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Abstract

We present a novel method for reducing the computational complexity of rigorously
estimating the partition functions (normalizing constants) of Gibbs (Boltzmann)
distributions, which arise ubiquitously in probabilistic graphical models. A major
obstacle to practical applications of Gibbs distributions is the need to estimate their
partition functions. The state of the art in addressing this problem is multi-stage
algorithms, which consist of a cooling schedule, and a mean estimator in each step
of the schedule. While the cooling schedule in these algorithms is adaptive, the
mean estimation computations use MCMC as a black-box to draw approximate
samples. We develop a doubly adaptive approach, combining the adaptive cooling
schedule with an adaptive MCMC mean estimator, whose number of Markov chain
steps adapts dynamically to the underlying chain. Through rigorous theoretical
analysis, we prove that our method outperforms the state of the art algorithms
in several factors: (1) The computational complexity of our method is smaller;
(2) Our method is less sensitive to loose bounds on mixing times, an inherent
component in these algorithms; and (3) The improvement obtained by our method is
particularly significant in the most challenging regime of high-precision estimation.
We demonstrate the advantage of our method in experiments run on classic factor
graphs, such as voting models and Ising models.

∗ r© indicates randomized ordering and equal contribution
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Algorithm 1 RELMEANEST
1: procedure RELMEANEST
2: Input: Markov chain M, upper-bound on relaxation time T , real-valued function f with range [a, b], letting R = b − a,

multiplicative precision ε, error probability δ.
3: Output: Multiplicative approximation µ̂ of µ = Eπ[f ].

4: T ←
⌈

1+Λ
1−Λ ln

√
2
⌉

; Λ′ ← ΛT . Choose T to be an upperbound on relaxation time

5: I ← 1 ∨
⌊

log2

(
bR
2a2 · (1−ε)2

(1+ε)ε

)⌋
; α← (1+Λ′)R ln 3I

δ (1+ε)

(1−Λ′)bε ; m0 ← 0 . Initialize sampling schedule

6: Tunif ←
⌈
T · ln(1/πmin)

⌉
; ( ~X0,1, ~X0,2)←MTunif (⊥) . Warm-start two chains for Tunif steps from arbitrary ⊥ ∈ Ω

7: for i ∈ 1, 2, . . . , I do
8: mi ←

⌈
αri
⌉

. Total sample count at iteration i; r is the geometric ratio (constant, usually 2) size
9: for j ∈ (mi−1 + 1), . . . ,mi do

10: ( ~Xj,1, ~Xj,2)← (T steps ofM starting at ~Xj−1,1, ~Xj−1,2) . Run two independent copies ofM for T steps

11: f̄( ~Xj,1)← 1

T

T∑
t=1

f
(
~Xj,1(t)

)
; f̄( ~Xj,2)← 1

T

T∑
t=1

f
(
~Xj,2(t)

)
. Average f over T -traces

12: end for

13: µ̂i ←
1

2mi

mi∑
i=1

(
f( ~Xj,1) + f( ~Xj,2)

)
; v̂i ←

1

2mi

mi∑
i=1

(
(f( ~Xj,1)− f( ~Xj,2)

)2
. Compute empirical mean; trace variance

14: ui ← v̂i +
(11 +

√
21)(1 + Λ′/

√
21)R2 ln 3I

δ

(1− Λ′)mi
+

√
(1 + Λ′)R2v̂i ln 3I

δ

(1− Λ′)mi
. Variance upper bound

15: ε̂+
i ←

10R ln 3I
δ

(1− Λ′)mi
+

√
(1 + Λ′)ui ln 3I

δ

(1− Λ′)mi
. Apply Bernstein bound

16: µ̂×i ←
(µ̂i − ε̂+

i ) ∨ a+ (µ̂i + ε̂+
i ) ∧ b

2
. Optimal mean estimate

17: ε̂×i ←
((µ̂i + ε̂+

i ) ∧ b− (µ̂i − ε̂+
i ) ∨ a

2µ̂×i
. Empirical relative error bound

18: if (i = I) ∨ (ε̂×i ≤ ε) then . Terminate if accuracy guarantee is met
19: return µ̂×i
20: end if
21: end for
22: end procedure

Algorithm 2 SUPERCHAINTRACEGIBBS and PARALLELTRACEGIBBS

1: procedure SUPERCHAINTRACEGIBBS(. . . )
2: (β0, β1, . . . , β`)← TPA(k, d)a

3: ε′ ← ε
2+ε

; δ′ ← δ
2

4: for i ∈ 1, 2, . . . , ` do
5: fi(x)

.
= exp(−βi+1−βi

2
H(x))

6: gi(x)
.
= exp(

βi−βi−1

2
H(x))

7: end for
8: F

.
=

⊗`
i=1 fi; G

.
=

⊗`
i=1 gi

9: G⊗ ←
⊗`

i=1 GH,βi , with ωi = 1
`
,∀i

10: Rf ← exp(−β−β0
2

Hmin)− exp(−β−β0
2

Hmax)

11: Rg ← exp(β−β0
2

Hmax)− exp(β−β0
2

Hmin)

12: µ̂← RELMEANEST(G⊗, Rf , T, F, ε′, δ′)
13: ν̂ ← RELMEANEST(G⊗, Rg, T,G, ε′, δ′)
14: return Ẑ ← ν̂

µ̂

15: end procedure

16: procedure PARALLELTRACEGIBBS(. . . )
17: (β0, β1, . . . , β`) = TPA(k, d)

18: ε′ ←
√̀
1+ε−1√̀
1+ε+1

; δ′ ← δ
2`

19: for i ∈ 1, 2, . . . ` do
20: fi(x)

.
= exp(−βi+1−βi

2
H(x))

21: gi−1(x)
.
= exp(

βi−βi−1

2
H(x))

22: Rf ← exp(−βi+1−βi
2

Hmin)− exp(−βi+1−βi
2

Hmax)

23: Rg ← exp(
βi+1−βi

2
Hmax)− exp(

βi+1−βi
2

Hmin)
24: µ̂i ← RELMEANEST(Gi, Rf , Ti, fi, ε′, δ′)
25: ν̂i ← RELMEANEST(Gi, Rg, Ti, gi, ε′, δ′)
26: end for
27: return Ẑ ←

∏`
i=1

ν̂i
µ̂i

28: end procedure

ak = Θ(logHmax) and d = 64 as in [6]

A Appendix

A.1 Algorithms used in the literature

A.1.1 The TPA method [4, 6]

We refer to Huber and Schott’s algorithm as the original TPA, and Kolmogorov’s, which is used in
our algorithms and referred to as TPA(k, d) in the main manuscript, as the TPA method.
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Algorithm 3 THE ORIGINAL TPA-METHOD [4]
1: output a schedule (β1, . . . , βl) of values in the interval [βmin, βmax].
2: β0 ← βmin

3: for i = 0 :∞ do
4: sampleX ∼ πβi drawU ∈ [0, 1] uniformly, βi+1 = βi−logU/H(X) (or +∞ ifH(X) = 0.)
5: if βi+1 /∈ [βmin, βmax] then Terminate
6: end if
7: end for

Algorithm 4 TPA-METHOD [6]
1: input integers k and d
2: output a schedule (β0, β1, . . . , βl) of values in the interval [βmin, βmax].
3: for i = 1 : k do
4: Bi ← THE ORIGINAL TPA-METHOD().
5: let B ← B ∪ Bi
6: end for
7: sort B, keep one sample uniformly from the initial d elements, and keep every dth successive

value in the remaining sequence.
8: add βmin and βmax to B return B

A.1.2 Single site Gibbs sampler (Glauber dynamics chain)

Consider β and H defined as above. Let X = (X1, X2, . . . , Xn) be the set of all variables in
the Gibbs distribution with inverse temperature β and Hamiltonian H , thus, the domain of H is
Ω = Ω1 ×Ω2 × . . .Ωn, and each Ωi is the range of random variable Xi. At each time step t, assume
the current state is x(t) = (x1, x2, . . . , xn). Take i ∼ 1, . . . , n uniformly at random. Sample y from
the following distribution:

πβ(y|x(t)
−i) =

exp(−βH(x(t);xi ← y))∑
ω∈Ωi

exp(−βH(x(t);xi ← ω))
, (1)

where for an arbitrary ω ∈ Ωi we define (x(t);xi ← ω) be the vector in which all the elements except
the ith element are equal to xi and the ith element is replaced with ω.

In other words, for any arbitrary vectors x(t) and x(t+1), the transition probability is:

GH,β(x(t), x(t+1)) =


(1/n)πβ(y|x(t)

−i), ∃y, i such that xi 6= y and x(t+1) = (x(t);xi ← y),∑n
i=1(1/n)πβ(xi|x(t)

−i) if x(t) = x(t+1),

0 otherwise .

A.2 Missing proofs: TPA and relative trace variance properties

Lemma A.1. Let z(β)
.
= log

(
Z(β)

)
, d and k the parameters of the TPA method, and βi and βi+1

two consecutive points generated by TPA(k, d), we have:

1. For any ε ≥ 0, we have P(z(βj)− z(βj+1) ≤ ε) ≥ (1− exp(−εk/d))d ' 1− d exp(−εk/d) ,
2. For any ε ≥ 0, P

(
∆i ≥ ε/E[H(x)]

)
≤ d exp(−εk/d), where the expectation of H(x) is taken with

respect to distribution x ∼ πβi+1
.

Proof of lemma A.1. Note that TPA(k, d) of [6] consists of k parallel runs of the original TPA of [4]
and outputting a sub-sequence of elements which are d apart.

Let (bi) be the sequence generated by k parallel copies of the original TPA, thus ∆j = βj+1 − βj =
bj+d − bj .
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We first show item 1 by bounding P
(
z(bj)− z(bj+d) ≥ ε

)
, and using

P(bj+d − bj < ε) ≥
d∏
i=1

P(bj+i − bj+i−1 < ε/d) .

With the definition of the PPP, and using [3] we have z(bi) − z(bi+1) follows the exponential
distribution with mean 1/k, thus P(z(bi)− z(bi+1) ≥ ε/d) = exp(−εk/d) . Therefore,

P(z(bj+d)− z(bj) < ε) ≥
d∏
i=1

P
(
z(bj+i)− z(bj+i−1

)
< ε/d) = (1− exp(−εk/d))d .

To see item 2 of the Lemma let z′(β) be the derivative of z(·) with respect to β, which is
z′(β) =

∑
x∈Ω−H(x) exp(−βH(x))/Z(β), thus z′(β) ≤ 0. Using the Cauchy–Schwarz

inequality we have z′′(β) = (
∑
x∈ΩH

2(x) exp(−βH(x))
∑
x∈Ω exp(−βH(x)) −

(
∑
x∈Ω−H(x) exp(−βH(x))2)/Z2(β) ≥ 0. Therefore,

z′(βi) <
z(βi+1)− z(βi)
βi+1 − βi

< z′(βi+1),

Thus, βi+1 − βi < z(βi)−z(βi+1)
−z′(βi) . Note that −z′(βi) = E[H(x)], x ∼ πβi . Therefore, we have:

P
(

∆i ≤
ε

E[H]

)
≥ P

(
z(βi)− z(βi+1)

−z′(βi+1)
≤ ε

E[H]

)
= P

(
z(βi)− z(βi+1) ≤ ε

)
≥ (1− exp(−εk/d))d

Thus P
(

∆i ≥ ε
E[H]

)
≥ 1− (1− exp(−εk/d))d ≈ d exp(−εk/d)) .

Proof of Lemma 2.1. Note that by Thm 3.1. of [9] we have, E[(f̄( ~X1:τ ) − E(f))2] ≤ 2τrx
τ V[f ].

Dividing both sides by
(
E(f)

)2
we get the second part of the premise. The first part concludes from

setting τ = τrx.

A.3 RELMEANEST

RELMEANEST in summary To employ progressive sampling, we start by a small sample size and
calculate the empirical estimation of the variance at each iteration. We estimate an upper bound on
the trace variance based on its empirical estimation, and using that we check a termination condition.

Our variance estimator is what Cousins et al. introduced, and is based on running two independent
chains. Each sample is obtained by taking a trace of length T (given upper-bound on relaxation time)
and taking the average over all observed values on that trace. Thus, half the square difference of the
averages on the two chains is an unbiased estimate of the trace variance.

Before showing the result, we state two key theorems from the literature, which describe how our tail
bounds work.
Theorem A.2 (Hoeffding-Type Bounds for Mixing Processes, (see Thm. 2.1 of [2])). For any
δ ∈ (0, 1), we have

P

|µ̂− µ| ≥
√

2(1 + λ)(R2

4 ) ln( 2
δ )

(1− λ)m

 ≤ δ . (2)

This implies sample complexity
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mH(λ,R, ε, δ) =
1 + λ

1− λ
ln( 2

δ )
R2

2ε2
∈ Θ

(
τrx ln( 1

δ )
R2

ε2

)
.

Theorem A.3 (Bernstein-Type Bound for Mixing Process [5, Thm. 1.2]). For any δ ∈ (0, 1), we
have

P

|µ̂− µ| ≥ 10R ln( 2
δ )

(1− λ)m
+

√
2(1 + λ)vπ ln( 2

δ )

(1− λ)m

 ≤ δ . (3)

This implies sample complexity

mB(λ,R, v, ε, δ) =
2

1− λ
ln( 2

δ )
(5R

ε
+

(1 + λ)vπ
ε2

)
∈ Θ

(
τrx ln( 1

δ )
(R
ε

+
vπ
ε2

))
.

We now show the main result.

Proof of Theorem 2.2. Suppose confidence interval [a, b]. The interval endpoints, multiplicative error
ε×, and additive error ε+ are related as 2ε+ = a 1+ε×

1−ε× − a = a 2ε×
1−ε× , depicted graphically below.

0 a µ b

Worst Case: ε+ =
aε×

1−ε×

Arbitrary Case: ε+ = µε×

Best Case: ε+ =
bε×

1+ε×

We derive a geometric progressive sampling schedule such that the algorithm draws sample sizes,
ranging between optimistic and pessimistic (over unknown variance and mean) upper and lower
bounds on the sufficient sample size.

Using the Markov chain Bennett inequality [5], the best-case complexity, assuming maximal expecta-
tion, and minimal variance, is

m↓ ≥ mB(Λ, R, 0, ε+,
2δ

3I
)

≥
(1 + Λ)R ln 3I

δ

(1− Λ)ε+
=

(1 + Λ)R ln 3I
δ (1 + ε×)

b(1− Λ)ε×
.

The worst-case complexity, then assuming minimal expectation, and maximal variance, is

m↑ ≥ mH(Λ, R, ε+,
2δ

3I
)

≥
(1 + Λ)R2 ln 3I

δ

2(1− Λ)ε2
+

=
(1 + Λ)R2 ln 3I

δ (1− ε×)2

2(1− Λ)a2ε2
×

,

via the Markov chain Hoeffding’s inequality [7].

Consequently, a doubling schedule requires I =

⌊
log2

(
m↑

m↓

)⌋
=

⌊
log2

(
bR
2a2 · (1−ε×)2

(1+ε×)ε×

)⌋
steps.

All tail bounds on variances and means are hold simultanously with probability at least 1 − δ (by
union bound), and the doubling schedule never overshoots the sufficient sample size by more than a
constant factor, which yields the stated guarantees.

The proof consists of two parts, in both we make derive our new bounds by writing an ε×-
multiplicative approximation in terms of an ε+-additive approximation.

In the worst-case, we underestimate the true mean µ by a factor (1− ε×), and thus require a radius
ε+ = ε×(1− ε×)µ additive confidence interval.

We first show the correctness guarantee.
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Observe that the sampling schedule is selected such that the final iteration I of the algorithm will draw
a sufficiently large sample (size m↑) such that the Hoeffding inequality will yield such a confidence
interval, even for worst-case (minimal) µ. Now observe that over the course of the algorithm, in each
iteration, 3 tail bounds are applied; one to upper-bound the variance, and then two to upper and lower
bound the mean in terms of the variance bound) as in [1]. By union bound, all 3I tail-bounds hold
simultaneously with probability at least 1 − δ, thus when the algorithm terminates, it produces a
correct answer with at least said probability.

We now show the efficiency guarantee. Suppose we get µ̂ from RELMEANEST, by guarantee of
correctness of the algorithm, we have a lower bound on µ̂, µ̂ ≥ µ(1− ε×) with probability at least
1− δ.

Furthermore, we have ε+ = µε× and trv(τrx) = (Reltrvτrx−1)×µ̂2 ≥ (Reltrvτrx−1)µ2(1−ε×)2.
For this ε+, we have via the Bernstein inequality that

m∗ ∈ O

log

(
log(R/(µε×))

δ

)(
R/µ

(1− Λ)ε×
+
τrx(Reltrvτrx − 1)

ε2
×

)
would be a sufficient sample size if (1) the algorithm were to draw a sample of this size, and (2) we
were to use the true trace variance instead of the estimated upper-bound on trace variance.

Fortunately, correcting for (1) adds a constant factor to the sample complexity, as the first sample size
α is selected to be twice the minimal sufficient sample size m↓ (i.e., the sample size such that no
smaller sample size would be sufficient), and at each iteration the sample size selected is double the
previous (line 8). In other words, this geometric grid will never overshoot any sample size by more
than a factor 2.

Resolving (2) is a bit more subtle, but we now show that there is no asymptotic change in replacing
the variance with the estimated variance upper bound (w.h.p.). First, note that the Bernstein bound is
bidirectional, so it can just as well be used to upper-bound empirical variance with true variance as to
upper-bound true variance with empirical variance. We bound true variance in terms of empirical
variance on line 14, and note that here we have

v ≤ u ∈ v̂ +O

R2 ln I
δ

m
+

√
R2v̂ ln I

δ

m

 .

Fortunately, the latter terms are negligible, as in line 15, we bound

ε+ ∈ O

R ln I
δ

m
+

√
u ln I

δ

m



= O


R ln I

δ

m
+

√√√√√
(
v̂ +O

(
R ln I

δ
m +

√
v̂ ln I

δ
m

))
ln I

δ

m



= O


R ln I

δ

m
+

√√√√√
(
v +O

(
R ln I

δ
m +

√
v ln I

δ
m

)
+O

(
R ln I

δ
m +

√
v̂ ln I

δ
m

))
ln I

δ

m

 (w.h.p.)

= O

R ln I
δ

m
+

√
v ln I

δ

m

 . (w.h.p.)
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Putting these together, we thus have that, w.h.p., sample consumption is bounded as

m̂ ∈ 2O(m∗) = O

log

(
log(R/(µε×))

δ

)(
R/µ

(1− Λ)ε×
+
τrx(Reltrvτrx − 1)

ε2
×

) .

To conclude, we need only relate T (ReltrvT − 1) and τrx(Reltrvτrx − 1). Letting T as in line ??,
note that since T ≥ τrx, it holds that T (ReltrvT − 1) ≥ τrx(Reltrvτrx − 1), by the trace variance
inequalities, which yields the result.

A.4 Missing proofs from analysis of SUPERCHAINTRACEGIBBS

Proof of thm 2.4. Follows immediately from thm. 2.2 and plugging in the values for paired product
estimators and the product chain.

Full Proof of Lemma 2.8. Let β̄i,i+1
.
= βi+βi+1

2 , we have µi =
Z(β̄i,i+1)
Z(βi)

and νi =
Z(β̄i,i+1)
Z(βi+1) . Thus

we have ν =
∏`−1
i=1 Z(β̄i,i+1)∏`−1
i=1 Z(βi+1)

> 1, µ =
∏`−1
i=1 Z(β̄i,i+1)∏`−1
i=1 Z(βi)

< 1.

Note that ν = µ Z(β0)
Z(βmax) , thus we proceed by bounding µ.

log

`−1∏
i=1

Z(β̄i,i+1) =

`−1∑
i=1

z(β̄i,i+1) TAKING log

≥
`−1∑
i=1

z(βi)−
∆i

2
E

x∼πβi
[H(x)] TAYLOR EXPANSION & THAT

∂2

∂β2
z(β) > 0

Thus, by taking exponents we get:

`−1∏
i=1

Z(β̄i,i+1) ≥ exp

`−1∑
i=1

z(βi)−
∆i

2
E

x∼πβ̄i,i+1

[H(x)]


≥

`−1∏
i=1

Z(βi)

 exp

− `−1∑
i=1

∆i

2
E

x∼πβi
[H(x)]



Therefore, µ =
∏`−1
i=1 Z(β̄i,i+1)∏`−1
i=1 Z(βi)

≥ exp
(
−
∑`−1
i=1

∆i

2 Ex∼πβi [H(x)]
)

. Using this form, we now em-
ploy the fundamental theorem of calculus to prove the premise:
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Let ∆max=̇ maxi ∆i.

µ ≥ exp

− `−1∑
i=1

∆i

2
E

x∼πβi
[H(x)]


= exp

− `−1∑
i=1

∆i

2
E

x∼πβi
[H(x)]


≥ exp

(
1

2

∫ βmax−∆max

βmin−∆max

− E
x∼πβ

[H(x)] dβ

)
INCREASING INTEGRAND

= exp

(
1

2

(
z(βmax −∆max)− z(βmin −∆max)

))
FTOC AND THAT z′(β) = Ex∼πβH

≥ exp

(
1

2

(
z(βmax)− z(βmin −∆max)

))
z IS DECREASING

= exp

(
1

2

(
z(βmax)− z(βmin) + z(βmin)− z(βmin−∆max)

))
≥ Q− 1

2

√
Z(βmin)

Z(βmin −∆max)
.

From the above we also conclude that ν ≥ Q1/2
√

Z(βmin)
Z(βmin−∆max) . Note that Range(f) =

exp(−∆
2 Hmin) − exp(−∆

2 Hmax) ≤
√

exp(−∆Hmin) and Range(g) = exp(∆
2 Hmax) −

exp(∆
2 Hmin) ≤

√
exp(∆Hmax) . Thus the lemma is concluded.

Proof of Corollary 2.6. The corollary follows from thm 2.2 plugging in R from lemma 2.5 and
setting τprx = `max`i=1 τi (see, e.g., [8]).

A.5 Analysis of PARALLELTRACEGIBBS

Let (β0, β1, . . . βl) be a cooling schedule generated by TPA(k, d), where k and d are chosen as in
[6]. For each i let fβi,βi+1

, gβi−1,βi be the paired estimators corresponding to this schedule, and
µi = E[fβi,βi+1

], νi = E[gβi−1,βi ] . PARALLELTRACEGIBBS estimatesQ by running RELMEANESTon
each GH,βi , to estimate µi and νis each with precision ε′ = ( l

√
1+ε−1)/( l

√
1+ε+1). Note that by this

setting, Q will be approximated within multiplicative factor of
(

1+ε′/1−ε′
)`

. Assume τi is the true
relaxation time of GH,βi and suppose Λi is a known upper bound on the second eigenvalue of GH,βi ,
thus (Λi − 1)−1 log(2) ≥ τi. The following hold and thm 2.7 is immediately concluded from it:
Lemma A.4. Let Hmax

.
= maxx∈ΩH(x). we have:

1. for all 1 ≤ i ≤ `, Range(fβi,βi+1
)/µi ≤ `1/ log(n),

2. for all 1 ≤ i ≤ `, Range(gβi−1,βi)/νi ≤ `α0(i)/ logn, where α0(i) = (Hmax/2E[H(x)])− 1, x ∼
πβi .

Proof. Let ∆i = βi+1 − βi. Thus, fi(x) = exp
(
−∆i

2 H(x)
)

and gi(x) = exp
(

∆i

2 H(x)
)

. So we
have:

Range(fi) = exp

(
−∆i

2
min
x
H(x)

)
− exp

(
−∆i

2
max
x

H(x)

)
≤ exp

(
−∆i

2
min
x
H(x)

)
and

Range(gi) = exp

(
∆i

2
max
x

H(x)

)
− exp

(
∆i

2
min
x
H(x)

)
≤ exp

(
∆i

2
max
x

H(x)

)
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µi = Z(βi + ∆i/2)/Z(βi) & νi = Z(βi+1 −∆i/2)/Z(βi+1)

Range(fi)

µi
≤

exp
(
−∆i

2 minxH(x)
)

exp
(
z(βi + ∆i/2)− z(βi)

) , Range(gi)

νi
≤

exp
(

∆i

2 maxxH(x)
)

exp
(
z(βi+1 −∆i/2)− z(βi+1)

)
(4)

Writing ∆i/2 = ∆i/2
z(βi+∆i/2)−z(βi) (z(βi + ∆i/2)− z(βi)), we get:

Range(fi)

µi
≤ exp

(
−∆i

2
min
x
H(x)−

(
z(βi + ∆i/2)− z(βi)

))

≤ exp

(z(βi + ∆i/2)− z(βi)
)( −∆i ·minxH(x)

2
(
z(βi + ∆i/2)− z(βi)

) − 1

)
and

Range(gi)

νi
≤ exp

(z(βi+1 −∆i/2)− z(βi+1)
)( ∆i ·maxxH(x)

2
(
z(βi+1 −∆i/2)− z(βi+1)

) − 1

)
Let z′ and z′′ be the first and second derivative of z with respect to β. Note that z′(β) =
Ex∼πβ [−H(x)]. Since z′′ ≥ 0 we have:

z′(βi) <
z(βi + ∆i/2)− z(βi)

∆i/2
< z′(βi + ∆i/2)

and

z′(βi+1 −∆i/2) <
z(βi+1)− z(βi+1 −∆i/2)

∆i/2
< z′(βi+1).

Which are equivalent to 1
z′(βi+∆i/2) ≤ ∆i/2

z(βi+∆i/2)−z(βi) ≤ 1
z′(βi)

and 1
z′(βi+1) ≤

∆i/2
z(βi+1)−z(βi+1−∆i/2) ≤

1
z′(βi+1−∆i/2) .

Therefore,

Range(fi)

µi
≤ exp

((
z(βi + ∆i/2)− z(βi)

)(−minxH(x)

2

1

z′(βi)
− 1

))
(5)

= exp

((
z(βi + ∆i/2)− z(βi)

)(minxH(x)

2

1

E[H]
− 1

))
(6)

≤ exp
(
z(βi)− z(βi + ∆i/2)

)
(7)

Similarly for range of gis we have:

Range(gi)

νi
≤ exp

((
z(βi+1 −∆i/2)− z(βi+1)

)(−maxxH(x)

2

1

z′(βi)
− 1

))
(8)

≤ exp

(z(βi+1 −∆i/2)− z(βi+1)
)( maxxH(x)

2Eπβi [H(X)]
− 1

) (9)

We now use (5) together with lemma A.1. Setting d = 1 we have,

P
(
z(βi)− z(βi+1) >

log(3l/4)

log n

)
= exp(− log(3l/4)

log n
· k) = (3/4) exp(− log l/ log n(log n))

= (3/4)(1/l).
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Using union bound over all 1 ≤ i ≤ ` and that z(βi) − z(βi+1) ≥ z(βi) − z(βi + ∆i/2), we
conclude that with probability at least 3/4 we have that for all fi, Range(fi)/µi ≤ `1/ log(n).

Similarly using (8), the union bound, lemma A.1 and that z(βi)−z(βi+1) ≥ z(βi−∆i/2)−z(βi+1),
we can show that with constant probability all gis generated by the TPA schedule obey: ∀gi; 1 ≤ i ≤
`, Range(gi)/νi ≤ exp

(
(log l/ log n) · (α)

)
= `α0/ logn, where α0 = maxxH(x)

2Eπβi [H(X)] − 1.

The following corollary is concluded from lemma A.4 and relative trace variance bounds:

Corollary A.5. When ε ≤ `1/ log(n)(1+`α0(i))· `τβi
(1−Λi)−1 , RELMEANEST invoked on the ith iteration

will stop using sample consumption of Õ
(
`2τiReltrvi

)
note that this is improvement over classic

bounds which are Õ
(
(1− Λi)

−1Vreli
)
. In total the sample complexity of PARALLELTRACEGIBBS

for ε ≤ `1/ log(n) mini(1 + `α0(i)) · `τβi
(1−Λi)−1 is dominated by Õ

(
`2
∑`
i=1 τiReltrvi

)
.

A.6 Further experimental results

(a) β = .05, 2×2 lattice (b) β = .01, 3×3 lattice

(c) β = .02, 4×4 lattice (d) β = .002, 6×6 lattice

Figure 1: Comparison of sample complexity on Ising models.
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