled neighbors.
Therefore, the pseudo-labels can be highly unreliable. (c) OSSL with soft consistency (ours). To
address this, we propose to ensure smoothness with respect to data augmentation by minimizing a soft
consistency loss. This separates the outliers from inliers and avoids using incorrect pseudo-labels.

3.1 One-vs-All Outlier Detector

For open-set [33] or universal domain adaptation [42], Saito et al. [32] propose to train OVA-classifiers
to detect outlier samples of an unlabeled target domain. They aim to learn a boundary between inliers
and outliers for each class. Each sub-classifier is trained to distinguish if the sample is an inlier for the
corresponding class. For example, the sub-classifier for class j, Dj , outputs a 2-dimensional vector
zjb = Dj(F (xb)) ∈ R2, where each dimension indicates the score of a sample being an inlier and
outlier respectively. We denote pj(t = 0|xb) and pj(t = 1|xb) as the probability of xb being the inlier
and outlier for the class j, computed by Softmax(zjb) (Note that pj(t = 0|xb) + pj(t = 1|xb) = 1).
Then, the sub-classifier Dj is trained such that the data from class j is treated as positives, and the
data from all the other classes is treated as negatives. To achieve this, we minimize the following loss
for the outlier detector for a given batch X := {xb, yb}Bb=1:

Lova(X ) :=
1

B

B∑
b=1

− log(pyb(t = 0|xb))−min
i 6=yb

log(pi(t = 1|xb)). (1)

Here we use the hard-negative sub-classifier sampling technique proposed by [32] to effectively learn
the threshold. We refer the reader to [32] for more details. The key is that each sub-classifier outputs
a distance representing how far the input is from the corresponding class. Therefore, the classifiers
are effective to identify unlabeled outliers. The output of Dj is used to detect outliers as follows. If
the probability of a sample being an outlier for the class highest-scored by C() is larger than that of a
sample being an inlier, we consider the input as an outlier. To be specific, we identify the unlabeled
sample ub as an outlier if pŷ(t = 0|ub) < 0.5, where ŷ = argmaxj C(F (ub)). This detection is
employed in selecting pseudo-inliers from unlabeled data as explained in Sec. 3.3.

Open-set Entropy Minimization. For unlabeled samples, [32] apply entropy minimization with
respect to the OVA-classifiers, denoted by Lem(U). The separation between inliers and outliers is
enhanced through the minimization of this loss for a given batch U := {ub}µBb=1:

Lem(U) := − 1

µB

µB∑
b=1

K∑
j=1

pj(t = 0|ub) log pj(t = 0|ub) + pj(t = 1|ub) log pj(t = 1|ub). (2)

The difference between our setup and [32] is that they employ a model pre-trained on ImageNet [9],
which extracts highly discriminative features, thus, inliers and outliers are well-separated even before
fine-tuning. However, we aim to train a model to learn representations separating them from scratch.
Thus the inliers and outliers are confused before training, and we need an objective to ensure the
separation in addition to Eq. 2.

3.2 Soft Open-set Consistency Regularization (SOCR)

To motivate our approach, we describe the difference between SSL and OSSL in Fig. 2. In SSL, the
hard consistency loss such as pseudo-labeling can be effective to propagate label information from
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Algorithm 1 OpenMatch Algorithm.

1: Input: Set of labeled data S =
(
(xb, yb); b ∈ (1, . . . , N)

)
, set of unlabeled data Su =

(
ub; b ∈

(1, . . . , Nu)
)
, and set of pseudo-inlier data K = ∅.

Data augmentation function T . Model parameters w, learning rate η, epoch Efix and Emax, iteration
Imax, trade-off parameters, λem, λoc, λfm;
for Epoch = 1 to Emax do

for Iteration = 1 to Imax do
2: Sample a batch of labeled data X ∈ S and unlabeled data U ∈ Su;
3: Compute Lall = Lsup(X ) + λemLem(U) + λocLoc(U , T ); // Eq.1, 2 and 3
if Epoch > Efix then

4: Sample a batch of pseudo-inliers I ∈ K; // Sample pseudo-inliers.
5: Compute Lall += λfmLfm(I) ; // FixMatch for pseudo-inliers.

end
6: Update w = w − η∇wLall; // Update weights

end
if Epoch ≥ Efix then

7: Update K = Select(w,Du); // Detect outliers and select pseudo-inliers.
end

end
8: Output: Model parameters w.

labeled to unlabeled samples. Through the hard consistency loss, unlabeled samples get training
signals from neighboring labeled samples (Fig. 2(a)). By contrast, in OSSL, since outliers are not
assigned any labels, labeled samples are far from outliers, which makes the hard labeling unreliable,
and unsupervised training signals can be incorrect (Fig. 2(b)). The open-set entropy minimization
above can also be considered a variant of the hard consistency since it is minimized if the predicted
output class distribution is one-hot. To propagate useful training signals to unlabeled samples, we
propose to smooth the decision boundary of the outlier detector by minimizing the distance between
its predictions on two augmentations of the same image (Fig. 2(c)). We use unsharpened logits,
keeping the training signal soft to avoid introducing incorrect pseudo-labels. We call this loss soft
open-set consistency regularization (SOCR). Given the smoothed outlier detector, the hope is that the
training signals of the open-set entropy minimization will also become more correct.

Specifically, SOCR enhances the smoothness of the outlier detector over data augmentation T , which
in our experiments is just standard random cropping. Note that the standard cropping is also used in
computing Eq. 1 and 2, but we omit it for the simplicity of notation. We obtain two different views
of ub, T1(ub) and T2(ub), where T1 and T2 are data augmentation functions stochastically sampled
from T . Let pj(t|T1(ub)) be the output logits of T1(ub) from the jth OVA-classifier. We encourage
the consistency of the output logits over T to enhance the smoothness by minimizing the following
loss for a given batch U := {ub}µBb=1:

Loc(U , T ) :=
1

µB

µB∑
b=1

K∑
j=1

∑
t∈(0,1)

|pj(t|T1(ub))− pj(t|T2(ub))|2. (3)

This minimizes the distance between two probability outputs to ensure smoothness with respect to T .
Note that the key part of the regularization is not applying any sharpening to the output logits, keeping
them soft. The major difference from the previous soft consistency regularization [12, 37, 22] is that
we use the outlier detector to compute the regularization loss.

3.3 Overall Framework

The entire OpenMatch algorithm is described in Alg. 1. The unsupervised losses (Eqs. 2, 3) for
the outlier detector are effective to detect outliers in unlabeled data. However, these losses are not
sufficient to correctly classify unlabeled inliers. Therefore, we propose to introduce a semi-supervised
learning loss for unlabeled samples classified as inliers. We adopt FixMatch [35] since it is a simple,
yet very strong SSL method. FixMatch first generates pseudo-labels using the model’s predictions on
weakly augmented unlabeled images. The model is then trained to predict these pseudo-labels when
fed a strongly augmented version of the same image. "Weak" denotes augmentations such as a simple
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random cropping while "strong" refers to extensive data augmentation such as RandAugment [8] and
CTAugment [1].

For labeled samples, we also compute the standard cross-entropy loss to train C(·), Lcls(X ), for
the closed-set output, C(F (xb)). We summarize Lsup(X ) as the sum of Lova(X ) and Lcls(X ).
After training a model for Efix epochs with Lsup, Lem, Loc, we begin to select pseudo-inliers from
unlabeled data at every following epoch. Specifically, in Alg. 1, Select(w,Du) denotes the process
of classifying unlabeled samples given model parameters w of models (F (·), D(·), and C(·)), and
unlabeled data. The outlier-detection process is summarized in Sec. 3.1.

Then, the FixMatch loss, Lfm(I), is computed only for the pseudo-inliers to optimize the model,
where I denotes a batch of pseudo-inliers. The following is the resulting overall objective of
OpenMatch:

Lall(X ,U , T , I) := Lsup(X ) + λemLem(X ) + λocLoc(U , T ) + λfmLfm(I), (4)

where λem, λoc and λfm control the trade-off for each objective.

4 Experiments
Setup. We evaluate the efficacy of OpenMatch on several SSL image classification benchmarks.
Specifically, we perform experiments with varying amounts of labeled data and varying numbers
of known/unknown classes on CIFAR10/100 [21] and ImageNet [9]. We attempt to cover various
scenarios by using these three datasets.

Note that we use an identical set of hyper-parameters except for λoc, which is tuned on each dataset.
λem is set 0.1 in all experiments. λfm is set to 0 before Efix epochs and then set to 1 for all
experiments. Efix is set to 10 in all experiments. The hyper-parameters for FixMatch, e.g., data
augmentation, confidence threshold, are fixed across all experiments for simplicity. The hyper-
parameters are set by tuning on a validation set that contains a small number of labeled samples. Note
that the validation set does not contain any outliers. A complete list of hyper-parameters is reported
in the appendix. Each experiment is done with a single 12-GB GPU, such as an NVIDIA TitanX.

Baselines. For the OSSL baseline, we employ MTC [44] using the author’s implementation. In
addition, we show the result of a model trained only with labeled samples (Labeled Only). We
exclude UASD [6] and D3SL [14] from our baselines since their reported results underperform a
model we train only with labeled samples. For instance, in the experiments for CIFAR10 at 400
labels per class, their reported error rates are worse than 20% while the rate of the Labeled Only
baseline is 20.0%. A comparison with FixMatch [35] reveals the effect of OVA-classifiers trained
with the soft consistency loss. The hyper-parameters of both OpenMatch and baselines are tuned by
maximizing the accuracy on the validation set. Since the validation set does not have any outliers, we
choose the validation accuracy as a criterion.

Evaluation. We assume the test set contains both known (inlier) and unknown (outlier) classes. For
known classes, classification accuracy is used to evaluate performance. To evaluate the separation
into inliers and outliers, we use AUROC following the standard evaluation protocol of novelty
detection [17]. To compute the anomaly score, the outlier detector’s score is employed for OpenMatch,
Labeled Only, and FixMatch, where we add our outlier detector to the latter two models. We report
the results averaged over three runs and their standard deviations.

4.1 CIFAR10 and CIFAR100
We compare OpenMatch with several baselines on the standard benchmark datasets of SSL, CIFAR10,
and CIFAR100. Following [44], we use a randomly initialized Wide ResNet-28-2 [45] with 1.5M
parameters in these experiments. For CIFAR10, we split the classes into known and unknown classes
by defining animal classes as known and others as unknown, which results in 6 known classes
and 4 unknown classes. For CIFAR100, we first split the classes by their super-classes provided
by the dataset so that known and unknown classes do not share super-classes. Then, we split the
super-classes into known and unknown. To evaluate performance with different numbers of outliers,
we run experiments on two settings: 80 known classes (20 unknown classes) and 55 known classes
(45 unknown classes).

Tables 1 and 2 describe the error rate on inliers and AUROC values respectively. Note that the number
of labeled samples per class is shown in each column. With respect to the error rate, OpenMatch
achieves state-of-the-art performance in all cases, and the gain over the baselines is remarkable in
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Dataset CIFAR10 CIFAR100 CIFAR100 ImageNet-30

No. of Known / Unknown 6 / 4 55 / 45 80 / 20 20 / 10

No. of labeled samples 50 100 400 50 100 50 100 10 %

Labeled Only 35.7±1.1 30.5±0.7 20.0±0.3 37.0±0.8 27.3±0.5 43.6±0.5 34.7±0.4 20.9±1.0

FixMatch [35] 43.2±1.2 29.8±0.6 16.3±0.5 35.4±0.7 27.3±0.8 41.2±0.7 34.1±0.4 12.9±0.4

MTC [44] 20.3±0.9 13.7±0.9 9.0±0.5 33.5±1.2 27.9±0.5 40.1±0.8 33.6±0.3 13.6±0.7

OpenMatch 10.4±0.9 7.1±0.5 5.9±0.5 27.7±0.4 24.1±0.6 33.4±0.2 29.5±0.3 10.4±1.0

Table 1: Error rates (%) with standard deviation for CIFAR10, CIFAR100 on 3 different folds. Lower
is better. For ImageNet, we use the same fold and report averaged results of three runs. Note that the
number of labeled samples per class is shown in each column.

Dataset CIFAR10 CIFAR100 CIFAR100 ImageNet-30

No. of Known / Unknown 6 / 4 55 / 45 80 / 20 20 / 10

No. of labeled samples 50 100 400 50 100 50 100 10 %

Labeled Only 63.9±0.5 64.7±0.5 76.8±0.4 76.6±0.9 79.9±0.9 70.3±0.5 73.9±0.9 80.3±1.0

FixMatch [35] 56.1±0.6 60.4±0.4 71.8±0.4 72.0±1.3 75.8±1.2 64.3±1.0 66.1±0.5 88.6±0.5

MTC [44] 96.6±0.6 98.2±0.3 98.9±0.1 81.2±3.4 80.7±4.6 79.4±2.5 73.2±3.5 93.8±0.8

OpenMatch 99.3±0.3 99.7±0.2 99.3±0.2 87.0±1.1 86.5±2.1 86.2±0.6 86.8±1.4 96.4±0.7

Table 2: AUROC of Table 1. Higher is better. Note that the number of labeled samples per class is
shown in each column.

many cases. In particular, we see about a 10% improvement in CIFAR10 error at 50 labels. In
addition, the improvements in AUROC are also clear. MTC [44] does not improve the performance
very much compared to the labeled-only model on CIFAR100 because their method of identifying
outliers, i.e., Otsu’s thresholding [25], is not very robust to the number of outliers as discussed in
their paper. On the other hand, OpenMatch improves the error rate by more than 3% and AUROC by
more than 6% in all cases. Simply applying FixMatch [35] also does not always improve the error
compared to the labeled-only model. This is because FixMatch confuses inliers and outliers and
assigns pseudo-labels to outliers, as the significant decrease in AUROC indicates.

4.2 ImageNet
We evaluate OpenMatch on ImageNet to see its behavior on more complex and challenging datasets.
Since training on the entire ImageNet is computationally expensive, we choose ImageNet-30 [17],
which is a subset of ImageNet containing 30 classes. The subset is useful for evaluation on unseen
outliers as done in Sec. 4.5, because the classes do not include several super-classes such as a bird
class. We pick the first 20 classes, in alphabetical order, as known classes, and the remaining 10
classes as unknown. We utilize the ResNet-18 [16] network architecture. Hyper-parameters such as a
batch-size, learning rate, data augmentation are the same as ones used in CIFAR10 and CIFAR100.
As shown in the rightmost columns of Tables 1 and 2, OpenMatch achieves the best performance
in both accuracy and AUROC. Unlike the results on CIFAR, FixMatch improves the performance
over the Labeled Only model. This is probably because outliers are easier to detect, as the AUROC
score of the Labeled Only model already shows a higher score than other scenarios. Therefore, even
without any outlier detection objectives, FixMatch can correctly select pseudo-inliers with confidence
thresholding.

4.3 Ablation Study on Soft Open-set Consistency Regularization

In this section, we validate our claim that the SOCR regularization is effective at separating inliers
and outliers. We perform several ablation studies to see the benefit of SOCR and measure the model’s
ability to detect outliers using AUROC. In summary, both numerical and qualitative evaluations
confirm the effectiveness of SOCR.

Table 3 describes the numerical comparison of ablated models. In this evaluation, we do not apply
FixMatch to pseudo-inliers to measure the pure gain from the consistency loss. Introducing SOCR
increases AUROC by more than 20% in CIFAR10, 8% in CIFAR100, and 8% in ImageNet. These
results support the effectiveness of smoothing the outlier detector’s output.
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Dataset CIFAR10 CIFAR100 ImageNet-30

No. Known / Unknown 6 / 4 80 / 20 20 / 10

No. Labeled samples 50 400 50 100 10 %

without SOCR 60.5±2.8 75.8±0.8 70.4±0.1 73.2±0.2 81.3±0.4

with SOCR 81.3±2.9 96.8±0.6 78.9±0.1 85.0±0.8 89.3±0.3

Table 3: Ablation study of our soft consistency regularization (SOCR, Loc). We report AUROC
scores (%). In this study, we do not apply FixMatch to pseudo-inliers to see the pure gain from
SOCR.

(a) w/o FixMatch, SOCR. (b) w/o FixMatch (c) FULL (OpenMatch)

Figure 3: The histograms of the outlier detector’s scores obtained with ablated models. Red: Inliers, Blue:
Outliers. From left to right, a model without FixMatch and SOCR, a model without FixMatch, and a model with
all objectives. These results show that SOCR ensures separation between inliers and outliers, and FixMatch
added to SOCR can further enhance this separation.

Histograms of Anomaly Scores. Fig. 3 illustrates the anomaly score of inlier and outlier test samples
in the ablation experiment on CIFAR10. If SOCR is not employed (Fig. 3(a)), inliers and outliers are
confused while SOCR makes the scores of outliers larger and enhances the separation (Fig. 3(b)).
Further applying FixMatch to pseudo-inliers decreases the score of inliers (Fig. 3(c)), which separates
inliers and outliers better. Considering the results of Table 2, just applying FixMatch to all unlabeled
samples is often not useful to detect outliers, but applying it to the pseudo-inliers can improve the
outlier detection.

4.4 Analysis

Feature Visualization. Fig. 4 visualizes the feature distributions with T-SNE [26] in the experiment
on CIFAR10 at 100 labels. OpenMatch (c) separates inliers and outliers well while a model trained
only with 100 labeled samples (a) confuses them. The separation of OpenMatch appears to be better
than a model trained with all labeled inliers (b).

Closed-set Consistency vs Open-set Consistency. The soft consistency loss is computed for the
outlier detector in OpenMatch. An alternative is to compute it for the closed-set classifier as done in
UASD [6]. We replace SOCR with the soft consistency loss with respect to the closed-set classifier
and perform the same analysis as in Sec. 4.3. In CIFAR10 at 50 labeled samples, this model achieves
70.6 ± 1.3 % AUROC, which is 10.1 % better than a model without consistency loss and 10.7 %
worse than a model with SOCR. In CIFAR10 at 400 labeled samples, this model achieves 88.5± 2.4
% AUROC, which is 12.7 % better than a model without consistency loss and 8.3 % worse than a
model with SOCR. These results indicate that even using soft consistency for the closed-set classifier
helps to detect outliers, as shown in UASD [6], but SOCR helps much more. Thus, our choice of
combining both the outlier detector and soft consistency loss is validated in this analysis.

Comparison with OOD with self-supervised learning. We compare our method with outlier
detection methods using self-supervised learning. Several works [19, 36] have shown that training a
model with self-supervised learning objectives such as contrastive loss or rotation prediction loss
improves OOD performance. We provide a brief analysis of these baselines in open-set SSL.

Does self-supervised pre-training help open-set SSL? A model trained with self-supervised learn-
ing objectives shows great performance in many downstream image recognition tasks. We investigate
whether initializing a model trained with self-supervised learning (SimCLR [4]) improves perfor-
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(a) Partially labeled model (b) Fully labeled model (c) OpenMatch
Figure 4: Feature visualization with t-SNE [26]. Different colors indicate different classes. Pink dots represent
outliers. (a): A model trained with 100 labeled samples per class. (b): A model trained with all labeled inliers.
(c): A model trained with OpenMatch. (Best viewed in color)

Initialization CIFAR10-50 CIFAR10-400 CIFAR100-50

SimCLR Init 10.6 / 99.3 5.9 / 99.4 27.1 / 87.1
Random Init 10.4 / 99.3 5.9 / 99.3 27.7 / 87.0

Table 4: Comparison by different initialization (Error (%) / AUROC). Initializing a model trained with
SimCLR [4] for all unlabeled samples does not make a clear difference from random initialization.

mance in open-set SSL (Table 4). We pre-train a model with SimCLR loss using all unlabeled
data. The initialization does not make a clear difference from random initialization, i.e., default
initialization.

Does self-supervised training help open-set SSL? Next, we investigate whether using self-
supervised learning loss in addition to the classification loss on labeled data helps open-set SSL.
In Table 5, we show the results of adding self-supervised loss for labeled data or unlabeled data.
SimCLR does not help in any case compared to a model trained only with classification loss for
labeled data. Constrative learning basically attempts to uniformly distribute all samples in a unit
sphere, which does not necessarily help in open-set SSL. The goal of open-set SSL is to keep outliers
far from inliers whereas clustering inliers within each class. By contrast, rotation prediction improves
performance if applied to labeled samples in CIFAR-10. If applied to unlabeled data, a model can
assign the same rotation labels to both inliers and outliers, which can prevent from separating them.

4.5 Novelty Detection
We have seen that OpenMatch can learn to detect outliers from unlabeled data. In this experiment,
we evaluate how well our OSSL model can separate inliers from outliers unseen in the unlabeled data.
This setting is similar to general outlier or out-of-distribution sample detection. Note that the models
evaluated in this section are the same as the ones in Tables 1 and 2. We consider the following datasets
as out-of-distribution: SVHN [28], resized LSUN [43], ImageNet, and CIFAR100 for CIFAR10
experiments (Table 6(a)), and LSUN, CUB-200 [39], Dogs [20], Caltech [13], Flowers [29], and
DTD [7] for ImageNet-30 (Table 6(b)). See supplemental material for the details. We utilize AUROC
to measure how well inliers and outliers are separated. To see the gap from a supervised model, we
train a model using all labeled samples of inlier classes and show the comparison.

As seen in Table 6, OpenMatch outperforms OSSL baselines by 5.8% on average and even the
supervised model by 3.4% on average on CIFAR10. On ImageNet-30, OpenMatch outperforms
OSSL baselines by more than 4.1% on average. This result verifies that OpenMatch is robust to
various out-of-distribution data by virtue of being exposed to unlabeled data containing outliers.

5 Conclusion
In this paper, we introduce a method for open-set semi-supervised learning (OSSL), where samples of
novel categories are present in unlabeled data. To approach the task, we propose a novel framework,
OpenMatch, which unifies one-vs-all classifiers and FixMatch. Our proposed objective, open-set
soft consistency loss, is shown to be effective to detect outliers from unlabeled data, which allows
FixMatch to work well in the OSSL setting. In addition, OpenMatch sometimes detects outliers
unseen in unlabeled data better than a supervised model. We believe that our framework for OSSL
will make label-efficient techniques more practical.
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Method CIFAR10-50 CIFAR100-50

Labeled only 63.9 ±0.5 70.3 ±0.5
SimCLR: labeled samples 63.5±0.7 68.6 ±1.1
SimCLR: unlabeled samples 62.1±1.2 68.8±0.9
Rot Pred: labeled samples 70.0 ±1.0 67.8 ±0.5
Rot Pred: unlabeled samples 64.0 ±1.3 67.0 ±1.5
SOCR 81.3±2.9 78.9 ±0.1

Table 5: Study about self-supervised learning loss for labeled or unlabeled data (AUROC). Rot
Pred indicates the rotation prediction loss. SimCLR [4] either for labeled or unlabeled data slightly
decreases the performance to detect outliers whereas rotation prediction for labeled data shows some
gain in CIFAR-10.

Unseen Out-liers

Method CIFAR10 SVHN LSUN ImageNet CIFAR100 MEAN

Labeled Only 64.7±1.0 83.6±1.0 78.9±0.9 80.5±0.8 80.4±0.5 80.8±0.8

FixMatch [35] 60.4±0.4 79.9±1.0 67.7±2.0 76.9±1.1 71.3±1.1 73.9±1.3

MTC [44] 98.2±0.3 87.6±0.5 82.8±0.6 96.5±0.1 90.0±0.3 89.2±0.4

OpenMatch 99.7±0.1 93.0±0.4 92.7±0.3 98.7±0.1 95.8±0.4 95.0±0.3

Supervised 89.4±1.0 95.6±0.5 89.5±0.7 90.8±0.4 90.4±1.0 91.6±0.6

(a) Model trained on CIFAR10 (100 labeled data per class and unlabeled data.)

Unseen Out-liers

Method ImageNet-30 LSUN DTD CUB Flowers Caltech Dogs MEAN

Labeled Only 80.3±0.5 85.9±1.4 75.4±1.0 77.9±0.8 69.0±1.5 78.7±0.8 84.8±1.0 78.6±1.1

FixMatch [35] 88.6±0.5 85.7±0.1 83.1±2.5 81.0±4.8 81.9±1.1 83.1±3.4 86.4±3.2 83.0±1.9

MTC [44] 93.8±0.8 78.0±1.0 59.5±1.5 72.2±0.9 76.4 ±2.1 80.9±0.9 78.0±0.8 74.2±1.2

OpenMatch 96.3±0.7 89.9±1.9 84.4±0.5 87.7±1.0 80.8±1.9 87.7±0.9 92.1±0.4 87.1±1.1

Supervised 92.8±0.8 94.4±0.5 92.7±0.4 91.5±0.9 88.2±1.0 89.9±0.5 92.3±0.8 91.3±0.7

(b) Model trained on ImageNet-30 (10 % of labeled data and unlabeled data).

Table 6: Evaluation of outlier detection on outliers unseen in unlabeled training data (AUROC).
Higher is better. Supervised models use the same batch size, learning rate as OpenMatch, but are
trained with fully labeled inliers.

Limitations. OpenMatch can have difficulty in detecting outliers similar to inliers, though any
methods for outlier detection can have the same limitation. If the outliers have similar visual
characteristics, separating them from inliers samples is difficult. A potential solution is to introduce
self-supervised learning [15, 4] for unlabeled data.

Broader Impact. OpenMatch is an effective tool for semi-supervised learning with noisy unlabeled
data containing outliers. It would benefit projects with small budgets or hard-to-label data. At the
same time, it is possible for malicious actors to exploit the advantages of learning from limited data.
Broadly speaking, any progress on semi-supervised learning can have these consequences.
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