
A Proofs

We present proof for all propositions made in the paper, restating each for convenience. We also
include additional discussion on technical aspects of the paper.

A.1 Unified objective for non-exchangeable experiments

Proposition 1 (Generalized total expected information gain). Consider the data generating distribu-
tion p(hT |θ, π) =

∏
t=1:T p(yt|θ, ξt, ht−1), where ξt = π(ht−1) are the designs generated by the

policy and, unlike in (4), yt is allowed to depend on the history ht−1. Then we can write (3) as
IT (π) = Ep(θ)p(hT |θ,π) [log p(hT |θ, π)]− Ep(hT |π) [log p(hT |π)] . (6)

Proof. Starting with the definition of the total EIG (3) of a policy π:

IT (π) = Ep(θ)p(hT |θ,π)

[∑T

t=1
Iht−1

(ξt)

]
(11)

we have by linearity of expectation

=
∑T

t=1
Ep(θ)p(hT |θ,π)

[
Iht−1

(ξt)
]

(12)

and since Iht−1 doesn’t depend on data acquired after t− 1 (the future doesn’t influence the past)

=
∑T

t=1
Ep(θ)p(ht−1|θ,π)

[
Iht−1(ξt)

]
(13)

which, applying Bayes rule, is equivalent to

=
∑T

t=1
Ep(ht−1|π)p(θ|ht−1)

[
Iht−1

(ξt)
]

(14)

Next, using Bayes rule we similarly rearrange Iht−1 :

Iht−1(ξt) = Ep(θ|ht−1)p(yt|θ,ξt,ht−1)

[
log

p(yt|θ, ξt, ht−1)

p(yt|ξt, ht−1)

]
(15)

= Ep(θ|ht−1)p(yt|θ,ξt,ht−1)

[
log

p(θ|yt, ξt, ht−1)

p(θ|ht−1)

]
(16)

= Ep(θ|ht−1)p(yt|θ,ξt,ht−1) [log p(θ|yt, ξt, ht−1)]− Ep(θ|ht−1) [log p(θ|ht−1)] (17)

= Ep(θ|yt,ξt,ht−1)p(yt|ξt,ht−1) [log p(θ|yt, ξt, ht−1)]− Ep(θ|ht−1) [log p(θ|ht−1)] (18)
and noting ht = ht−1 ∪ {(ξt, yt)}

= Ep(θ|ht)p(yt|ξt,ht−1) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)] (19)

= Ep(yt|ξt,ht−1)

[
Ep(θ|ht) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)]

]
(20)

Substituting this in (14), noting that θ has already been integrated out, yields

IT (π) =
∑T

t=1
Ep(ht−1|π)Ep(yt|ξt,ht−1)

[
Ep(θ|ht) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)]

]
(21)

=
∑T

t=1
Ep(ht|π)

[
Ep(θ|ht) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)]

]
(22)

= Ep(hT |π)

[∑T

t=1
Ep(θ|ht) [log p(θ|ht)]− Ep(θ|ht−1) [log p(θ|ht−1)]

]
, (23)

since we have a telescopic sum this simplifies to

= Ep(hT |π)

[
Ep(θ|hT ) [log p(θ|hT )]− Ep(θ) [log p(θ)]

]
(24)

and finally we apply Bayes rule again to rewrite as

= Ep(hT |π)p(θ|hT )

[
log p(θ|hT )− Ep(θ) [log p(θ)]

]
(25)

= Ep(θ)p(hT |θ,π) [log p(θ|hT )− log p(θ)] (26)

= Ep(θ)p(hT |θ,π) [log p(hT |θ, π)− p(hT |π)] (27)
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A.2 Objective function as a mutual information

We provide some additional discussion on the interpretation of IT (π) in (6) as a mutual information.
First, IT (π) is not a conventional mutual information between θ and hT . This is because, for the
deterministic policy π considered in this paper, the random variable hT does not have a density with
respect to Lebesgue measure on ΞT × YT . Indeed, since the designs ξ1:T are deterministic functions
of the observations y1:T , to express the sampling distribution of hT we would have to use Dirac
deltas, specifically

p(y1:T , ξ1:T |θ, π) =

T∏
t=1

δπ(ht−1)(ξt)p(yt|θ, ξt, ht−1). (28)

Due to the presence of Dirac deltas, this is not a conventional probability density, and hence we do
not regard IT (π) as the conventional mutual information between θ and hT .

We note that we defined p(hT |θ, π) in Proposition 1 differently to p(y1:T , ξ1:T |θ, π) in (28). Specifi-
cally, our definition

p(hT |θ, π) =

T∏
t=1

p(yt|θ, ξt, ht−1) (29)

only involves probability densities for y1:T , meaning that our p(hT |θ, π) is a well-defined probability
density on YT . Formally, we can treat the designs ξt, not as additional random variables, but as
part of the density for y1:T . Indeed, since the policy π is deterministic, it is possible to reconstruct
ht−1 and ξt from y1:t−1 and π, so we could write p(yt|θ, y1:t−1, π) := p(yt|θ, ξt, ht−1). In this
formulation, only y1:T are regarded as random variables. This provides a formal justification for the
form of p(hT |θ, π) that we give in Proposition 1. In this setting, we could formally identify IT (π) as
the mutual information between θ and y1:T .

However, it is helpful to think of IT (π) as a mutual information between θ and hT , because this
naturally leads to critics that have access to θ and hT , rather than θ and y1:T . This way of thinking
also connects naturally to the case of stochastic policies, which we now discuss.

If we consider additional noise in the design process so that designs are no longer a deterministic
function of past data, then IT (π) is the mutual information between θ and hT . In this case, we
introduce an additional likelihood for designs p(ξ|π, h), leading to the overall sampling distribution
for the data

p(hT |θ, π) =

T∏
t=1

p(ξt|π, ht−1)p(yt|θ, ξt, ht−1). (30)

Unlike in the deterministic case, this is valid probability density on ΞT ×YT . If we now consider the
mutual information between θ and hT for a fixed policy π we have

I(θ, hT ) = Ep(θ)p(hT |θ,π)

[
log

∏T
t=1 p(ξt|π, ht−1)p(yt|θ, ξt, ht−1)∫

Θ
p(θ)

∏T
t=1 p(ξt|π, ht−1)p(yt|θ, ξt, ht−1) dθ

]
(31)

= Ep(θ)p(hT |θ,π)

[
log

∏T
t=1 p(ξt|π, ht−1)

∏T
t=1 p(yt|θ, ξt, ht−1)∏T

t=1 p(ξt|π, ht−1)
∫

Θ
p(θ)

∏T
t=1 p(yt|θ, ξt, ht−1) dθ

]
(32)

= Ep(θ)p(hT |θ,π)

[
log

∏T
t=1 p(yt|θ, ξt, ht−1)∫

Θ
p(θ)

∏T
t=1 p(yt|θ, ξt, ht−1) dθ

]
(33)

noticing that the design likelihood terms cancel out in the integrand, and we reduce to the same
integrand given in Proposition 1. Even when the policy is stochastic, the integrand in I(θ, hT ) only
involves terms of the form p(yt|θ, ξt, ht−1), and the likelihood of the design process completely
cancels. Thus, the stochasticity of the designs is only present in the sampling distribution p(hT |θ, π).
We therefore see that, as we consider the limiting case of p(ξ|π, h) as it approaches a deterministic
policy, only the sampling distribution of designs in I(θ, hT ) changes, with the integrand remaining
the same. Under mild assumptions, then, the mutual information between θ and hT approaches IT (π)
in this limit.
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A.3 NWJ and InfoNCE bounds

The next two propositions show that the two bounds—NWJ and InfoNCE—can be applied to the
policy-based adaptive BOED setting.
Proposition 2 (NWJ bound for implicit policy-based BOED). For a design policy π and a critic
function U : HT ×Θ→ R, let

LNWJ
T (π, U) := Ep(θ)p(hT |θ,π) [U(hT , θ)]− e−1Ep(θ)p(hT |π) [exp(U(hT , θ))] , (7)

then IT (π) ≥ LNWJ
T (π, U) holds for any U . Further, the inequality is tight for the optimal critic

U∗NWJ(hT , θ) = log p(hT |θ, π)− log p(hT |π) + 1.

Proof. Let π : H∗ → Ξ be any (deterministic) policy taking histories ht as inputs and returning a
design ξ as output, U : HT ×Θ→ R be any function and define g(hT , θ) := exp(U(hT ,θ))

Ep(hT |π)[exp(U(hT ,θ))]
.

First, we multiply the numerator and denominator of the unified objective (6) by g(hT , θ) > 0

IT (π) = Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)

]
(34)

= Ep(θ)p(hT |θ,π) log

[
p(hT |θ, π)

p(hT |π)

g(hT , θ)

g(hT , θ)

]
(35)

= Ep(θ)p(hT |θ,π) [log g(hT , θ)] + Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)g(hT , θ)

]
(36)

Next, note that the second term is a KL divergence between two distributions

Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)g(hT , θ)

]
= Ep(θ)p(hT |θ,π)

[
log

p(θ)p(hT |θ, π)

p(θ)p(hT |π)g(hT , θ)

]
(37)

= KL(p(θ)p(hT |θ, π)||p̂(hT , θ)) ≥ 0 (38)

where p̂(hT , θ) = p(θ)p(hT |π)g(hT , θ) is a valid distribution since∫
p(θ)p(hT |π)g(hT , θ)dθdhT = Ep(θ)p(hT |π)

exp(U(hT , θ))

Ep(hT |π) [exp(U(hT , θ))]
(39)

= Ep(θ)1 = 1. (40)

Therefore, we have

IT (π) ≥ Ep(θ)p(hT |θ,π) [log g(hT , θ)] (41)

= Ep(θ)p(hT |θ,π)[U(hT , θ)− logEp(hT |π) exp(U(hT , θ))] (42)

= Ep(θ)p(hT |θ,π)[U(hT , θ)]− Ep(θ)
[
logEp(hT |π) exp(U(hT , θ))

]
(43)

Now using the inequality log x ≤ e−1x

≥ Ep(θ)p(hT |θ,π)[U(hT , θ)]− e−1Ep(θ)p(hT |π) [exp(U(hT , θ))] (44)

= LNWJ
T (π, U) (45)

Finally, substituting U∗(hT , θ) = log p(hT |θ,π)
p(hT |π) + 1 in the bound we get

LNWJ
T (π, U∗) = Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)
+ 1

]
− e−1Ep(θ)p(hT |π)

[
p(hT |θ, π)

p(hT |π)
e1

]
(46)

= IT (π) + 1− Ep(θ)p(hT |π)

[
p(hT |θ, π)

p(hT |π)

]
(47)

= IT (π), (48)

where we used Ep(θ)p(hT |π)

[
p(hT |θ,π)
p(hT |π)

]
= Ep(θ)p(hT |θ,π) [1] = 1, establishing that the bound is tight

for the optimal critic.
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Proposition 3 (InfoNCE bound for implicit policy-based BOED). Let θ1:L ∼ p(θ1:L)=
∏
i p(θi) be

a set of contrastive samples where L ≥ 1. For design policy π and critic function U :HT×Θ→R, let

LNCE
T (π, U ;L) := Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))
1

L+1

∑L
i=0 exp(U(hT , θi))

]
, (8)

then IT (π) ≥ LNCE
T (π, U ;L) for any U and L ≥ 1. Further, the optimal critic, U∗NCE(hT , θ) =

log p(hT |θ, π)+ c(hT ) where c(hT ) is any arbitrary function depending only on the history, recovers
the sPCE bound in (5); the inequality is tight in the limit as L→∞ for this optimal critic.

Proof. Let π : H∗ → Ξ be any (deterministic) policy taking histories ht as inputs and returning a
design ξ as output. Choose any function (critic) U : HT ×Θ→ R.

We introduce the shorthand

g(hT , θ0:L) :=
exp(U(hT , θ0))

1
L+1

∑L
i=0 exp(U(hT , θi))

(49)

Starting with the definition of the unified objective from Equation (6) we multiply its numerator and
denominator by g(hT , θ0:L) > 0 to get

IT (π) = Ep(θ0)p(hT |θ0,π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(50)

where p(θ0)p(hT |θ0, π) ≡ p(θ)p(hT |θ, π)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)

p(hT |π)

]
(51)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)g(hT , θ0:L)

p(hT |π)g(hT , θ0:L)

]
(52)

We next split the expectation into two terms one of which does not contain the unknown likelihoods
and equals LNCE

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]
+ Ep(θ0)p(hT |θ0,π)p(θ1:L) [log g(hT , θ0:L)]

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]
+ LNCE(π, U ;L)

(53)

We now show that the first term is a KL divergence and hence non-negative. To see why, first write

Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]
(54)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(θ0)p(hT |θ0, π)p(θ1:L)

p(θ0)p(hT |π)p(θ1:L)g(hT , θ0:L)

]
(55)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
log

p(θ0)p(hT |θ0, π)p(θ1:L)

p̂(θ0:L, hT |π)

]
(56)

= KL(p(hT |θ0, π)p(θ0:L)||p̂(θ0:L, hT |π)). (57)

and p̂(θ0:L, hT |π) is a valid distribution since

∫
p̂(θ0:L, hT |π)dθ0:LdhT =

∫
p(θ0)p(hT |π)p(θ1:L)g(hT , θ0:L)dθ0:LdhT (58)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
exp(U(hT , θ0))

1
L+1

∑L
i=0 exp(U(hT , θi))

]
, (59)
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because of the symmetry θ0
d
= θj ∀j = 1, . . . , L

=
1

L+ 1
Ep(θ0)p(hT |θ0,π)p(θ1:L)

[ ∑L
j=0 exp(U(hT , θj))

1
L+1

∑L
i=0 exp(U(hT , θi))

]
(60)

= 1. (61)

Thus we have established

IT (π) = KL(p(hT |θ0, π)p(θ0:L)||p̂(θ0:L, hT |π)) + LNCET (π, U ;L) ≥ LNCET (π, U ;L). (62)

Next, substituting U∗(hT , θ) = log p(hT |θ, π) + c(hT ) in the definition of LNCE(π, U ;L) we
obtain

LNCET (π, U∗;L) = Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
p(hT |θ0, π) exp(c(hT ))

1
L+1

∑L
i=0 p(hT |θi, π) exp(c(hT ))

]
(63)

= Ep(θ0)p(hT |θ0,π)p(θ1:L)

[
p(hT |θ0, π)

1
L+1

∑L
i=0 p(hT |θi, π)

]
, (64)

which is exactly the sPCE bound (5), which is monotonically increasing in L and tight in the limit as
L→∞ [see 17, Theorem 2].

A.4 A note on optimal critics

An interesting feature of our approach is that, for both the InfoNCE and NWJ bounds, the optimal
critics do not depend on the policy. This is because we include the designs as explicit inputs to the
critics. Indeed, we have

U∗NCE(hT , θ) = log

(
T∏
t=1

p(yt|θ, ξt, ht−1)

)
+ c(hT ), (65)

U∗NWJ(hT , θ) = log

( ∏T
t=1 p(yt|θ, ξt, ht−1)∫

Θ
p(θ)

∏T
t=1 p(yt|θ, ξt, ht−1) dθ

)
+ 1. (66)

In previous work that utilized critics for gradient-based BOED [16, 28], it was typical to not treat the
designs ξ1:T as an input to the critic, which renders the optimal critic implicitly dependent on the
designs. This makes more sense for static designs, for which the additional design input does not
change. Our approach avoids an implicit dependence between policy and optimal critic which may
be beneficial for the joint optimization.

B Theoretical Comparison and Additional Bounds

Recently, a number of studies have discussed the challenges of estimating mutual information, an in
particular those associated with variational MI estimators [34, 42, 55].

Starting with the InfoNCE bound, it is trivial to show that the bound cannot exceed log(L+ 1), where
L is the number of contrastive samples used to approximate the marginal in the denominator. Indeed,

LNCET (π, U ;L) = Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))
1

L+1

∑L
i=0 exp(U(hT , θi))

]
(67)

≤ log(L+ 1) + Ep(θ0)p(hT |θ0,π)Ep(θ1:L)

[
log

exp(U(hT , θ0))

exp(U(hT , θ0))

]
(68)

= log(L+ 1) (69)

This means that the corresponding Monte Carlo estimator will be highly biases whenever the true
mutual information exceeds log(L+ 1), regardless of whether we have access to the optimal critic or
not. This high bias estimator, however, comes with low variance [see e.g. 42, for discussion]. With
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the optimal critic we would require exponential (in the MI) number of samples to accurately estimate
the true mutual information.

It might appear at first that the NWJ bound might offer a better trade-off between bias and variance.
Recall from the proof of Proposition 2, we have for the optimal critic

LNWJ
T (π, U∗) = Ep(θ)p(hT |θ,π)

[
log

p(hT |θ, π)

p(hT |π)

]
+ 1− e−1Ep(θ)p(hT |π)

[
p(hT |θ, π)

p(hT |π)
e1

]
, (70)

of which we form a Monte carlo estimate usingN (M ) samples for the first (second) term, respectively

≈ 1

N

N∑
n=1

log
p(hT,n|θn, π)

p(hT,n|π)
+

(
1− 1

M

M∑
m=1

log
p(hT,m|θm, π)

p(hT,m|π)

)
, (71)

where θn, hT,n ∼ p(θ)p(hT |θ, π) are samples from the joint distribution and θm, hT,m ∼
p(θ)p(hT |π) are samples from the product of marginals. The first term is a Monte Carlo esti-
mate of the mutual information, while the second has mean zero, meaning that this estimator is
unbiased. The second term, however has variance which grows exponentially with the value of the
(true) mutual information [see Theorem 2 in 55]. What this means is that even with an optimal
critic, we will need an exponential (in the MI) number of samples to control the variance of the NWJ
estimator. One might then hope that the variance can be reduced when using a sub-optimal critic
at the cost of introducing some (hopefully small) bias. Unfortunately, according to a recent result
[see Theorems 3.1 and 4.1 in 34, and the discussion therein], it is not possible to guarantee that a
likelihood-free lower bound on the mutual information can exceed log(N). Indeed, the authors show
theoretically and empirically that all high-confidence distribution-free lower bounds on the mutual
information require exponential (in the the MI) number of samples.

Constructing a better lower bound on the mutual information—one that does not need exponential
number of samples—therefore, requires us to make additional assumptions. Foster et al. [17] propose
one such bound, namely the sequential Adaptive Constrative Estimation (sACE). The sACE bound
introduces a proposal distribution q(θ;hT ), which aims to approximate the posterior p(θ|hT ). Since
implicit models were not the focus of the work in [17] the proposed bound, relies on analytically
available likelihood. The following proposition shows we can derive a likelihood-free version of the
sACE bound.

Proposition 4 (Sequential Likelihood-free ACE). For a design function π, a critic function U , a
number of contrastive samples L ≥ 1, and a proposal q(θ;hT ), we have the sequential Likelihood-
free Adaptive Contrastive Estimation (sLACE) lower bound

LsLACE
T (π, U, q;L) := Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

log
U(hT , θ0)

1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )

 ≤ IT (π). (72)

The bound is tight as L → ∞ for the optimal critic U∗(hT , θ) = log p(hT |θ, π) + c(hT ), where
c(hT ) is arbitrary. In addition, if q(θ;hT ) = p(θ|hT ), the bound is tight for the optimal critic
U∗(hT , θ) with any L ≥ 0.

Proof. The proof follows similar arguments to the ones in Propositions 2 and 3. First let

g(hT , θ0:L) :=
U(hT , θ0)

1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )

(73)

Starting with the definition of the EIG:

IT (π) = Ep(θ0)p(hT |θ0,π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(74)

since q(θi;hT ) is a valid density

= Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(hT |θ0, π)

p(hT |π)

]
(75)
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multiplying its numerator and denominator inside the log by g(hT , θ0:L) > 0

= Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(hT |θ0, π)g(hT , θ0:L)

p(hT |π)g(hT , θ0:L)

]
(76)

= Ep(θ0)p(hT |θ0,π)q(θ1:L;hT ) [log g(hT , θ0:L)]

+ Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]
(77)

The first term is exactly the sLACE bound, LsLACE
T (π, U, q;L). We now show that the second term is

a KL divergence between two distribitions and hence non-negative. To see this

Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(hT |θ0, π)

p(hT |π)g(hT , θ0:L)

]
(78)

= Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

[
log

p(θ0)p(hT |θ0, π)q(θ1:L;hT )

p(hT |π)g(hT , θ0:L)p(θ0)q(θ1:L;hT )

]
(79)

= KL(p(θ0)p(hT |θ0, π)q(θ1:L;hT )||p̂(hT , θ0:L)), (80)
since p̂(hT , θ0:L) := p(hT |π)g(hT , θ0:L)p(θ0)q(θ1:L;hT ) is a valid density. Indeed:∫

p̂(hT , θ0:L)dhT dθ0:L = Eq(θ1:L;hT )p(hT |π) [p(θ0)g(hT , θ0:L)] (81)

= Eq(θ1:L;hT )p(hT |π)

p(θ0)
U(hT , θ0)

1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )

 (82)

= Eq(θ0:L;hT )p(hT |π)

 U(hT ,θ0)p(θ0)
q(θ0;hT )

1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )

 (83)

by symmetry

= Eq(θ0:L;hT )p(hT |π)

 1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )

1
L+1

∑L
`=0

U(hT ,θ`)p(θ`)
q(θ`;hT )

 (84)

= 1. (85)

With the optimal critic we recover the sACE bound from [17], which under mild conditions converges
to the mutual information IT (π). To see that start by writing

LsLACE
T (π, U∗, q;L) = Ep(θ0)p(hT |θ0,π)q(θ1:L;hT )

log
p (hT |θ0, π)

1
L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
q(θ`;hT )

 . (86)

The denominator is a consistent estimator of the marginal, provided that each term in the sum is
bounded, and so by the Strong Law of Large Numbers we have

1

L+ 1

L∑
`=0

p (hT |θ`, π) p (θ`)

q (θ`;hT )
→ p(hT |π) a.s. as L→∞, (87)

which establishes point-wise convergence of the integrand to p(hT |θ0, π)/p(hT |π). We can apply
Bounded convergence theorem to establish LsACE

T (π, U∗, q;L)→ IT (π) as L→∞.

If in addition q(θ;hT ) = p(θ|hT ) we have by Bayes rule:

LsLACE
T (π, U∗, q;L) = Ep(θ0)p(hT |θ0,π)p(θ1:L|hT )

log
p(hT |θ0, π)

1
L+1

∑L
`=0

p(hT |θ`,π)p(θ`)
p(θ`|hT )

 (88)

= Ep(θ0)p(hT |θ0,π)p(θ1:L|hT )

[
log

p(hT |θ0, π)
1

L+1

∑L
`=0 p(hT |π)

]
(89)

= Ep(θ0)p(hT |θ0,π)

[
log

p(hT |θ0, π)

p(hT |π)

]
(90)

= IT (π) ∀L ≥ 0. (91)
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In practice, we parameterize the policy, the critic and the density of the proposal distribution by
neural networks πφ, Uψ and qζ and optimize LsLACE

T with respect to the parameters of these networks,
φ, ψ and ζ with SGA. As before, optimizing with respect to φ improves the quality of the designs,
proposed by the policy, whilst optimizing with respect to ψ and ζ tightens the bound. If the parametric
density qζ and the critic Uψ are expressive enough, so that we can recover the optimal critic and the
true posterior, then the bound is tight for any number of contrastive samples L. If, on the other hand,
we fix qζ(θ;hT ) = p(θ) instead of training it, then we recover the InfoNCE bound. Therefore, as
long as qζ approximates the posterior better than the prior, then even an imperfect proposal qζ can
benefit training.

In addition to introducing another set of optimizable parameters, ζ, the sLACE bound assumes that
we know the prior p(θ) and can evaluate its density.

C Neural architecture

C.1 Permutation invariance of the critic for exchangeable experiments

We show that if the BOED problem is exchangeable then the critic function U should be permutation-
invariant.
Proposition 5 (Permutation invariance). Let σ be a permutation acting on a history h1

T yielding
h2
T = {(ξσ(i), yσ(i))}Ti=1. If the data generating process is conditionally independent of its past given
θ, then the optimal critics for both (7) and (8) are invariant under permutations of the history, i.e.

p(θ)

T∏
t=1

p(yt|θ, ξt(ht−1), ht−1) = p(θ)

T∏
t=1

p(yt|θ, ξt) =⇒ U∗(h1
T , θ) = U∗(h2

T , θ). (92)

Proof. This is a direct consequence from the form of the optimal critics. To see this formally, let h1
T

be a history and h2
T be a permutation of it.

Starting with the InfoNCE bound we have
U∗NCE(h1

T , θ) = log p(h1
T |θ, π) + c(h1

T ) (93)

= log

T∏
t=1

p(yt|θ, ξt) + c({(ξt, yt)}Tt=1) (94)

since c(hT ) is arbitrary, we can choose it to be permutation invariant

= log

T∏
t=1

p(yσ(t)|θ, ξσ(t)) + c({(ξσ(t), yσ(t))}Tt=1) (95)

= log p(h2
T |θ, π) + c(h2

T ) (96)

= U∗NCE(h2
T , θ) (97)

Similarly, for the optimal critic of the NWJ bound we have

U∗NWJ(h
1
T , θ) = log

p(h1
T |θ, π)

p(h1
T |π)

+ 1 (98)

= log

∏T
t=1 p(yt|θ, ξt)

Ep(θ)
[∏T

s=1 p(ys|θ, ξs)
] + 1 (99)

= log

∏T
t=1 p(yσ(t)|θ, ξσ(t))

Ep(θ)
[∏T

s=1 p(yσ(s)|θ, ξσ(s))
] + 1 (100)

= log
p(h2

T |θ, π)

p(h2
T |π)

+ 1 = U∗NWJ(h
2
T , θ). (101)
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Figure 6: History encoder architectures for different classes of models. When conditional indepen-
dence of the experiments holds, we use self-attention, followed by sum-pooling, making the history
encoder permutation invariant. When experiments are not conditionally independent we use LSTM
and only keep its last hidden state. We train two separate history encoders—one for the design
network πφ and one for the critic network Uψ , although we note that all the weights except those in
the head layers can be shared.

To the best of our knowledge, we are the first to propose a critic architecture that is tailored to
BOED problems with exchangeable models. Previous work in the static BOED setting, where MI
information objective is optimized with variational lower bounds and thus require the training of
critics [e.g. 28, 63], did not discuss what an appropriate critic architecture might be. In particular,
in all experiments [28, 63] use a generic architecture for both exchangeable and non-exchangeable
problems. An expressive enough generic architecture should be able to obtain the optimal critic, and
thus achieve a tight bound, however, the optimisation process will be considerably more difficult as
the network needs to learn this key invariance structure. We therefore recommend using permutation
invariant architectures whenever the model is exchangeable, especially if achieving tight bounds (and
therefore learning an optimal critic) is of importance.

C.2 Further details on the history encoder

Figure 6 shows the history encoders we use in the policy network πφ and the critic network Uψ . First,
we encode the individual design-outcome pairs, (ξt, yt), with an MLP, which gives us a vector of
representations rt ∈ Rm, where m is the encoding dimension we have selected. The representations
{ri}ti=1 are row-stacked into a matrix R of dimension t ×m, which we then aggregate back to a
vector of size m by an appropriate layer(s).

When conditional independence of the experiments holds, we apply 8-head self-attention, based
on the Image Transformer [40] and as implemented by [14]. Applying self-attention leaves the
dimension of the matrix R unchanged. We then apply sum-pooling across time t, which gives us the
final encoding vector E ∈ Rm.

When experiments are not conditionally independent, we pass the matrix R though an LSTM with
two hidden layers and hidden state of size m (see the LSTM module in Pytorch for more details).
The LSTM returns hidden state vectors associated with the history ht for each t; we keep the last
hidden state of the last layer, which is our final encoding vector E ∈ Rm.

In both cases the resulting encoding E is a vector of size m. It is passed through final fully connected
"head" layers, which output either a design (in the case of the policy) or a vector (in the case of the
critic). We train two separate history encoders—one for the design network πφ and one for the critic
network Uψ , although we note that all the weights except those in the head layers can be shared.

D Experiments

D.1 Computational resources

All of the experiments were implemented in Python using open-source software. All estimators and
models were implemented in PyTorch [41] (BSD license) and Pyro [6] (Apache License Version 2.0),
whilst MlFlow [61] (Apache License Version 2.0) was used for experiment tracking and management.
The self-attention architecture from [14] was used to implement the self-attention mechanisms in the
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design and critic networks. For full details on package versions, environment set-up and commands
for running the code, see instructions in the README.md file.

Experiments were ran on internal GPU clusters, consisting of GeForce RTX 3090 (24GB memory),
GeForce RTX 2080 Ti (11GB memory) and GeForce GTX 1080 Ti GPUs (11GB memory).

The deployment-time of iDAD (Table 4) was estimated on a lightweight CPU machine with the
following specifications

Processor 2.8 GHz Quad-Core Intel Core i7
Memory 16 GB
Operating system macOS Big Sur v11.2.3

D.2 CO2 Emission Related to Experiments

Experiments were conducted using a private infrastructure, which has an estimated carbon efficiency
of 0.432 kgCO2eq/kWh. A cumulative of 160 hours of computation was performed on hardware
of type RTX 2080 Ti (TDP of 250W), or similar. The training time of each experiment (including
the baselines that require optimization), took on average between 1-3 GPU hours, depending on the
number of experiments T .

Total emissions are estimated to be 17.28 kgCO2eq of which 0% was directly offset.

Estimations were conducted using the Machine Learning Impact calculator presented in [31].

D.3 Traditional sequential BOED with variational posterior estimator

The variational posterior estimator from [15] is based on the Barbar-Agakov lower bound [4], which
takes the form

Lpost(ξ, qψ) = Ep(θ)p(y|θ,ξ)
[
log

qψ(θ; y, ξ)

p(θ)

]
≤ I(ξ), (102)

where qψ is any normalized distribution over the parameters θ. The bound is tight when qψ(θ; y, ξ) =
p(θ|y, ξ), i.e. if we can recover the true posterior. We assume mean-field variational family and
optimize the parameters ψ by maximizing the bound (102) using stochastic gradient schemes.
Simultaneously we optimize the bound with respect to the design variable ξ to select the optimal
design ξ∗. At the inference stage, denoting by y∗ the outcome of experiment ξ∗, we obtain an
approximate posterior by evaluating qψ(θ; y∗, ξ∗), i.e. we reuse the learnt variational posterior. We
repeat this process at each stage of the experiments by substituting the the approximate posterior,
qψ(θ; y∗, ξ∗), as the prior in (102).

D.4 Location Finding

In this experiment we have K hidden objects (sources) in R2 and we wish to learn their locations,
θ = {θ1, . . . , θK}. The number of sources, K, is assumed to be known. Each source emits a
signal with intensity obeying the inverse-square law. Put differently, if a source is located at θk
and we perform a measurement at a point ξ, the signal strength emitted from that source only
will be proportional to 1

‖θk−ξ‖2 . The total intensity at location ξ, emitted from all K sources, is a
superposition of the individual ones

µ(θ, ξ) = b+

K∑
k=1

αk
m+ ‖θk − ξ‖2

, (103)

where αk can be known constants or random variables, b > 0 is a constant background signal and m
is a constant, controlling the maximum signal.

We place a standard normal prior on each of the location parameters θk and we observe the log-total
intensity with some Gaussian noise. We therefore have the following prior and likelihood:

θk
i.i.d.∼ N (0d, Id) log y | θ, ξ ∼ N (logµ(θ, ξ), σ2) (104)
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D.4.1 Training details

All our experiments are performed with the following model hyperparameters

Parameter Value

Number of sources, K 2
αk 1 ∀k
Max signal, m 10−4

Base signal, b 10−1

Observation noise scale, σ 0.5

The architecture of the design network πφ used in Table 2 and all its hyperparameters are in the
following tables. For the encoder of the design-outcome pairs we used the following:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 3 3 -
H1 Fully connected 64 64 ReLU
H2 Fully connected 512 512 ReLU
Output Fully connected 64 64 -
Attention 8 heads 64 64 -

The output of the encoder, R(ht), is fed into an emitter network, for which we used the following:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input R(ht) 64 64 -
H1 Fully connected 256 256 ReLU
H2 Fully connected 64 64 ReLU
Output Fully connected 2 2 -

The architecture of the critic network Uψ used in Table 2 and all its hyperparameters are in the tables
that follow. First, the encoder network of the latent variables is:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input θ 4 4 -
H1 Fully connected 16 16 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 64 64 -

For the design-outcome pairs encoder we use the same architecture as in the design network, namely:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 3 3 -
H1 Fully connected 64 64 ReLU
H2 Fully connected 512 512 ReLU
Output Fully connected 64 64 -
Attention 8 heads 64 64 -

The output of the encoder, R(ht), is fed into fully connected head layers:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input R(ht) 64 64 -
H1 Fully connected 1024 1024 ReLU
H2 Fully connected 512 512 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 64 64 -

The optimisation was performed with Adam [26] with ReduceLROnPlateau learning rate scheduler,
with the following hyperparameters:
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Figure 7: a): EIG surface induced by the prior; b) Samples from p(θ|ξ1, y1)—the posterior distribution
of the locations, after performing experiment ξ1 and observing y1, along with a KDE.

Parameter iDAD, InfoNCE iDAD, NWJ

Batch size 2048 2048
Number of contrastive/negative samples 2047 2047
Number of gradient steps 100000 100000
Initial learning rate (LR) 0.0005 0.0005
LR annealing factor 0.8 0.8
LR annealing frequency (if no improvement) 2000 2000

D.4.2 Performance of the variational baseline

As we saw in Table 2, this variational approach to (myopic) adaptive BOED performed very poorly,
despite its large computational budget. The likely reason for that is that the mean-field variational
approximation cannot adequately capture the complex non-Gaussian posterior of this problem.
Figure 7 clearly demonstrates this: before any data is observed it is optimal to sample at the origin
(since the prior is centered at it). After observing a low signal (the locations in this example are not
close to the origin), we can only conclude that the sources are not within a small radius of the origin,
but anywhere outside of it would be a plausible location, as indeed indicated by the fitted posteriors.

D.4.3 Hyperparameter selection

We did not perform extensive hyperparameters search; in particular, the network sizes were guided
by two hyperparametes: hidden-dimension (HD = 512) and encoding dimension (ED = 64). We
set-up all the networks to scale up with the number of experiments as follows:

• Design-outcome encoder has three hidden layers of sizes [64, HD,ED].

• Design emitter network has three hidden layers of sizes [HD/2, ED, 2], where 2 is the
dimension of the design variable.

• The latent encoder for the critic network has four hidden layers of sizes [16, 64, HD,ED].

• The critic design-outcome encoder’s head layer has four hidden layers of sizes [HD ×
log(T ), HD × log(T )/2, HD,ED].

Since our multi-head attention layer has 8 heads, the encoding dimension we use has to be a multiple
of 8. In addition to ED = 64 we tried ED = 32 which provided marginally worse results. We did
not try other values for these hyperparameters.

For the learning rate, we tried 0.001, which was too high, as well as 0.0005 (which we selected) and
0.0001 (which yielded very similar results).

We performed similar level of hyperparameter tuning for all trainable baselines as well (DAD,
MINEBED and SG-BOED).
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Table 6: Upper bounds on the total information, I10(π), for the location finding experiment in
Section 5.1. The bounds were estimated using L = 5× 105 contrastive samples. Errors indicate ±1
s.e. estimated over 4096 histories (128 for variational). Lower bounds are presented in Table 2.

Method \ θ dim. 4D 6D 10D 20D
Random 4.794 ± 0.041 3.506 ± 0.004 1.895 ± 0.003 0.552 ± 0.001
MINEBED 5.522 ± 0.028 4.229 ± 0.029 2.459 ± 0.029 0.801 ± 0.019
SG-BOED 5.549 ± 0.028 4.220 ± 0.030 2.455 ± 0.029 0.803 ± 0.019
Variational 4.644 ± 0.146 3.626 ± 0.167 2.181 ± 0.152 0.669 ± 0.097
iDAD (NWJ) 7.806 ± 0.050 5.851 ± 0.041 3.264 ± 0.039 0.877 ± 0.022
iDAD (InfoNCE) 7.863 ± 0.043 6.068 ± 0.039 3.257 ± 0.040 0.872 ± 0.020
DAD 8.034 ± 0.038 6.310 ± 0.031 3.358 ± 0.040 0.953 ± 0.022

Table 7: Upper and lower bounds on the total information, I20(π), for the location finding experiment
in 2D from Section 5.1. The bounds were estimated using L = 5× 105 contrastive samples. Errors
indicate ±1 s.e. estimated over 4096 histories.

Method Lower bound Upper bound
Random 7.000 ± 0.034 7.020 ± 0.034
MINEBED 7.672 ± 0.030 7.690 ± 0.031
SG-BOED 7.701 ± 0.030 7.728 ± 0.031
iDAD (NWJ) 9.961 ± 0.033 10.372 ± 0.048
iDAD (InfoNCE) 10.075 ± 0.032 10.463 ± 0.043
DAD 10.424 ± 0.031 10.996 ± 0.049

D.4.4 Further ablation studies

Scalability with number of experiments. We first demonstrate that iDAD can scale to a larger
number of experiments T . We train policy networks to perform T = 20 experiments and compare
them to baselines in Table 7. We omit the variational baseline as it is too computationally costly
to run for a large enough number of histories, and as we saw in the previous subsection, it is not
particularly suited to this model.

Training stability. To assess the robustness of the results and the stability of the training process,
we trained 5 additional iDAD networks with each of the two bounds, using different seeds but the
same hyperparameters (described in Subsection D.4.1) we used to produce the results of the location
finding experiment in 2D (Table 2 in the main text). We report upper and lower bounds on the mutual
information along with their mean and standard error in the table below.

Estimator Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
InfoNCE Lower 7.826 7.682 7.856 7.713 7.804 7.776 0.034
InfoNCE Upper 7.933 7.791 7.856 7.807 7.925 7.862 0.029
NWJ Lower 7.820 7.545 7.592 7.555 7.691 7.641 0.052
NWJ Upper 7.976 7.640 7.669 7.651 7.800 7.747 0.064

We can see that the iDAD networks trained with InfoNCE are highly stable, with the 5 additional runs
achieving very similar mutual information values to each other and to the iDAD network used the
report the results in the main paper. The performance of the iDAD networks trained with the NWJ
bound is more variable and empirically achieve slightly lower average value of mutual information.
This higher variance is in-line with the discussion in Section B.

We similarly verify the robustness of the static baselines, reporting the results in the table below:
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Table 8: Ablation study on the performance of iDAD as a function of training time for the location
finding experiment.

Training budget MI lower bound

0.1% 3.38
1.0% 6.09
2.0% 6.46
4.0% 6.81
8.0% 7.08
16.0% 7.33
32.0% 7.56
64.0% 7.78
100.0% 7.82

Estimator Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
SG-BOED Lower 5.537 5.536 5.473 5.523 5.518 5.517 0.013
SG-BOED Upper 5.553 5.548 5.491 5.541 5.531 5.533 0.012
MINEBED Lower 5.460 5.506 5.553 5.539 5.565 5.524 0.021
MINEBED Upper 5.473 5.526 5.567 5.554 5.574 5.540 0.022

Performance sensitivity to errors in the policy. Finally, we investigate the effect of slight errors
in the design policy network. To this end, we look at the performance achieved by partially trained
design networks (there will be some errors or inaccuracies in networks that were not trained until
convergence). Table 8 shows the performance of iDAD as a function of training time, demonstrating
that small errors in the network only lead to small drops in performance.

In detail, our results show that with just 8% of the total training budget, this slightly inaccurate
network still performs relatively well, achieving total mutual information of 7.1, compared to the
fully trained network that reached 7.8. We also highlight that iDAD outperforms all baselines with as
little as 1% of the total training budget (the best performing baseline achieves mutual information of
5.5, see Table 2).

D.5 PK model

The drug concentration z, measured ξ hours after administering it, and the corresponding noisy
observation y are given by

z(ξ; θ) =
DV

V

kα
kα − ke

[e−keξ − e−kαξ], y(ξ; θ) = z(ξ; θ)(1 + ε) + η (105)

where θ = (kα, ke, V ), DV = 400 is a constant, ε ∼ N (0, 0.01) is multiplicative noise to account
for heteroscedasticity and η ∼ N (0, 0.1) is an additive observation noise. Since both noise sources
are Gaussian, the observation likelihood is also Gaussian i.e.

y(ξ; θ) ∼ N (z(ξ; θ), 0.01z(ξ; θ)2 + 0.1) (106)

The prior for the parameters θ that we used

log θ ∼ N

([
log 1

log 0.1
log 20

]
,

[
0.05 0 0

0 0.05 0
0 0 0.05

])
(107)

D.5.1 Training details

The architecture of the design network πφ used for Figure 3 and 4 and all its hyperparameters are in
the following tables. For the encoder of the design-outcome pairs we used the following:
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Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 2 2 -
H1 Fully connected 64 64 ReLU
H2 Fully connected 512 512 ReLU
Output Fully connected 32 32 -
Attention 8 heads 32 32 -

The outputs of the encoder, {R(ht)}Tt=1, are summed and the resulting vector (of dimension 32) is
fed into an emitter network, for which we used the following:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input R(ht) 32 32 -
H1 Fully connected 256 256 ReLU
H2 Fully connected 32 32 ReLU
Output Fully connected 1 1 Sigmoid

The architecture of the critic network Uψ used in Figures 3 and 4 and all its hyperparameters are in
the following tables. For the encoder of the design-outcome pairs we used the same architecture as
for the design network, namely:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 2 2 -
H1 Fully connected 64 64 ReLU
H2 Fully connected 512 512 ReLU
Output Fully connected 32 32 -
Attention 8 heads 32 32 -

The resulting pooled representation, R(hT ) is fed into fully connected critic head layers with the
following architecture:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input R(hT ) 32 32 -
H1 Fully connected 512 512 ReLU
H2 Fully connected 256 256 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

Finally, for the latent variable encoder network we used:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input θ 3 3 -
H1 Fully connected 8 8 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

The optimisation was performed with Adam [26] with the following hyperparameters:

Parameter iDAD, InfoNCE iDAD, NWJ

Batch size 1024 1024
Number of contrastive/negative samples 1023 1023
Number of gradient steps 100000 100000
Initial learning rate (LR) 0.0001 0.0001
LR annealing factor 0.8 0.5
LR annealing frequency (if no improvement) 2000 2000
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Table 9: Upper and lower bounds on the total information, I5(π), for the pharmacokinetic experiment.
Errors indicate ±1 s.e. estimated over 4096 (126 for variational) histories and L = 5× 105.

Method Lower bound Upper bound Deployment time
Random 2.523 ± 0.033 2.523 ± 0.033 N/A
Equal interval 2.651 ± 0.022 2.651 ± 0.022 N/A
MINEBED 2.955 ± 0.030 2.956 ± 0.030 N/A
SG-BOED 2.985 ± 0.027 2.985 ± 0.027 N/A
Variational 2.683 ± 0.093 2.683 ± 0.093 505.4 ± 1%
IDAD (NWJ) 3.163 ± 0.023 3.163 ± 0.023 0.007 ± 7%
IDAD (InfoNCE) 3.200 ± 0.024 3.200 ± 0.024 0.007 ± 8%

DAD 3.234 ± 0.023 3.234 ± 0.023 0.002 ± 7%

Table 10: Upper and lower bounds on the total information, I10(π), for the pharmacokinetic experi-
ment. Errors indicate ±1 s.e. estimated over 4096 (126 for variational) histories and L = 5× 105.

Method Lower bound Upper bound Deployment time
Random 3.344 ± 0.034 3.345 ± 0.034 N/A
Equal interval 3.422 ± 0.026 3.423 ± 0.026 N/A
MINEBED 3.849 ± 0.034 3.849 ± 0.034 N/A
SG-BOED 3.824 ± 0.034 3.824 ± 0.034 N/A
Variational 3.624 ± 0.099 3.624 ± 0.099 1055.2 ± 8%
IDAD (NWJ) 4.034 ± 0.025 4.034 ± 0.025 0.007 ± 6%
IDAD (InfoNCE) 4.045 ± 0.026 4.045 ± 0.026 0.007 ± 5%

DAD 4.116 ± 0.024 4.117 ± 0.024 0.007 ± 8%

D.5.2 Hyperparameter selection

Hyperparameter selection was done in a way similar to the Location Finding experiment (see D.4.3).
We tried encodin dimensions ED = 32, 64 and selected the smaller size as there were no clear
benefits to larger networks (relatively speaking, this is an easier model that the location finding). We
used the same hidden dimension, i.e. HD = 512. In terms of learning rates, we tried 0.0001, 0.0005
and 0.001; we found 0.0001 to be appropriate, although NWJ bound was exhibiting high variance, so
used a smaller learning rate annealing factor for that network (0.5 vs 0.8 for InfoNCE). We performed
similar level of hyperparameter tuning for all trainable baselines as well (DAD, MINEBED and
SG-BOED).

D.5.3 Further results

Table 9 reports the results shown in Figure 3c), along with the corresponding upper bounds and
deployment times, while Table 10 reports the results for T = 10.

Training stability. To assess the robustness of the results and the stability of the training process, we
trained 5 additional iDAD networks with each of the two bounds, using different seeds but the same
hyperparameters we used to produce the results of the pharmacokinetic experiment (Figure 3c) and
corresponding Table 9). We report upper and lower bounds on the mutual information along with
their mean and standard error in the table below.

Method Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
iDAD, InfoNCE Lower 3.209 3.165 3.198 3.221 3.128 3.185 0.019
iDAD, InfoNCE Upper 3.210 3.166 3.201 3.223 3.130 3.186 0.019
iDAD, NWJ Lower 3.034 3.049 2.608 3.149 3.082 3.034 0.107
iDAD, NWJ Upper 3.034 3.049 2.609 3.150 3.083 3.034 0.107

We repeat the same procedure for the static baselines. The results reported in the table below
demonstrate the training stability of these baselines as well.
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Method Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
SG-BOED Lower 2.932 2.452 2.448 2.991 2.962 2.757 0.140
SG-BOED Upper 2.932 2.453 2.449 2.992 2.962 2.757 0.140
MINEBED Lower 2.912 2.213 3.014 2.092 2.941 2.634 0.221
MINEBED Upper 2.914 2.213 3.015 2.092 2.942 2.635 0.222

D.6 SIR Model

Generally speaking, the SIR model advocates that, within a fixed population of size N , susceptible
individuals S(τ), where τ is time, can become infected and move to an infected state I(τ). The
infected individuals can then recover from the disease and move to the recovered state R(τ). The
dynamics of these events are governed by the infection rate β and recovery rate γ, which define the
particular disease in question. In the context of BOED, the aim is generally to estimate these two
model parameters by observing state populations at particular measurement times τ , which are the
experimental design variables. The SIR model has been studied extensively in the context of BOED,
e.g. in [12, 27, 29, 30].

Stochastic versions of the SIR model are usually formulated via continuous-time Markov chains
(CTMC), which can be simulated from via the Gillespie algorithm [2], yielding discrete state
populations. However, iDAD requires us to differentiate through the sampling path of the state
populations to the experimental designs, which is impossible if the simulated data is discrete as
gradients are undefined. Thus, we here implement an alternative formulation of the stochastic SIR
model that is based on stochastic differential equations (SDEs), as studied in [29], which yields
continuous state populations that can be differentiated.

Following [29], let us first define a state population vector X(τ) = (S(τ), I(τ))>, where we can
safely ignore the population of recovered R(τ) for modelling purposes because we assume that the
total population stays fixed. The system of Itô SDEs that defines the stochastic SIR model is given by

dX(τ) = f(X(τ))dτ + G(X(τ))dW(τ), (108)

where f is a drift vector, G is a diffusion matrix and W(τ) is a vector of independent Wiener
processes. [29] showed that the drift vector and diffusion matrix are given by

f(X(τ)) =


−β S(τ)I(τ)

N

β S(τ)I(τ)
N − γI(τ)

 and G(X(t)) =


−
√
β S(τ)I(τ)

N 0√
β S(τ)I(τ)

N −
√
γI(τ)

 . (109)

Given the system of Itô SDEs in (108), as well as the above drift vector and diffusion matrix, we
can then simulate state populations X(τ) by solving the SDE using finite-difference methods, such
as e.g. the Euler-Maruyama method. See [29] for more information on the SDE-based SIR model,
including derivations of the drift vector and diffusion matrix.

Importantly, we note that [29] further used the solutions of (108) as an input to a Poisson observation
model, which increases the noise in simulated data. We here opt to simply use the solutions of (108)
as data and do not consider an additional Poisson observational model.

D.6.1 Training details

As previously mentioned, the design variable for this model is the measurement time τ ∈ [0, 100].
When solving the SDE with the Euler-Maruyama method, we discretize the time domain with a
resolution of ∆τ = 10−2. We here only use the number of infected I(τ) as the observed data, as
others might be difficult to measure in reality. The total population is fixed at N = 500 and the
initial conditions are X(τ = 0) = (0, 2)>. The model parameters β and γ have log-normal priors,
i.e. p(β) = Lognorm(0.50, 0.502) and p(γ) = Lognorm(0.10, 0.502). Importantly, because solving
SDEs is expensive, we pre-simulate our data on a time grid, store it in memory and then access the
relevant data during training.

We present the network architectures and hyper-parameters corresponding to the T = 5 iDAD results
shown in Table 5 of the main text. For the encoder of the design-outcome pairs we used:
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Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 2 2 -
H1 Fully connected 8 8 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

The resulting representations, {R(ht)}T−1
t=1 , are stacked into a matrix (as new design–outcome pairs

are obtained) and fed into an emitter network, which contains an LSTM cell with two hidden layers.
We only keep the last hidden state of the LSTM’s output and pass it through a final FC layer:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input {R(ht)}T−1
t=1 32 × t 32 × t -

H1 & H2 LSTM 32 32 -
H3 Fully connected 16 16 ReLU
Output Fully connected 1 1 -

The architecture of the critic network Uψ used in Table 5 and all its hyper-parameters are in the tables
that follow. First, the encoder network of the latent variables is:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input θ 2 2 -
H1 Fully connected 8 8 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

For the design-outcome pairs encoder we use the same architecture as in the design network, namely:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input ξ, y 2 2 -
H1 Fully connected 8 8 ReLU
H2 Fully connected 64 64 ReLU
H3 Fully connected 512 512 ReLU
Output Fully connected 32 32 -

The outputs of the encoder, {R(ht)}t, are stacked and fed into an LSTM cell with two hidden layers.
We only keep the last hidden state of the LSTM’s output and pass it through a FC layer:

Layer Description iDAD, InfoNCE iDAD, NWJ Activation

Input {R(ht)}T−1
t=1 32 × t 32 × t -

H1 & H2 LSTM 32 32 -
H3 Fully connected 16 16 ReLU
Output Fully connected 32 32 -

The optimization was performed with Adam [26] with learning rate annealing with the following
hyper-parameters:

Parameter iDAD InfoNCE iDAD, NWJ

Batch size 512 512
Number of contrastive/negative samples 511 511
Number of gradient steps 100000 100000
Initial learning rate (LR) 0.0005 0.0005
LR annealing factor 0.96 0.96
LR annealing frequency 1000 1000
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Figure 8: Approximate posteriors for the SIR model.

D.6.2 Further results

Different number of experiments T . In Table 11 we show lower bound estimates when applying
iDAD with the InfoNCE lower bound to the SDE-based SIR model for different number of measure-
ments T . The design network and critic architectures are the same as for T = 5. Table 11 shows
that more measurements yield higher expected information gains, as one might intuitively expect.
Furthermore, the increase in expected information gain saturates with increasing T , which is why we
presented the results for T = 5 in the main text. The biggest increase, however, occurs from T = 1 to
T = 2. This is intuitive, because the SIR model has two model parameters that we wish to estimate
but we only gather one data point with one measurement. Hence, in order to accurately estimate both
of these parameters, we would need at least 2 measurements, which is reflected in Table 11. We note
that all of these numbers, with the exception of T = 1, are larger than those found by [29]. This
increase in expected information gain may be explained by the fact that [29] use an additional Poisson
observation model, which means that the resulting data are inherently noisier and less informative.

Table 11: InfoNCE lower bound estimates (± s.e.) when applying iDAD to the SDE-based SIR
model for different number of measurements T .

T iDAD, InfoNCE iDAD, NWJ
1 1.396 ± 0.018 1.417 ± 0.001
2 2.714 ± 0.019 2.699 ± 0.001
3 3.554 ± 0.021 3.515 ± 0.001
4 3.600 ± 0.018 3.749 ± 0.001
5 3.915 ± 0.020 3.869 ± 0.001
7 4.027 ± 0.019 3.911 ± 0.001

10 4.100 ± 0.020 4.019 ± 0.001

Training stability. To assess the robustness of the results and the stability of the training process, we
trained 5 additional iDAD networks with each of the two bounds, using different seeds but the same
hyperparameters we used to produce the results of Table 5 in the main text. We report upper and
lower bounds on the mutual information along with their mean and standard error in the table below.

Method Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
iDAD, InfoNCE Lower 3.900 3.919 3.919 3.901 3.887 3.906 0.007
iDAD, NWJ Lower 3.872 3.838 3.854 3.883 3.848 3.859 0.009

We repeat the same procedure for the static baselines. The results reported in the table below
demonstrate the training stability of these baselines as well.

Method Bound Run 1 Run 2 Run 3 Run 4 Run 5 Mean SE
SG-BOED Lower 3.713 3.765 3.767 3.764 3.739 3.749 0.012
MINEBED Lower 3.373 3.438 3.376 3.379 3.420 3.397 0.015
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