
Appendix
A Analysis of random search (Algorithm 1)

We start by studying some properties of high dimensional spheres. We then apply these properties
to show how the rate of the two-step random search (Algorithm 1) depends exponentially on the
problem dimension.

A.1 High-dimensional spheres and curse of dimensionality

We denote by VR(d) and AR(d) the volume and the surface area of the (d− 1) sphere with radius R:
Sd−1(R) = {x ∈ Rd | ‖x‖ = R}. It is well known [30] that the following formulas hold:

AR(d) =
2πd/2

Γ
(
d
2

)Rd−1, VR(d) =
A(d)R

d
=

2πd/2

d Γ
(
d
2

)Rd. (7)

Moreover, we have the following important lemma, which can also be found in Section 1.2.4 of [30].

Lemma 11. Let ς ≥ 0 and define Aς1(d) to be the surface area of the cap {x ∈ Rd | ‖x‖ = 1, x1 ≥
ς}, d ≥ 2. We have:

Aς1(d) = A1(d− 1)

∫ 1

ς

(1− x2
1)

d−2
2 dx1. (8)

Proof. The radius of the spherical cap at height x1 is
√

1− x2
1, and we have that A√

1−x2
1

(d− 1) =

A1(d−1)
(√

1− x2
1

)d−2

by the surface area formula in Equation 7. SinceAς1(d) =
∫ 1

ς
A√

1−x2
1

(d−
1)dx1, we conclude.

We will need both an upper and a lower bound on the integral above. The next result shows that both
these bounds are exponential.

Lemma 12. For any α > 1,[
1

2
(1− ς2)

]α+1

≤
∫ 1

ς

(1− x2)αdx ≤ (1− ς2)α.

Proof. The upper bound is straightforward. The lower bound in an application of Hölder’s in-
equality (see e.g. Equation 1.1 in [13]): for a real number p > 1 and functions f and g regular
enough, ∫ 1

ς

|f(x)g(x)|dx ≤
[∫ 1

ς

|f(x)|pdx
]1/p [∫ 1

ς

|g(x)|
p

p−1 dx

] p−1
p

. (9)

Take g to be constant equal to one. Then, taking everything to power p[∫ 1

ς

|f(x)|dx
]p
≤ (1− ς)p−1

∫ 1

ς

|f(x)|pdx. (10)

By applying this formula and after performing a few algebraic manipulations, we get

∫ 1

ς

(1− x2)αdx ≥

(∫ 1

ς
(1− x2)dx

)α
(1− ς)α−1

= (1− ς)
(
ς3 − 3ς + 2

3(1− ς)

)α
= (1− ς)

(
(1− ς)2(ς + 2)

3(1− ς)

)α
= (1− ς)

(
1

3
(1− ς)(ς + 2)

)α
≥
[

1

2
(1− ς2)

]α+1

, (11)

where in the last inequality we used the fact that for ς ∈ [0, 1], 1
3 (1− ς)(ς + 2) ≥ 1

2 (1− ς2).

14

A verification of the bound above can be found in Figure 6. We note that the upper bound becomes
tight as α→∞, and that the lower bound becomes less pessimistic as ς → 1.

0 10 20 30 40 50
10

-25

10
-20

10
-15

10
-10

10
-5

10
0

0 10 20 30 40 50

10
-30

10
-20

10
-10

10
0

0 10 20 30 40 50
10

-50

10
-40

10
-30

10
-20

10
-10

10
0

0 10 20 30 40 50
10

-60

10
-50

10
-40

10
-30

10
-20

10
-10

10
0

Figure 6: Numerical verification of Lemma 12. Integral computed numerically using the MATLAB
integral function.

Putting the previous two lemmas together, we get

A1(d− 1)

[
1

2
(1− ς)

]α+1

≤ Aς1(d) ≤ A1(d− 1)(1− ς2)α, (12)

where α = (d − 2)/2. Now we are ready to state the final lemma for high-dimensional spheres,
which is verified empirically in Figure 7.

Lemma 13 (Curse of dimensionality). Let x be a random point on the surface of the unit d-ball in
Euclidean space, with d ≥ 4. For ς ∈ (0, 1), we have[

1

2
(1− ς2)

] d
2

≤ Pr[|x1| > ς] ≤ 2
√
d− 2

[
1− ς2

] d
2−1

. (13)

In particular, the probability of being ς-away from the equator decays exponentially with the number
of dimensions.

Proof. The proof is just a matter of finding good upper and lower bounds on A(d) as a function of
A(d − 1), to combine with the result of Lemma 12. We are going to use the lower bound on the
surface area by [30] (Equation 1.3): A1(d) ≥ 1√

d−2
A1(d − 1). For an easy upper bound, we can

instead pick A1(d) ≤ 2A1(d− 1) (surface of the enclosing cylinder). Combining Lemma 11 with
Lemma 12 and the bounds we just found, we get

Pr[|x1| ≥ ς] =
Aς1(d)
1
2A1(d)

≤ (1− ς2)
d−2
2 A1(d− 1)

1
2
√
d−2

A1(d− 1)
, (14)

Pr[|x1| ≥ ς] =
Aς1(d)
1
2A1(d)

≥
[

1
2 (1− ς2)

] d
2 A1(d− 1)

A1(d− 1)
. (15)

A.2 Non-convex dynamics — the quadratic case

Here we seek to understand the behaviour of random search around a point xk with negative
curvature, we consider the quadratic approximation f̃(x) = f(xk) +∇f(xk)>(x− xk) + 1

2 (x−
xk)>∇2f(xk)(x − xk) where ∇2f(xk) ∈ Rd×d. By the spectral theorem, we have ∇2f(xk) =
V>ΛV, where V = [vi]

d
i=1, vi ∈ Rd contains an orthonormal basis of eigenvectors of ∇2f(xk)

and Λ is a diagonal matrix containing the eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd of ∇2f(xk) (counted
together with their multiplicity). For the setting considered in this paragraph, we have λd < 0.

In our first result, we consider the case f(xk) = 0 and∇f(xk) = 0.

15

0 5 10 15

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

0 5 10 15
10

-6

10
-4

10
-2

10
0

10
2

0 5 10 15
10

-8

10
-6

10
-4

10
-2

10
0

10
2

0 5 10 15
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Figure 7: Numerical verification of Lemma 13. Bounds can be found in Lemma 13.

Lemma 3 (Curse of dimensionality of RS around a saddle). Consider a d-dimensional (d ≥ 4)
quadratic saddle f̃(·) centered at the origin with eigenvalues λ1 ≥ · · · ≥ λd, with λd < 0. Set
γ := |λd| and L1 := max{λ1, |λd|} (cf. definition SOSP in Equation 1). Starting from the origin, a
random step s2 ∼ Sd−1(σ2) is such that

Pr
[
f̃(s2)− f̃(0) ≤ −γ

2
σ2

2

]
≥
(

γ

4L1

) d
2

. (2)

Moreover, if λ1 = λ2 = · · · = λd−1 > 0 (worst case scenario), we also have

Pr
[
f̃(s2)− f̃(0) ≤ −γ

2
σ2

2

]
≤ O

(
2−d
√
d
)
. (3)

Proof. Let x0 be any initial point. We seek the probability of the event

Edecr := {sT2∇2f̃(x0)s2 ≤ −ζ}, (16)

for some positive ζ. First, we divide everything by ‖s2‖2 = σ2
2 , to effectively reduce the problem to

the special case σ2
2 = 1. We get

Edecr =

{(
s2

‖s2‖

)T
∇2f̃(x0)

s2

‖s2‖
≤ −ζ̃

}
, (17)

where ζ̃ = ζ/σ2
2 . Let us now write s2/‖s2‖ in the eigenbasis {vi}di=1 of the Hessian ∇2f̃(x0). We

have that
s2

‖s2‖
=

d∑
i=1

aivi,

d∑
i=1

a2
i = 1. (18)

Hence, we can write
Edecr = {λ1a

2
1 + λ2a

2
2 + · · ·+ λda

2
d ≤ −ζ̃}. (19)

To bound the probability of this event, we construct the smaller event E∗decr ⊆ Edecr:

E∗decr := {λ1a
2
1 + λ1a

2
2 + · · ·+ λ1a

2
d−1 ≤ |λd|a2

d − ζ̃}. (20)

This event can be written in a reduced form, using the fact that
∑d
i=1 a

2
i = 1; indeed

λ1a
2
1 + λ1a

2
2 + · · ·+ λ1a

2
d−1 ≤ |λd|a2

d − ζ̃ (21)

⇐⇒ λ1a
2
1 + λ1a

2
2 + · · ·+ λ1a

2
d−1 + λ1a

2
d ≤ (|λd|+ λ1)a2

d − ζ̃ (22)

⇐⇒ λ1 ≤ (|λd|+ λ1)a2
d − ζ̃ (23)

⇐⇒ a2
d ≥

λ1 + ζ̃

λ1 + |λd|
. (24)

In conclusion, we find

Pr[E∗decr] = Pr [|ad| ≥ ς] , ς :=

√
λ1 + ζ̃

λ1 + |λd|
. (25)

16

vd

v1 v2

ς

ϑ

Figure 8: Illustration for the proof of Lemma 3. Any vector on the unit sphere whose angle that is
less than ϑ = cos−1(ς) away from vd belongs to cap colored in yellow. Our goal is to bound the
surface area of this spherical cap.

Therefore, since a = (a1, a2, . . . , ad) is uniformly distributed on the surface of the unit sphere in Rd,
we have reduced the problem to finding the surface of a spherical cap (see Figure 8). From (13), we
directly get [

1

2
(1− ς2)

] d
2

≤ Pr[E∗decr] ≤ 2
√
d− 2

[
1− ς2

] d
2−1

. (26)

Plugging in ζ = 1
2 |λd|σ

2
2 , we get 1 − ζ2 = |λd|

2(λ1+|λd|) , so by setting γ := |λd| and L1 :=

max{λ1, |λd|} (cf. definition SOSP in Equation 1):

γ

4L1
≤ 1

2
(1− ζ2) ≤ 1

4
, (27)

this completes the proof.

A.3 Analysis for general function

Lemma 2. Let f(·) be L1-smooth and ‖∇f(xk)‖ ≥ ε. Algorithm 1 with σ1 = ε/(L1

√
2πd) yields

E[f(xk+1)− f(xk)|xk] ≤ −Ω
(
ε2

L1d

)
, where E[·|xk] denotes the conditional expectation w.r.t. xk.

Proof. One can show (see e.g. Lemma 3.4 in [6]) that Es1∼Sd−1 [∇f(xk)>s1|xk] = 1√
µd
‖∇f(xk)‖,

with µd := 2πd. Using smoothness, we obtain

E[f(xk+1)− f(xk)|xk] (28)

≤ E[∇f(xk)>(xk+1 − xk)|xk] +
L1

2
E[‖xk+1 − xk‖2] (29)

≤ − σ1√
µd
‖∇f(xk)‖+

L1

2
σ2

1 (30)

≤ − σ1√
µd
ε+

L1

2
σ2

1 , (31)

where in the first inequality we used the fact that we can choose between s1 and −s1, and update
with the perturbation which yields the best (i.e. the negative) step. Plugging-in our choice for σ1

(which optimizes the quadratic upper bound above) we get the result.

Lemma 4. Let f(·) be L1-smooth and L2-Hessian-Lipschitz. Assume ‖∇f(xk)‖ ≤ ε and
λmin(∇2f(xk)) ≤ −γ = −ε2/3. Then Algorithm 1 with σ2 = ε2/3

2L2
is s.t.

E[f(xk+1)− f(xk)|xk] ≤ −Ω

((
γ

4L1

) d
2

ε2

)
. (4)

17

Proof. Since f(x) is L2-Lipschitz Hessian, we have (see e.g. [39])

f(xk+1)− f(xk) (32)

≤ (xk+1 − xk)>∇f(xk) +
1

2
(xk+1 − xk)>∇2f(xk)(xk+1 − xk) +

L2

6
‖xk+1 − xk‖3. (33)

We use Lemma 3 on the quadratic f̃(x) := 1
2 (x− xk)>∇2f(xk)(x− xk) to guarantee a decrease

of γσ2
2/2 with probability pdecr =

(
γ

4L1

)d/2
. Therefore, with probability pdecr,

f(xk+1)− f(xk) (34)

≤ (xk+1 − xk)>∇f(xk) +
1

2
(xk+1 − xk)>∇2f(xk)(xk+1 − xk) +

L2

6
‖xk+1 − xk‖3 (35)

≤ −γσ2
2/2 +

L2

6
σ3

2 , (36)

where we can ensure that (xk+1 − xk)>∇f(xk) ≤ 0 by testing for both s2 and −s2 in Algorithm 2
— which does not affect 1

2s>2 ∇2f(xk)s2.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

σ2 = 2γ
L2

E[f(xk+1) − f(xk)] = − 2γ3

3L22

σ22 (L2
6 σ2 − γ

2)

Figure 9: Selection of the value of σ2 which yields the best decrease.

Next, we seek to minimize Equation 36 with respect to σ2. To this, we take the derivative and set it
to zero: σ2 = 0 is a local maximizer, while σ2 = 2γ/L2 is the unique local minimizer for σ2 ≥ 0.
Hence, since Equation 36 goes to infinity for σ2 →∞, this minimizer is global (see Figure 9). For
this value of σ2, we have

f(xk+1)− f(xk) ≤ −2

3

γ3

L2
2

. (37)

Therefore, for γ = ε2/3, we have f(xk+1)− f(xk) ≤ Ω(ε2) for s2 ∈ E∗decr, defined in Equation 20.
We proceed by computing the expected decrease using the law of total expectation

E[f(xk+1)− f(xk)] (38)
= E[f(xk+1)− f(xk)|E∗decr] · Pr[E∗decr] + E[f(xk+1)− f(xk)|(E∗decr)

c] · Pr[(E∗decr)
c] (39)

≤ E[f(xk+1)− f(xk)|E∗decr] · Pr[E∗decr] (40)

= −pdecr · Ω(ε2). (41)

where in the first inequality we used the fact that, by the algorithm definition, f(xk+1)− f(xk) = 0
(rejected step).

B Analysis Random Search PI (Algorithm 2)

Lemma 7. Let f(·) be L1-smooth and L2-Hessian-Lipschitz, and assume ‖∇f(xk)‖ ≤ ε and
λmin(∇2f(xk)) ≤ −γ = −ε2/3. Under Assumption 2, RSPI (Algorithm 2) with σ2 = γ

2L2
(choice

as Theorem 5) yields E[f(xk+1)− f(xk)|xk] ≤ −Ω(ε2), independent of the problem dimension.

18

Proof. Since f(x) is L2-Lipschitz Hessian, under Assumption 2 we have

E[f(xk+1)− f(xk)|xk] (42)

≤ E[(xk+1 − xk)>∇f(xk)|xk] +
1

2
E
[
(xk+1 − xk)>∇2f(xk)(xk+1 − xk)|xk

]
(43)

+
L2

6
‖xk+1 − xk‖3 (44)

≤ −γσ2
2/2 + γσ2

2/4 +
L2

6
σ3

2 (45)

= σ2
2

(
−1

4
γ +

L2

6
σ2

)
, (46)

where we can ensure that (xk+1 − xk)>∇f(xk) ≤ 0 by testing for both s2 and −s2 in Algorithm 2
(which does not affect 1

2s>2 ∇2f(xk)s2 + L2

6 ‖s2‖3).

We therefore require σ2 ≤ 3
2L2

γ for the RHS in Eq. (36) to be negative. Choosing, as for the random
search case, σ2 = γ

2L2
,

E[f(xk+1)− f(xk)|xk] ≤ − 1

24

γ3

L2
2

. (47)

For γ = ε2/3, we obtain E[f(xk+1)− f(xk)|xk] ≤ −Ω(ε2).

C Analysis of DFPI (Algorithm 3)

C.1 Proof of Lemma 6

We show that line 7 in Algorithm 3 can be written as a noisy power iteration step. That is,

s
(t+1)
2 = s

(t)
2 − η

g+ − g−
2r

to show
= (I− η∇2f(x))s

(t)
2 + ξ

(t)
DFPI,

where ξ(t)
DFPI is an approximation error. We show that ξ(t)

DFPI can be made as small as needed if finite
difference hyperparameters r, c are chosen small enough. Therefore, Alg. 3 can be seen as a noisy
power method; hence one can motivate the rate in Lemma 9 using the results in [37, 29, 5], with an
argument similar to [10] (remark after the Assumption 1 of this reference).

Lemma 6. Let f(·) be L1-smooth and L2-Hessian-Lipschitz. The iteration of DFPI can be seen as a
step of a noisy power method: s

(t+1)
2 = (I−η∇2f(x))s

(t)
2 +ξ

(t)
DFPI, with ‖ξ(t)

DFPI‖ = O(rL2+ c
rL1

√
d).

In particular, ‖ξ(t)
DFPI‖ → 0 as r, cr → 0; hence the error can be made as small as needed within the

limits of numerical stability. In addition, if f(·) is quadratic, we have ‖ξ(t)
DFPI‖ = 0.

Proof. We note that g+ and g− are the finite-difference approximations of ∇f(x + rs
(t)
2) and

∇f(x− rs(t)
2), respectively:

g+ =

d∑
i=1

f(x + rs
(t)
2 + cei)− f(x + rs

(t)
2 − cei)

2c
ei, (48)

g− =

d∑
i=1

f(x− rs(t)
2 + cei)− f(x− rs(t)

2 − cei)
2c

ei. (49)

where r, c > 0. Let us denote by ξ(t)
1,+ and ξ(t)

1,− the approximation errors in the estimation of

∇f(x + rs
(t)
2) and∇f(x− rs(t)

2), respectively (properties of this error discussed at the end of the
proof). We have:

19

g+ − g−
2r

=
∇f(x + rs

(t)
2) + ξ

(t)
1,+ −∇f(x− rs(t)

2)− ξ(t)
1,−

2r
(50)

= ∇2f(x)s
(t)
2 + ξ

(t)
2 +

ξ
(t)
1,+ − ξ

(t)
1,−

2r
(51)

= ∇2f(x)s
(t)
2 + ξ

(t)
DFPI, (52)

where ξ(t)
2 is the error on the Hessian-vector product. To conclude the proof, we bound the errors

ξ
(t)
2 and ξ(t)

1,±.

Bound on ξ(t)
2 . This error vanishes as r → 0 under Assumption 1 (see main paper):

‖ξ(t)
2 ‖ =

∥∥∥∥∥∇f(x + rs
(t)
2)−∇f(x− rs(t)

2)

2r
−∇2f(x)s

(t)
2

∥∥∥∥∥ (53)

=

∥∥∥∥∥
∫ 1

0
∇2f(x− rs(t)

2 + 2urs
(t)
2)2rs

(t)
2 du

2r
−∇2f(x)s

(t)
2

∥∥∥∥∥ (54)

≤
∫ 1

0

∥∥∥∇2f(x + (2u− 1)rs
(t)
2)−∇2f(x)

∥∥∥ du (55)

≤ rL2

∫ 1

0

|2u− 1|du (56)

=
rL2

2
, (57)

where the second equality follows directly from the fundamental theorem of calculus (see e.g. the
introductory chapter in [47], proof of Lemma 1.2.2). The first inequality comes from Cauchy–Schwarz
and the definition of operator norm, after noting that ‖s(t)

2 ‖ = 1. The second inequality from Hessian
Lipschitzness. Note that for quadratics L2 = 0 so ξ(t)2 is identically zero.

Bound on ξ(t)
1,±. These error also vanish as c→ 0, and the proof is similar to the one above. This

was already shown e.g. in Lemma 3 (Appendix D) from [31]. We give a proof for completeness,
again based on the fundamental theorem of calculus.

g+ =
1

2c

d∑
i=1

(
f(x + rs

(t)
2 + cei)− f(x + rs

(t)
2 − cei)

)
ei (58)

=

d∑
i=1

eie
>
i

∫ 1

0

∇f(x + rs
(t)
2 + (2u− 1)cei)du. (59)

Therefore, using the subadditivity of the Euclidean norm and gradient Lipschitzness,

‖ξ(t)
1,+‖2 =

∥∥∥∥∥
d∑
i=1

eie
>
i

∫ 1

0

(
∇f(x + rs

(t)
2 + (2u− 1)cei)−∇f(x + rs

(t)
2)
)
du

∥∥∥∥∥
2

(60)

≤
d∑
i=1

(∫ 1

0

∥∥∥∇f(x + rs
(t)
2 + (2u− 1)cei)−∇f(x + rs

(t)
2)
∥∥∥ du)2

(61)

≤
d∑
i=1

L2c2
(∫ 1

0

|2u− 1|
)2

(62)

=
dL2c2

4
, (63)

where the first inequality holds true because the vectors in the sum are mutually orthogonal and
‖eie>i ‖2 = 1.Note that here an additional dependency on the dimension comes in — which is due
to the triangle inequality and the nature of the estimator (sum of d terms). The same bound can be
derived for ξ(t)

1,−. This concludes the proof.

20

The quadratic case. As mentioned above, in the quadratic case the Hessian is constant; hence
L2 = 0 and therefore ‖ξ(t)

2 ‖ = 0. However, from the bound above it seems that the bound on ‖ξ(t)
1,±‖

does not vanish, since L1 6= 0. This is an artefact of the proof technique. Indeed, for the quadratic
case we have g+ = f(x + rs

(t)
2) and g− = f(x− rs(t)

2). This can be seen by inspecting the integral
in Equation 59: assuming f(x) = C + (x− x∗)>H(x− x∗) we have∫ 1

0

∇f(x + rs
(t)
2 + (2u− 1)cei)du =

∫ 1

0

H(x + rs
(t)
2 + (2u− 1)cei − x∗)du (64)

= H(x + rs
(t)
2 − x∗) + H

∫ 1

0

(2u− 1)ceidu (65)

= H(x + rs
(t)
2 − x∗) (66)

= ∇f(x + rs
(t)
2). (67)

This concludes the proof.

C.2 Lemma 9 and results on convergence of (noisy) power methods

Finding the smallest eigenvalue (assumed to be negative) of the Hessian ∇2f(xt)) is equivalent to
the one of finding the largest eigenvalue of A = I− η∇2f(xt), where η is a small positive number
such that η ≤ 1/‖∇2f(xt)‖ (the spectral norm of ∇2f(xt)). For this choice of η, I − η∇2f(xt)
is positive semidefinite, hence one can use an (inexact) power method to retrieve the maximum
eigenvalue. We first present the standard error analysis of the power iteration (which we adapt
from [25]), assuming we have access to the true Hessian. Then, we discuss the setting where we can
only compute approximate Hessian-vector products (analysis adapted from [29]). Finally, we present
the bound for the Derivative-Free Power Iteration (DFPI) algorithm (Alg. 3).

C.2.1 Warm-up: error analysis for the exact power method

Let A ∈ Rd×d be a positive definite matrix with eigenvalues a1 > a2 ≥ . . . ad > 0, and correspond-
ing eigenvectors v1,v2, . . . ,vd. Eigenvalues are counted together with their algebraic multiplicity.
We seek an approximation for the dominant eigendirection v1. The power method on the positive
semidefinite matrix A can be found as Algorithm 4.

Algorithm 4 POWER METHOD (EXACT, ACCESS TO HESSIAN-VECTOR PRODUCTS REQUIRED)
1: INPUT : A matrix A ∈ Rd×d with eigenvalues a1 > a2 ≥ . . . ad > 0.
2: Randomly initialize v(0) ∼ Sd−1

3: for t = 0 . . . T − 1 do
4: v+ = Av(t)

5: v(t+1) = v+/‖v+‖
6: end for
7: OUTPUT : v(T) approximating v1, leading eigenvector of A.

We present the fundamental yet simple result, confirming that the power iteration step decreases the
distance to the dominant eigendirection. We recall that ∠(v,u) := arccos 〈v,u〉

‖u‖·‖v‖ .

Lemma 14. Consider a step of Alg. 4), tan(∠(v(t+1),v1)) ≤ a2
a1

tan(∠(v(t),v1)).

Proof. First, we write v(t) in the eigenbasis {vi}di=1: v(t) =
∑d
i=1 α

(t)
i vi. Crucially, note that

tan(∠(v(t),v1)) =

√∑d
j=2(α

(t)
j)2

α
(t)
1

. (68)

Since v+ =
∑d
i=1 aiα

(t)
i vi, we have that

21

tan(∠(v(t+1),v1)) = tan(∠(v+,v1)) =

√∑d
j=2 a

2
j (α

(t)
j)2

a1α
(t)
1

≤ a2

a1
tan(∠(v(t),v1)). (69)

As noted by [29], the dependence on the eigenvalue separation arises already in the classical perturba-
tion argument of Davis-Kahan [17]. If a1 has multiplicity greater than 1, then of course the ratio will
be ak/a1, where ak is the first eigenvalue strictly smaller than a1. More on this point can be found in
Remark 2.

From the lemma above, we can easily deduce the error on the eigenvalue computation

Theorem 15. Algorithm 4 outputs a vector v(T) such that |(v(T))>Av(T) − a1| ≤ εa1 if

T ≥ a1

2(a1 − a2)
log

(
tan2(∠(v(0),v1))

ε

)
. (70)

Moreover, as also mentioned in Lemma 2.5 in [29] and Lemma 2.2 in [5], if v(0) is randomly
initialized on the unit sphere, the main result in [50] implies that with probability 1− δ − eΩ(d) we
have tan2(∠(v(0),v1)) ≤ d/δ2. Hence, with probability 1− δ − eΩ(d), we have

T ≥ a1

2(a1 − a2)
log

(
d

εδ2

)
. (71)

Proof. Note that since v(T) is normalized,

tan2(∠(v(T),v1))2 =

∑d
j=2(α

(T)
j)2

(α
(T)
1)2

=
1− (α

(T)
1)2

(α
(T)
1)2

, (72)

therefore

(α
(T)
1)2 =

1

1 + tan2(∠(v(T),v1))
,

d∑
j=2

(α
(T)
j)2 =

tan2(∠(v(T),v1))2

1 + tan2(∠(v(T),v1))
. (73)

We have the following bound:

|(v(T))>Av(T) − a1| =

∣∣∣∣∣a1(α
(T)
1)2 +

d∑
i=2

ai(α
(T)
i)2 − a1

∣∣∣∣∣ (74)

= a1 − a1(α
(T)
1)2 −

d∑
i=2

ai(α
(T)
i)2 (75)

≤ a1 − a1
1

1 + tan2(∠(v(T),v1))
− ad

tan2(∠(v(T),v1))

1 + tan2(∠(v(T),v1))
(76)

=
tan2(∠(v(T),v1))

1 + tan2(∠(v(T),v1))
(a1 − ad) (77)

≤ a1 tan2(∠(v(T),v1)) (78)

where the second equality is given by the fact that a1 is the biggest eigenvalue of A. All in all, we
need tan2(∠(v(T),v1)) to be smaller than ε/(a1 − ad). Thanks to Lemma 14, we have that

tan2(∠(v(T),v1)) ≤
(
a2

a1

)2T

tan2(∠(v(0),v1)). (79)

Therefore, we require
(
a2
a1

)2T

a1 tan2(∠(v(0),v1)) ≤ εa1, which can be written as,(
a1

a2

)2T

≥ tan2(∠(v(0),v1))

ε
. (80)

22

We conclude by taking the log on both sides:

T ≥ 1

2 log(a1/a2)
log

(
tan2(∠(v(0),v1))

ε

)
(81)

Since, for all x ∈ R, log(x) ≥ 1− 1
x and a1 > a2, the above expression is verified if

T ≥ a1

2(a1 − a2)
log

(
tan2(∠(v(0),v1))

ε

)
(82)

Remark 1. Note that Theorem 15 is exactly equivalent to Theorem 8.2.1 in [25]. Here we followed a
proof more similar to the one in [29].

Remark 2 (Eigen-gap dependency). The bound in Theorem 15 depends on the eigen-gap a1−a2: as
a1 and a2 get closer, the result suggests that we need a very large number of iterations to find a good
approximation of v1. This is true because the power method is confounded by v2, and takes a long
time to “decide” which one between v1 and v2 is dominant. However, this of course does not imply
that the complexity in finding v(T) such that |(v(T))>Av(T)−a1| ≤ ε increases — this is an artefact
of our simple analysis (inspired by [29, 25, 5]), which crucially goes through Lemma 14 to derive the
bound. Indeed, as the next theorem shows, it is possible to directly remove this dependency.

Theorem 16 (Consequence of Thm. 3.1 and Thm. 4.1 in [37]). Let v(0) be initialized randomly on the
surface of the unit sphere. The power method returns a vector v(T) such that |(v(T))>Av(T)−a1| ≤
εa1 in T = O(log(d)/ε) iterations, in expectation. For the result to hold with probability 1− δ, one
instead needs at least T = O(log(d/δ2)/ε) iterations.

This results in also cited in [56], where the bound above is used to conclude that, if λmin(∇2f(x)) ≤
−γ and ‖∇2f(x)‖ ≤ L1, the power method on (I− η∇2f(x)) finds a direction v(T) such that, with
probability 1− δ, (v(T))>∇2f(x)v(T) ≤ −γ2 in O

(
L1

γ log(d/δ2)
)

iterations.

This proves directly a version of Lemma 9 for the case of vanishing error.

Lemma 17 (Noiseless version of Lemma 9). Let the parameters of DFPI be such that the error
ξDFPI is vanishing (possible within the limits of numerical stability by Lemma 6). Let η ≤ 1/L1. Let
γ = ε2/3; for a fixed RSPI iteration, TDFPI = O

(
ε−2/3L1 log

(
d
δ2

))
DFPI iterations are enough to

ensure validity of Assumption 2 (without the expectation sign) at xk with probability 1− δ − eΩ(d).

Proof. Direct consequence of the reasoning above, supported by Lemma 6.

C.2.2 Error analysis for the noisy power method

We now consider the case where Av cannot be computed exactly (Algorithm 5): we denote by ξ(t)

the error in computing the Hessian-vector product Av(t).

Algorithm 5 POWER METHOD (NOISY, APPROXIMATE HESSIAN-VECTOR PRODUCTS PERMITTED)
1: INPUT : A matrix A with eigenvalues a1 > a2 ≥ . . . ad.
2: Randomly initialize v(0) ∼ Sd−1

3: for t = 0 . . . T − 1 do
4: v+ = approx(Av(t)) = Av(t) + ξ(t)

5: v(t+1) = v+/‖v+‖
6: end for
7: OUTPUT : v(T), approximating v1, leading eigenvector of A

We are now ready to state the main result we are going to use on the noisy power method, presented in
the main text in a less precise way, as Lemma 9. This result was first derived in [29], and can be seen
as an extension to Theorem 15. In plain english: for small enough noise, the bound in Theorem 15
still holds with arbitrarily high probability.

23

Theorem 18 (Direct consequence of Corollary 1.1 in [29]). In the context of Algorithm 5, fix the
desired accuracy ε ≤ 1/2 and a failure probability δ. Assume that for all iterations t the noise is
small enough: (1) 5‖ξ(t)‖ ≤ ε(a1 − a2) and (2) 5|v>1 ξ

(t)| ≤ δ(a1 − a2)/
√
d. With probability

1− δ − e−Ω(d), Algorithm 5 returns v(T) such that |(v(T))>Av(T) − a1| ≤ εa1 if

T ≥ O
(

a1

a1 − a2
log

(
d

εδ2

))
. (83)

Proof. In the proof of Theorem 15, we showed that

|(v(T))>Av(T) − a1| ≤ tan2(∠(v(T),v1)) · (a1 − ad). (84)

This is enough to complete the result given Corollary 1.1 in [29].

The proof of Lemma 9 then follows from a generalization of Theorem 16 to the noisy case (under the
requirement of small enough noise). This is possible since the bounds in Theorem 18 and Theorem 15
are equivalent — meaning that the geometry of convergence is not drastically affected by noise.

C.3 How to speed up DFPI with SPSA: an experimental motivation

We study some interesting properties of the SPSA gradient estimator, introduced by [53], in the
context of DFPI (Algorithm 3, main paper). In particolar, we consider using SPSA instead of
finite-difference(FD), which is the base for our theory (Thm. 10)

gSPSA
± =

d∑
i=1

f(x± rs(t)
2 + c∆)− f(x± rs(t)

2 − c∆)

2c∆i
ei.

→ 4 function evaluations to get estimates of∇f(x± s
(t)
2).

gFD
+ =

d∑
i=1

f(x± rs(t)
2 + cei)− f(x± rs(t)

2 − cei)
2c

ei

→ 4d function evaluations to get estimates of∇f(x± s
(t)
2).

The SPSA estimator is asymptotically unbiased, but variance might be independent of the
hyperparamerter c. Consider f(x1, x2) = x2

1 − x2
2, we want to approximate its gradient using

SPSA. Since perturbation is (∆1,∆2), we have f(x + c∆) − f(x − c∆) = 4c∆1x1 − ∆2x2.
Therefore gSPSA =

∑2
i=1

f(x+c∆)−f(x−c∆)
2c∆i

ei =
∑2
i=1

2∆1x1−2∆2x2

∆i
ei. Since ∆i are Bernoulli,

then E[gSPSA] = ∇f . However, the estimator variance is finite and independent of c.

Experimental comparison. From the result in the paragraph above, one might conclude that SPSA
cannot provide a satisfactory approximation of Hessian-vector products, and therefore cannot be used
as a valid alternative to FD in the context of an approximate power method such as DFPI. However, in

Figure 10 & 11 we show that, for small enough η, the update s
(t+1)
2 = s

(t)
2 − η

gSPSA
+ −gSPSA

−
2r , s

(t+1)
2 =

s
(t+1)
2 /‖s(t+1)

2 ‖ can effectively build a vector s2 aligned with negative curvature, even as the problem
dimension increases. In these experiments, we consider applying DFPI to estimate the negative
curvature direction ed of f(x) = x>diag(λ1, λ2, · · · , λd)x, with λd < 0 (non-axis aligned case
discussed later). As we saw in Prop. 8, the finite difference estimator yields an exact power method
on this function. Instead, SPSA yields an inexact power method where the error is independent of
r, c (see last paragraph and Fig. 12). As expected, SPSA does not actually converge to the leading
eigenvector. However, it can always be tuned to yield an approximation which satisfies Assumption 2,
in a total number of function evaluations which is actually smaller than FD. Further research is needed
to better understand this phenomenon. However, this motivates the use of SPSA as a cheap alternative
to FD in DFPI. In the experiments section of the main paper, we indeed show that this approximation
is enough to yield a satisfactory improvement over vanilla method which do not consider computing
negative curvature. As can be evinced from the last paragraph and from the proof of Prop. 8, the
results in this case are independent of the values of r and c; however, they could in principle depend
on the landscape rotation. We show in Figure 12 that this is not the case using two random rotations.

24

10
0

10
1

10
2

10
3

10
4

10
5

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-20

10
-15

10
-10

10
-5

10
0

10
5

10
0

10
1

10
2

10
3

10
4

10
5

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
2

10
4

10
6

10
8

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
0

10
2

10
4

10
6

10
8

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Figure 10: Experiment 1: f(x) = x>diag(λ1, λ2, · · · , λd)x, λd = −0.001. Settings described in
the paragraph above.

10
0

10
1

10
2

10
3

10
4

10
5

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
2

10
4

10
6

10
8

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
0

10
1

10
2

10
3

10
4

10
5

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
0

10
2

10
4

10
6

10
8

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

Figure 11: Experiment 2: f(x) = x>diag(λ1, λ2, · · · , λd)x, λd = −0.1. Settings described in the
paragraph above.

Figure 12: Experiment 2: f(x) = x>U>diag(λ1, λ2, · · · , λd)Ux, λd = −0.1, where U is a
random orthogonal matrix. Dynamics for two two different random orthogonal matrices are shown,
where we additionally also decreased c and r. The evolution is similar to the one in Figure 10,
showing that SPSA is robust to both landscape rotations and hyperparameter choice.

25

D Experimental Results

All of our experiments are conducted on the Google Colaboratory [8] environment without any
hardware accelerators.

D.1 Function with growing dimension

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Level Lines

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Anti-Gradient Field

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x1

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Gradient Norm

Figure 13: The landscape of the objective f(x1, · · · , xd, y) = 1
4

∑d
i=1 x

4
i − y

∑d
i=1 xi + d

2y
2 for

d = 1. A blue cross denotes a strict saddle point, whereas a red star corresponds to a global minimizer.

0 100 200 300 400 500
10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

f(x
k)

f*

Input Dimension 5

RS
STP
BDS
RSPI
AHDS

0 200 400 600 800 1000 1200
10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101
Input Dimension 20

0 250 500 750 1000 1250 1500 1750 2000
10 7

10 5

10 3

10 1

101

Input Dimension 100

0 250 500 750 1000 1250 1500 1750 2000
10 3

10 2

10 1

100

101

102 Input Dimension 200

0 100 200 300 400 500
Iteration (k)

10 8

10 6

10 4

10 2

100

||
f(x

k)|
| RS

STP
BDS
RSPI
AHDS

0 200 400 600 800 1000 1200
Iteration (k)

10 8

10 6

10 4

10 2

100

0 250 500 750 1000 1250 1500 1750 2000
Iteration (k)

10 5

10 4

10 3

10 2

10 1

100

101

0 250 500 750 1000 1250 1500 1750 2000
Iteration (k)

10 5

10 4

10 3

10 2

10 1

100

101

Figure 14: Empirical performance while minimizing f(x1, · · · , xd, y) = 1
4

∑d
i=1 x

4
i − y

∑d
i=1 xi +

d
2y

2 against the number of iterations. Confidence intervals show min-max intervals over ten runs. All
algorithms are initialized at the strict saddle point across all runs.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
10 15

10 13

10 11

10 9

10 7

10 5

10 3

10 1

f(x
t)

f*

Input Dimension 5

RS
STP
BDS
RSPI
AHDS-Unif

0.0 0.1 0.2 0.3 0.4 0.5
10 4

10 3

10 2

10 1

100

101
Input Dimension 20

0.0 0.5 1.0 1.5 2.0 2.5 3.0
10 1

100

101

Input Dimension 100

0 2 4 6 8 10 12 14 16
10 1

100

101

102 Input Dimension 200

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (sec)

10 8

10 6

10 4

10 2

100

||
f(x

t)|
| RS

STP
BDS
RSPI
AHDS

0.0 0.1 0.2 0.3 0.4 0.5
Time (sec)

10 8

10 6

10 4

10 2

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (sec)

10 5

10 4

10 3

10 2

10 1

100

101

0 2 4 6 8 10 12 14 16
Time (sec)

10 5

10 4

10 3

10 2

10 1

100

101

Figure 15: Empirical performance while minimizing the objective defined in the main paper against
wall-clock time. Confidence intervals show min-max intervals over ten runs. All algorithms are
initialized at the strict saddle point across all runs.

26

D.2 Rastrigin function

0 100 200 300 400 500

10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

f(x
k)

f*

Input Dimension 10

RS
STP
BDS
RSPI
AHDS

0 100 200 300 400 500

10 5

10 4

10 3

10 2

10 1

100

101

Input Dimension 20

0 100 200 300 400 500

10 3

10 2

10 1

100

101

Input Dimension 100

0 100 200 300 400 500

10 3

10 2

10 1

100

101

Input Dimension 200

0 100 200 300 400 500
Iteration (k)

10 9

10 7

10 5

10 3

10 1

101

||
f(x

k)|
|

RS
STP
BDS
RSPI
AHDS

0 100 200 300 400 500
Iteration (k)

10 9

10 7

10 5

10 3

10 1

101

0 100 200 300 400 500
Iteration (k)

10 9

10 7

10 5

10 3

10 1

101

0 100 200 300 400 500
Iteration (k)

10 9

10 7

10 5

10 3

10 1

101

Figure 16: Empirical performance while minimizing the Rastrigin function against the number of
iterations. Confidence intervals show min-max intervals over ten runs. All algorithms are initialized
at a strict saddle point across all runs.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
10 4

10 3

10 2

10 1

100

101

f(x
t)

f*

Input Dimension 10

RS
STP
BDS
RSPI
AHDS

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
10 4

10 3

10 2

10 1

100

101

102 Input Dimension 20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10 4

10 3

10 2

10 1

100

101

102 Input Dimension 100

0 1 2 3 4 5
10 4

10 3

10 2

10 1

100

101

102 Input Dimension 200

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Time (sec)

10 9

10 7

10 5

10 3

10 1

101

||
f(x

t)|
|

RS
STP
BDS
RSPI
AHDS

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Time (sec)

10 9

10 7

10 5

10 3

10 1

101

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (sec)

10 9

10 7

10 5

10 3

10 1

101

0 1 2 3 4 5
Time (sec)

10 9

10 7

10 5

10 3

10 1

101

Figure 17: Empirical performance while minimizing the Rastrigin function against wall-clock time.
Confidence intervals show min-max intervals over ten runs. All algorithms are initialized at a strict
saddle point across all runs.

Initialization process. The critical points of the Rastrigin function satisfy

xi + 10π sin(2πxi) = 0 (85)

for all i = 1, ..., d. The point x = 0 is the unique global minimizer. Stationary points include local
minimizers, local maximizers and saddle points. One solution is given by xi ≈ 0.503 (truncated to
three decimal points). We consider the following initialization

xi =

{
0.503 if i ∈ I
0 otherwise,

(86)

where I is a set of coordinates with cardinality strictly smaller than d. In this setup, each non-zero
coordinate will be a direction of negative curvature. If we set I = {1, ..., d} the point x is a local
maximizer.

In our experiments we choose I to have a single coordinate (picked randomly in each experiment
repetition). Based on Lemma 3, we expect that having a single direction of negative curvature will

27

0.0000 0.0005 0.0010 0.0015 0.0020
Coordinate Value

0

20

40

60

80

100

Oc
cu

ra
nc

es

Histogram of the final coordinate vector (RSPI)

0.0 0.2 0.4 0.6 0.8
Gradient Value

0

20

40

60

80

100

Oc
cu

ra
nc

es

Histogram of the final gradient vector (RSPI)

Figure 18: Histogram of the point coordinates (left) and gradient values (right) at the final iterate of
RSPI for d = 200.

challenge the core mechanism of each algorithm while trying to escape the saddle, especially as
the input dimension increases. The results in Figure 16 support our theoretical argument that as the
problem dimension grows the probability of sampling a direction that is aligned with the direction of
negative curvature decreases exponentially. As a result, RS and STP fail to escape the saddle point
for d = 100, 200.

The rest of the algorithms converge quickly (for d = 100, 200 there is no significant progress after 25
iterations). We speculate that this behaviour is related to the initialization choice. Figure 18 shows
the distribution of the point coordinates and gradient values at the final iterate of RSPI for d = 200.
In both plots, we observe a cluster of values around zero and a stand-alone component. The later
corresponds to the same coordinate that was initialized to non-zero in order to give rise to a saddle
point. We observe that the coordinate moves closer to zero (the final coordinate value is less than
0.0020, whereas the initial value was 0.503) where the global minimizer occurs. This improvement is
achieved through the successful usage of DFPI. That is, RSPI successfully approximates the direction
of negative curvature in order to escape the saddle point and move closer to the minimum. Afterwards,
no significant progress is achieved via random sampling and that is why the performance curve
flattens out after a few iterations. The reason is that in order to achieve further progress via random
sampling, it is required to sample a direction that aligns with the single direction of non-zero gradient
(see Figure 18 (right)) and we expect that probability to decrease exponentially as the dimension
increases. That is why further progress can be achieved for d = 10, 20 but not for d = 100, 200.

D.3 Leading eigenvector problem

0 2000 4000 6000 8000 10000
Iteration (k)

10 4

10 2

100

102

104

106

108

f(x
k)

f*

RS
STP
BDS
RSPI
AHDS

0 2000 4000 6000 8000 10000
Iteration (k)

10 3

10 1

101

103

105

107

||
f(x

k)|
|

RS
STP
BDS
RSPI
AHDS-Unif

0 50 100 150 200 250 300 350 400
Time (sec)

101

102

103

104

105

106

107

108

f(x
t)

f*

RS
STP
BDS
RSPI
AHDS-Unif

0 50 100 150 200 250 300 350 400
Time (sec)

102

103

104

105

106

107

||
f(x

t)|
|

RS
STP
BDS
RSPI
AHDS-Unif

Figure 19: Empirical performance in finding the leading eigenvector of a 350-dimensional random
matrix against iteration and wall-clock time. Confidence intervals show min-max intervals over ten
runs. All algorithms are initialized at a strict saddle point across all runs.

28

E Algorithm Descriptions

Algorithm 6 Stochastic Three Points (STP)
1: INPUTS : η0 ∈ R+, φ : R+ → R+

2: Initialize x0

3: for k = 0 . . .K do
4: sk ∼ Sd−1

5: xk+1 = arg min
{
f(xk), f(xk + ηksk), f(xk − ηksk)

}
6: ηk+1 = φ(η0)
7: end for

Algorithm 7 Basic Direct Search (BDS)
1: INPUTS : ηmax > η0 > 0, γ > 1 > θ > 0, ρ : R+ → R+

2: Set k = 0 and initialize x0.
3: Generate a polling set Dk.
4: If there exists sk ∈ Dk such that

f(xk + ηksk) < f(xk)− ρ(ηk)

then declare the iteration successful, set xk+1 = xk +ηksk, ηk+1 = min{γηk, ηmax}, k = k+ 1
and go to step 4.

5: Otherwise, declare the iteration unsuccessful, set xk+1 = xk, ηk+1 = θηk, k = k+ 1 and go to
step 4.

Algorithm 8 Approximate Hessian Direct Search (AHDS)
1: INPUTS : ηmax > η0 > 0, γ > 1 > θ > 0, ρ : R+ → R+

2: Set k = 0 and initialize x0.
3: Generate a polling set Dk. If there exists s ∈ Dk such that

f(xk + ηks) < f(xk)− ρ(ηk) (87)

then declare iteration k successful with sk = s and go to 8. Otherwise go to 5.
4: If there exists s ∈ Dk such that Eq. (87) is satisfied with −s, then declare the iteration successful

with sk = −s and go to step 8. Otherwise, go to step 6.
5: Choose Bk as a subset ofDk with d linearly independent directions, which we index by u1, ...,ud.

If there exists s ∈ {ui + uj , 1 ≤ i < j ≤ d} such that Eq. (87) holds, then declare the iteration
successful with sk = s and go to step 8. Otherwise, go to step 7.

6: Define the Hessian approximation at iteration k as

(Hk)i,j =
f(xk + ηkui)− f(xk) + f(xk − ηkui)

η2
k

if i = j,

and

(Hk)i,j =
f(xk + ηkui + ηkuj)− f(xk + ηkui)− f(xk + ηkuj) + f(xk)

η2
k

if i < j,

for all i, j ∈ {1, ..., d}2. Compute a unitary eigenvector vk associated with the minimum
eigenvalue of Hk. If vk or −vk satisfy the decrease condition in Eq. (87), then declare the
iteration successful with sk equal to vk or −vk. Otherwise, declare the iteration unsuccessful
and go to step 8.

7: If the iteration was successful, set xk+1 = xk + ηksk and ηk+1 = min{γηk, ηmax}. Otherwise,
set xk+1 = xk and ηk+1 = θηk.

8: Increment k and go to step 4.

29

F Hyperparameter selection

For all tasks, the hyperparameters of each method are selected based on a coarse grid search procedure
that is refined heuristically by trial and error. The hyperparameters of RS and RSPI are initialized and
updated in the same manner, hence the only difference between the two is that RSPI explicitly extracts
negative curvature whereas the two-step RS samples a direction at random. In our experiments, we
keep σ2 constant and only update σ1 every Tσ1

∈ Z+ iterations using the update rule σ1 ← ρσ1

where ρ ∈ (0, 1). The parameters ρ and Tσ1
are also selected based on a coarse grid search. We run

DFPI for 20 iterations for all the results shown in the paper and we clarify in the following tables
whether Finite Differences (DFPI-FD) or SPSA (DFPI-SPSA) is used to approximate the gradient
evaluations within DFPI.

We illustrate the effect that some crucial parameters have on the performance of the two-step Random
Search and the Random Search PI algorithms. In the following figures, confidence intervals show
min-max intervals across five runs. All algorithms are initialized at the strict saddle point of the
objective

f(x1, · · · , xd, y) =
1

4

d∑
i=1

x4
i − y

d∑
i=1

xi +
d

2
y2. (88)

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 1.00

= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 1.25

= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 1.50

= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 1.75

= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 2.00

= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

Figure 20: Empirical behaviour of the vanilla RS algorithm while minimizing the objective defined
in Eq. 88 for d = 200 across different settings of the pair of parameters (σ1, ρ). The parameter Tσ1

is fixed to 10.

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

10 2

10 1

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 1.00
= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

10 2

10 1

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 1.25
= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

10 1

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 1.50
= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

10 1

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 1.75
= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

0 250 500 750 1000 1250 1500 1750 2000
Iteration Number (k)

10 1

100

101

lo
g(

f(x
k)

f*
)

d = 200, 1 = 2.00
= 0.930
= 0.945
= 0.960
= 0.975
= 0.990

Figure 21: Empirical behaviour of RSPI while minimizing the objective defined in Eq. 88 for d = 200
across different settings of the pair of parameters (σ1, ρ). The parameter Tσ1

is fixed to 10.

Table 1: Hyperparameters for the leading eigenvector task.

Method Parameters

d = 350

RS σ1 = 9.25, σ2 = 4.5, ρ = 0.97, Tσ1
= 25, TDFPI = 20

RSPI σ1 = 9.25, σ2 = 4.5, ρ = 0.97, Tσ1
= 25, TDFPI = 20, DFPI-SPSA

BDS η0 = 5.8, ηmax = 35.0, γ = 1.25, θ = 0.5, ρ(x) = 0

AHDS η0 = 5.8, ηmax = 35.0, γ = 1.25, θ = 0.5, ρ(x) = 0

30

Table 2: Hyperparameters for the objective in Eq. (88).

Method Parameters

d = 5

RS σ1 = 1.8, σ2 = 0.65, ρ = 0.6, Tσ1
= 10, TDFPI = 20

RSPI σ1 = 1.8, σ2 = 0.65, ρ = 0.6, Tσ1 = 10, TDFPI = 20, DFPI-SPSA
STP η0 = 2.5, φ(ηk) = 0.5ηk if k ≡ mod 10 (every 10 iterations)
BDS η0 = 0.8, ηmax = 10.0, γ = 1.25, θ = 0.5, ρ(x) = 0

AHDS η0 = 0.8, ηmax = 10.0, γ = 1.25, θ = 0.5, ρ(x) = 0

d = 20

RS σ1 = 1.75, σ2 = 0.65, ρ = 0.78, Tσ1 = 15, TDFPI = 20

RSPI σ1 = 1.75, σ2 = 0.65, ρ = 0.78, Tσ1 = 15, TDFPI = 20, DFPI-SPSA
STP η0 = 2.5, φ(ηk) = 0.5ηk if k ≡ mod 10 (every 10 iterations)
BDS η0 = 0.8, ηmax = 10.0, γ = 1.25, θ = 0.5, ρ(x) = 0

AHDS η0 = 0.8, ηmax = 10.0, γ = 1.25, θ = 0.5, ρ(x) = 0

d = 100

RS σ1 = 1.0, σ2 = 0.65, ρ = 0.95, Tσ1 = 15, TDFPI = 20

RSPI σ1 = 1.0, σ2 = 0.65, ρ = 0.95, Tσ1 = 15, TDFPI = 20, DFPI-SPSA
STP η0 = 2.5, φ(ηk) = 0.5ηk if k ≡ mod 10 (every 10 iterations)
BDS η0 = 5.0, ηmax = 20.0, γ = 1.25, θ = 0.5, ρ(x) = 0

AHDS η0 = 5.0, ηmax = 20.0, γ = 1.25, θ = 0.5, ρ(x) = 0

d = 200

RS σ1 = 1.75, σ2 = 0.65, ρ = 0.96, Tσ1 = 15, TDFPI = 20

RSPI σ1 = 1.75, σ2 = 0.65, ρ = 0.96, Tσ1 = 15, TDFPI = 20, DFPI-SPSA
STP η0 = 2.5, φ(ηk) = 0.5ηk if k ≡ mod 10 (every 10 iterations)
BDS η0 = 5.0, ηmax = 20.0, γ = 1.25, θ = 0.5, ρ(x) = 0

AHDS η0 = 5.0, ηmax = 20.0, γ = 1.25, θ = 0.5, ρ(x) = 0

31

Table 3: Hyperparameters for the Rastrigin function.

Method Parameters

d = 10

RS σ1 = 0.25, σ2 = 0.25, ρ = 0.83, Tσ1
= 5, TDFPI = 20

RSPI σ1 = 0.25, σ2 = 0.25, ρ = 0.83, Tσ1 = 5, TDFPI = 20, DFPI-FD
STP η0 = 0.25, φ(ηk) = η0/

√
k + 1

BDS η0 = 0.25, ηmax = 10.0, γ = 1.1, θ = 0.9, ρ(x) = 0

AHDS η0 = 0.25, ηmax = 10.0, γ = 1.1, θ = 0.9, ρ(x) = 0

d = 20

RS σ1 = 0.255, σ2 = 0.25, ρ = 0.83, Tσ1 = 5, TDFPI = 20

RSPI σ1 = 0.255, σ2 = 0.25, ρ = 0.83, Tσ1 = 5, TDFPI = 20, DFPI-FD
STP η0 = 0.25, φ(ηk) = η0/

√
k + 1

BDS η0 = 0.25, ηmax = 10.0, γ = 1.1, θ = 0.9, ρ(x) = 0

AHDS η0 = 0.25, ηmax = 10.0, γ = 1.1, θ = 0.9, ρ(x) = 0

d = 100

RS σ1 = 0.15, σ2 = 0.25, ρ = 0.83, Tσ1 = 5, TDFPI = 20

RSPI σ1 = 0.15, σ2 = 0.25, ρ = 0.83, Tσ1 = 5, TDFPI = 20, DFPI-FD
STP η0 = 0.25, φ(ηk) = η0/

√
k + 1

BDS η0 = 0.25, ηmax = 10.0, γ = 1.1, θ = 0.9, ρ(x) = 0

AHDS η0 = 0.25, ηmax = 10.0, γ = 1.1, θ = 0.9, ρ(x) = 0

d = 200

RS σ1 = 0.15, σ2 = 0.25, ρ = 0.83, Tσ1 = 5, TDFPI = 20

RSPI σ1 = 0.15, σ2 = 0.25, ρ = 0.83, Tσ1 = 5, TDFPI = 20, DFPI-FD
STP η0 = 0.25, φ(ηk) = η0/

√
k + 1

BDS η0 = 0.25, ηmax = 10.0, γ = 1.1, θ = 0.9, ρ(x) = 0

AHDS η0 = 0.25, ηmax = 10.0, γ = 1.1, θ = 0.9, ρ(x) = 0

32

