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Abstract

Training-time safety violations have been a major concern when we deploy rein-1

forcement learning algorithms in the real world. This paper explores the possibility2

of safe RL algorithms with zero training-time safety violations in the challenging3

setting where we are only given a safe but trivial-reward initial policy without4

any prior knowledge of the dynamics and additional offline data. We propose an5

algorithm, Co-trained Barrier Certificate for Safe RL (CRABS),which iteratively6

learns barrier certificates, dynamics models, and policies. The barrier certificates7

are learned via adversarial training and ensure the policy’s safety assuming cali-8

brated learned dynamics. We also add a regularization term to encourage larger9

certified regions to enable better exploration. Empirical simulations show that zero10

safety violations are already challenging for a suite of simple environments with11

only 2-4 dimensional state space, especially if high-reward policies have to visit12

regions near the safety boundary. Prior methods require hundreds of violations to13

achieve decent rewards on these tasks, whereas our proposed algorithms incur zero14

violations.15

1 Introduction16

Researchers have demonstrated that reinforcement learning (RL) can solve complex tasks such as17

Atari games [Mnih et al., 2015], Go [Silver et al., 2017], dexterous manipulation tasks [Akkaya et al.,18

2019], and many more robotics tasks in simulated environments [Haarnoja et al., 2018]. However,19

deploying RL algorithms to real-world problems still faces the hurdle that they require many unsafe20

environment interactions. For example, a robot’s unsafe environment interactions include falling21

and hitting other objects, which incur physical damage costly to repair. Many recent deep RL22

works reduce the number of environment interactions significantly (e.g., see Haarnoja et al. [2018],23

Fujimoto et al. [2018], Janner et al. [2019], Dong et al. [2020], Luo et al. [2019], Chua et al. [2018]24

and reference therein), but the number of unsafe interactions is still prohibitive for safety-critical25

applications such as robotics, medicine, or autonomous vehicles [Berkenkamp et al., 2017].26

Reducing the number of safety violations may not be sufficient for these safety-critical applications—27

we may have to eliminate them. This paper explores the possibility of safe RL algorithms with zero28

safety violations in both training time and test time. We also consider the challenging setting where29

we are only given a safe but trivial-reward initial policy.30

A recent line of works on safe RL design novel actor-critic based algorithms under the constrained31

policy optimization formulation [Thananjeyan et al., 2021, Srinivasan et al., 2020, Bharadhwaj et al.,32

2020, Yang et al., 2020, Stooke et al., 2020]. They significantly reduce the number of training-time33

safety violations. However, these algorithms fundamentally learn the safety constraints by contrasting34
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the safe and unsafe trajectories. In other words, because the safety set is only specified through the35

safety costs that are observed postmortem, the algorithms only learn the concept of safety through36

seeing unsafe trajectories. Therefore, these algorithms cannot achieve zero training-time violations.37

For example, even for the simple 2D inverted pendulum environment, these methods still require at38

least 80 unsafe trajectories (see Figure 2 in Section 6).39

Another line of work utilizes ideas from control theory and model-based approach [Cheng et al.,40

2019, Berkenkamp et al., 2017, Taylor et al., 2019, Zeng et al., 2020]. These works propose sufficient41

conditions involving certain Lyapunov functions or control barrier functions that can certify the safety42

of a subset of states or policies [Cheng et al., 2019]. These conditions assume access to calibrated43

dynamical models. They can, in principle, permit safety guarantees without visiting any unsafe44

states because, with the calibrated dynamics, we can foresee future danger. However, control barrier45

functions are often non-trivially handcrafted with prior knowledge of the environments [Ames et al.,46

2019, Nguyen and Sreenath, 2016].47

This work aims to design model-based safe RL algorithms that achieve zero training-time safety48

violations by learning the barrier certificates iteratively. We present the algorithm Co-trained Barrier49

Certificate for Safe RL (CRABS), which alternates between learning barrier certificates that certify50

the safety of larger regions of states, optimizing the policy, collecting more data within the certified51

states, and refining the learned dynamics with data.52

The work of Richards et al. [2018] is a closely related prior result, which learns a Lyapunov function53

given a fixed dynamics model via discretization of the state space. Our work significantly extends54

it with three algorithmic innovations. First, we use adversarial training to learn the certificates,55

which avoids discretizing state space and can potentially work with higher dimensional state space56

than the two-dimensional problems in Richards et al. [2018]. Second, we do not assume a given,57

globally accurate dynamics; instead, we learn the dynamics from safe explorations. We achieve58

this by co-learning the certificates, dynamics, and policy to iteratively grow the certified region and59

improve the dynamics and still maintain zero violations. Thirdly, the work Richards et al. [2018]60

only certifies the safety of some states and does not involve learning a policy. In contrast, our work61

learns a policy and tailors the certificates to the learned policies. In particular, our certificates aim to62

certify only states near the trajectories of the current and past policies—this allows us to not waste63

the expressive power of the certificate parameterization on irrelevant low-reward states.64

We evaluate our algorithms on a suite of tasks, including a few where achieving high rewards requires65

careful exploration near the safety boundary. For example, in the Swing environment, the goal is to66

swing a rod with the largest possible angle under the safety constraints that the angle is less than 90◦.67

We show that our method reduces the number of safety violations from several hundred to zero on68

these tasks.69

2 Setup and Preliminaries70

2.1 Problem Setup71

We consider the standard RL setup with an infinite-horizon deterministic Markov decision process
(MDP). An MDP is specified by a tuple (S,A, γ, r, µ, T ), where S is the state space, A is the action
space, r : S ×A → R is the reward function, 0 ≤ γ < 1 is the discount factor, µ is the distribution
of the initial state, and T : S ×A → S is the deterministic dynamics model. Let ∆(X ) denote the
family of distributions over a set X . The expected discounted total reward of a policy π : S → ∆(A)
is defined as

J(π) = E

[ ∞∑
i=0

γir(si, ai)

]
,

where s0 ∼ µ, ai ∼ π(si), si+1 = T (si, ai) for i ≥ 0. The goal is to find a policy π which72

maximizes J(π).73

Let Sunsafe ⊂ S be the set of unsafe states specified by the user. The user-specified safe set Ssafe is74

defined as S\Sunsafe. A state s is (user-specified) safe if s ∈ Ssafe. A trajectory is safe if and only if all75

the states in the trajectory are safe. An initial state drawn from µ is assumed to safe with probability 1.76

We say a deterministic policy π is safe starting from state s, if the infinite-horizon trajectory obtained77

by executing π starting from s is safe. We also say a policy π is safe if it is safe starting from an78
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initial state drawn from µ with probability 1. A major challenge toward safe RL is the existence of79

irrecoverable states which are currently safe but will eventually lead to unsafe states regardless of80

future actions. We define the notion formally as follows.81

Definition 1. A state s is viable iff there exists a policy π such that π is safe starting from s, that is,82

executing π starting from s for infinite steps never leads to an unsafe state. A user-specified safe state83

that is not viable is called an irrecoverable state.84

We remark that unlike Srinivasan et al. [2020], Roderick et al. [2020], we do not assume all safe85

states are viable. We rely on the extrapolation and calibration of the dynamics to foresee risks. A86

calibrated dynamics model T̂ predicts a confidence region of states T̂ (s, a) ⊆ S, such that for any87

state s and action a, we have T (s, a) ∈ T̂ (s, a).88

2.2 Preliminaries on Barrier Certificate89

Barrier certificates are powerful tools to certify the stability of a dynamical system. Barrier certificates90

are often applied to a continuous-time dynamical system, but here we describe its discrete-time version91

where our work is based upon. We refer the readers to Prajna and Jadbabaie [2004], Prajna and92

Rantzer [2005] for more information about continuous-time barrier certificates.93

Given a discrete-time dynamical system st+1 = f(st) without control starting from s0, a function94

h : S → R is a barrier certifcate if for any s ∈ S such that h(s) ≥ 0, h(f(s)) ≥ 0. Zeng et al.95

[2020] considers a more restrictive requirement: For any state s ∈ S , h(f(s)) ≥ αh(s) for a constant96

0 ≤ α < 1.97

it is easy to use a barrier certificate h to show the stability of the dynamical system. Let Ch =98

{s : h(s) ≥ 0} be the superlevel set of h. The requirement of barrier certificates directly translates99

to the requirement that if s ∈ Ch, then f(s) ∈ Ch. This property of Ch, which is known as the100

forward-invariant property, is especially useful in safety-critical settings: suppose a barrier certificate101

h such that Ch does not contain unsafe states and contains the initial state s0, then it is guaranteed102

that Ch contains the entire trajectory of states {st}t≥0 which are safe.103

Finding barrier certificates requires a known dynamics f , which often can only be approximated in104

practice. This issue can be resolved by using a well-calibrated dynamics model f̂ , which predicts105

a confidence interval containing the true output. When a calibrated dynamics model f̂ is used, we106

require that for any s ∈ S, mins′∈f̂(s) h(s′) ≥ 0.107

Control barrier functions [Ames et al., 2019] are extensions to barrier certificates in the control setting.108

That is, control barrier functions are often used to find an action to meet the safety requirement109

instead of certifying the stability of a closed dynamical system. In this work, we simply use barrier110

certificates because in Section 3, we view the policy and the calibrated dynamics model as a whole111

closed dynamical system whose stability we are going to certify.112

3 Learning Barrier Certificates via Adversarial Training113

This section describes an algorithm that learns a barrier certificate for a fixed policy π under a114

calibrated dynamics model T̂ . Concretely, to certify a policy π is safe, we aim to learn a (discrete-115

time) barrier certificate h that satisfies the following three requirements.116

R.1. For s0 ∼ µ, h(s0) ≥ 0 with probability 1.117

R.2. For every s ∈ Sunsafe, h(s) < 0.118

R.3. For any s such that h(s) ≥ 0, mins′∈T̂ (s,π(s)) h(s) ≥ 0.119

Requirement R.1 and R.3 guarantee that the policy π will never leave the set Ch = {s ∈ S : h(s) ≥120

0} by simple induction. Moreover, R.2 guarantees that Ch only contains safe states and therefore the121

policy never visits unsafe states.122

In the rest of the section, we aim to design and train such a barrier certificate h = hφ parametrized by123

neural network φ.124
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hφ parametrization. The three requirements for a barrier certificate are challenging to simultane-125

ously enforce with constrained optimization involving neural network parameterization. Instead, we126

will parametrize hφ with R.1 and R.2 built-in such that for any φ, hφ always satisfies R.1 and R.2.127

We assume the initial state s0 is deterministic (the parameterization can be extended to multiple128

initial states.) To capture the known user-specified safety set, we first handcraft a continuous function129

Bsafe : S → R≥0 satisfying Bsafe(s) ≈ 0 for typical s ∈ Ssafe and Bsafe(s) > 1 for any s ∈ Sunsafe.1130

The construction of Bsafe does not need prior knowledge of irrecoverable states, but only the user-131

specified safety set Ssafe. To further encode the user-specified safety set into hφ, we choose hφ to132

be of form hφ(s) = 1 − Softplus(fφ(s) − fφ(s0)) − Bsafe(s), where fφ is a neural network, and133

Softplus(x) = log(1 + ex).134

Because s0 is safe and Bsafe(s0) ≈ 0, hφ(s0) ≈ 1 − Softplus(0) > 0. Therefore hh satisfies R.1.135

Moreover, for any s ∈ Sunsafe, we have hφ(s) < 1 − Bsafe(s) < 0, so hφ in our parametrization136

satisfies R.2 by design.137

Training barrier certificates. We now move on to training φ to satisfy R.3. Let138

U(s, a, h) := max
s′∈T̂ (s,a)

−h(s′). (1)

Then, R.3 requires U(s, π(s), hφ) ≤ 0 for any s ∈ Chφ , The constraint in R.3 naturally leads up to139

formulate the problem as a min-max problem. Define our objective function to be140

C∗(hφ, U, π) := max
s∈Chφ

U(s, π(s), hφ) = max
s∈Chφ ,s

′∈T̂ (s,π(s))
−h(s′) , (2)

and we want to minimize C∗ w.r.t. φ:141

min
φ
C∗(hφ, U, π) = min

φ
max

s∈Chφ ,s
′∈T̂ (s,π(s))

−h(s′), (3)

Our goal is to ensure the minimum value is less than 0. We use gradient descent to solve the142

optimization problem. We also derive the gradient of C∗(Lφ, U, π) w.r.t. φ :143

∇φC∗(hφ, U, π) = ∇φU(s∗, π(s∗), hφ)− ‖∇φU(s∗, π(s∗), hφ)‖2
‖∇φhφ(s∗)‖2

∇φhφ(s∗), (4)

where s∗ := arg maxs:hφ(s)≤1 U(s, π(s), hφ) and we defer the derivation to Appendix A.144

Computing the adversarial s∗.145

Equation (4) requires us to compute s∗ efficiently. Because the maximization problem with respect to146

s is nonconcave, there could be multiple local maxima. In practice, we find that it is more efficient147

and reliable to use multiple local maxima to compute∇φC∗ and then average the gradient.148

Solving s∗ is highly non-trivial, as it is a non-concave optimization problem with a constraint s ∈ Chφ .149

To deal with the constraint, we introduce a Lagrangian multiplier λ and optimize U(s, π(s), hφ)−150

λIs∈Chφ w.r.t. s without any constraints. However, it is still very time-consuming to solve an151

optimization problem independently at each time. Based on the observation that the parameters of152

h do not change too much by one step of gradient step, we can use the optimal solution from the153

last optimization problem as the initial solution for the next one, which naturally leads to the idea of154

maintaining a set of candidates of s∗’s during the computation of∇φC∗.155

We use Metropolis-adjusted Langevin algorithm (MALA) to maintain a set of candidates156

{s1, . . . , sm} which are supposed to sample from exp(τ(U(s, π(s), hφ) − λIs∈Chφ )) for τ = 30157

and λ = 33. Here τ is the temperature indicating we want to focus on the samples with large158

U(s, π(s), hφ). Although the indicator function always have zero gradient, it is still useful in the159

sense that MALA will reject si 6∈ Chφ . A detailed description of MALA is given in Appendix D.160

We choose MALA over gradient descent because the maintained candidates are more diverse,161

approximate local maxima. If we use gradient descent to find s∗, then multiple runs of GD likely162

arrive at the same s∗, so that we lost the parallelism from simultaneously working with multiple163

1The function Bsafe(s) is called a barrier function for the user-specified safe set in the optimization literature.
Here we do not use this term to avoid confusion with the barrier certificate.
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Algorithm 1 Learning barrier certificate hφ for a policy π w.r.t. a calibrated dynamics model T̂ .
Require: Temperature τ , Lagrangian multiplier λ, and optionally a regularization function Reg.

1: Let U be defined as in Equation (1).
2: Initialize m candidates of s1, . . . , sm ∈ S randomly.
3: for n iterations do
4: for every candidate si do
5: sample si ∼ exp(τU(s, π(s), hφ)− λIs∈Ch) by MALA (Algorithm 5).
6: W ← {si : hφ(si) ≥ 0, i ∈ [m]}.
7: Train φ to minimize C∗(hφ, U, π) + Reg(φ) using all candidates in W .

Algorithm 2 CRABS: Co-trained Barrier Certificate for Safe RL (Details in Section 4)

Require: An initial safe policy πinit.
1: Collected trajectories buffer D̂ ← ∅; π ← πinit.
2: for T epochs do
3: Invoke Algorithm 3 to safely collect trajectories (using π as the safeguard policy and a noisy

version of π as the πexpl). Add the trajectories to D̂.
4: Learn a calibrated dynamics T̂ with D̂.
5: Learn a barrier certificate h that certifies π w.r.t. T̂ using Algorithm 1 with regularization.
6: Optimize policy π (according to the reward), using data in D̂, with the constraint that π is

certified by h.

local maxima. MALA avoids this issue by its intrinsic stochasticity, which can also be controlled by164

adjusting the hyperparameter τ .165

We summarize our algorithm of training barrier certificates in Algorithm 1 (which contains optional166

regularization that will be discussed in Section 4.2). At Line 2, the initialization of si’s is arbitrary, as167

long as they have a sort of stochasticity.168

4 CRABS: Co-trained Barrier Certificate for Safe RL169

In this section, we present our main algorithm, Co-trained Barrier Certificate for Safe RL (CRABS),170

shown in Algorithm 2, to iteratively co-train barrier certificates, policy and dynamics, using the171

algorithm in Section 3. In addition to parametrizing h by φ, we further parametrize the policy π by θ,172

and parametrize calibrated dynamics model T̂ by ω. CRABS alternates between training a barrier173

certificate that certifies the policy πθ w.r.t. a calibrated dynamics model T̂ω (Line 5), collecting data174

safely using the certified policy (Line 3, details in Section 4.1), learning a calibrated dynamics model175

(Line 4, details in Section 4.3), and training a policy with the constraint of staying in the superlevel176

set of the barrier function (Line 6, details in Section 4.4). In the following subsections, we discuss177

how we implement each line in detail.178

4.1 Safe Exploration with Certified Safeguard Policy179

Algorithm 3 Safe exploration with safeguard policy πsafeguard

Require: (1) A policy πsafeguard certified by barrier certifi-
cate h, (2) any proposal exploration policy πexpl.

Require: A state s ∈ Chφ .
1: Sample n actions a1, . . . an from πexpl(s).
2: if there exists an ai such that U(s, ai, h) ≤ 1 then
3: return: ai
4: else
5: return: πsafeguard(s).

Safe exploration is challenging be-180

cause it is difficult to detect irrecov-181

erable states. The barrier certificate182

is designed to address this — a pol-183

icy π certified by some h guarantees184

to stay within Ch and therefore can185

be used for collecting data. However,186

we may need more diversity in the187

collected data beyond what can be of-188

fered by the deterministic certified pol-189

icy πsafeguard. Thanks to the contrac-190

tion property R.3, we in fact know that any exploration policy πexpl within the superlevel set Ch191

can be made safe with πsafeguard being a safeguard policy—we can first try actions from πexpl and192
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see if they stay within the viable subset Ch, and if none does, invoke the safeguard policy πsafeguard.193

Algorithm 3 describes formally this simple procedure that makes any exploration policy πexpl safe.194

By a simple induction, one can see that the policy defined in Algorithm 3 maintains that all the visited195

states lie in Ch.196

The safeguard policy πsafeguard is supposed to safeguard the exploration. However, activating the197

safeguard too often is undesirable, as it only collects data from πsafeguard so there will be little198

exploration. To mitigate this issue, we often choose πexpl to be a noisy version of πsafeguard so that199

πexpl will be roughly safe by itself. Moreover, the safeguard policy πsafeguard will be trained via200

optimizing the reward function as shown in the next subsections. Therefore, a noisy version of201

πsafeguard will explore the high-reward region and avoid unnecessary exploration.202

Following Haarnoja et al. [2018], the policy πθ is parametrized as tanh(µθ(s)), and the proposal203

exploration policy πexpl
θ is parametrized as tanh(µθ(s) + σθ(s)ζ) for ζ ∼ N (0, I), where µθ and204

σθ are two neural networks. Here the tanh is applied to squash the outputs to the action set [−1, 1].205

4.2 Regularizing Barrrier Certificates206

The quality of exploration is directly related to the quality of policy optimization. In our case, the
exploration is only within the learned viable set Chφ and it will be hindered if Chφ is too small or does
not grow during training. To ensure a large and growing viable subset Chφ , we encourage the volume
of Chφ to be large by adding a regularization term

Reg(φ; ĥ) = Es∈S [relu(ĥ(s)− hφ(s))],

Here ĥ is the barrier certificate obtained in the previous epoch. In the ideal case when Reg(φ; ĥ) = 0,207

we have Chφ ⊃ Cĥ, that is, the new viable subset Chφ is at least bigger than the reference set (which208

is the viable subset in the previous epoch.) We compute the expectation over S approximately by209

using the set of candidate s’s maintained by MALA.210

In summary, to learn hφ in CRABS, we minimize the following objective (for a small positive211

constant λ) over φ as shown in Algorithm 1:212

L(φ;U, πθ, ĥ) = C∗(Lφ, U, πθ) + λReg(φ; ĥ). (5)

We remark that the regularization is not the only reason why the viable set Chφ can grow. When the213

dynamics becomes more accurate as we collect more data, the Chφ will also grow. This is because214

an inaccurate dynamics will typically make the Chφ smaller—it is harder to satisfy R.3 when the215

confidence region T̂ (s, π(s)) in the constraint contains many possible states. Vice versa, shrinking216

the size of the confidence region will make it easier to certify more states.217

4.3 Learning a Calibrated Dynamics Model218

It is a challenging open question to obtain a dynamics model T̂ (or any supervised learning model)219

that is theoretically well-calibrated especially with domain shift [Zhao et al., 2020]. In practice,220

we heuristically approximate a calibrated dynamics model by learning an ensemble of probabilistic221

dynamics models, following common practice in RL [Yu et al., 2020, Janner et al., 2019, Chua et al.,222

2018]. We learn K probabilistic dynamics models fω1
, . . . , fωK using the data in the replay buffer D̂.223

(Interestingly, prior work shows that an ensemble of probabilistic models can still capture the error224

of estimating a deterministic ground-truth dynamics [Janner et al., 2019, Chua et al., 2018].) Each225

probabilistic dynamics model fωi outputs a Gaussian distributionN (µωi(s, a), diag(σ2
ωi(s, a))) with226

diagonal covariances, where µωi and σωi are parameterized by neural networks. Given a replay buffer227

D̂, the objective for a probabilistic dynamics model fωi is to minimize the negative log-likelihood:228

LT̂ (ωi) = −E(s,a,s′)∼D̂ [− log fωi(s
′|s, a)] . (6)

The only difference in the training procedure of these probabilistic models is the randomness in the229

initialization and mini-batches. We simply aggregate the means of all learn dynamics models as a230

coarse approximation of the confidence region, i.e., T̂ (s, a) = {µωi(s, a)}i∈[K].231
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(a) Pendulum (b) CartPole

Figure 1: Illustration of environments.
The left figure illustrates the Pendulum
environment, which is used by Upright
and Tilt tasks. The right figer illustrates
the CartPole environment, which is used
by Move and Swing tasks.

4.4 Policy Optimization232

We describe our policy optimization algorithm in Algorithm 4 . The desiderata here are (1) the policy233

needs certified by the current barrier certificate h and (2) the policy has as high reward as possible.234

We break down our policy optimization algorithm into two components: First, we optimize the total235

rewards J(πθ) of the policy πθ; Second, we use adversarial training to guarantee the optimized policy236

can be certified by hφ. The modification of SAC is to some extent non-essential and mostly for237

technical convenience of making SAC somewhat compatible with the constraint set. Instead, it is the238

adversarial step that fundamentally guarantees that the policy is certified by the current hφ.239

Adversarial training. We use adversarial training to guarantee πθ can be certified by hφ. Sim-240

ilar to what we’ve done in training hφ adversarially, the objective for training πθ is to min-241

imize C∗(hφ, U, πθ). Unlike the case of φ, the gradient of C∗(hφ, U, πθ) w.r.t. θ is simply242

∇θU(s∗, πθ(s
∗), hφ), as the constraint hφ(s) is unrelated to πθ. We also use MALA to solve243

s∗ and plug it into the gradient term∇θU(s∗, πθ(s
∗), hφ).244

Optimizing J(πθ). We use a modified SAC [Haarnoja et al., 2018] to optimize J(πθ). As the245

modification is for safety concerns and is minor, we defer it to Appendix B. As a side note, although246

we only optimize πexpl
θ here, πθ is also optimized implicitly because πexpl

θ simply outputs the mean247

of πθ deterministically.248

5 High-risk, High-reward Environments249

We design four tasks, three of which are high-risk, high-reward tasks, to check the efficacy of our250

algorithm. Even though they are all based on inverted pendulum or cart pole, we choose the reward251

function to be somewhat conflicted with the safety constraints. That is, the optimal policy needs to252

take a trajectory that is near the safety boundary. This makes the tasks particularly challenging and253

suitable for stress testing our algorithm’s capability of avoiding irrecoverable states.254

These tasks have state dimension dimensions between 2 to 4. We focus on the relatively low255

dimensional environments to avoid conflating the failure to learn accurate dynamics models from256

data and the failure to provide safety given a learned approximate dynamics. Indeed, we identify257

that the major difficulty to scale up to high-dimensional environments is that it requires significantly258

more data to learn a decent high-dimensional dynamics that can predict long-horizon trajectories. We259

remark that we aim to have zero violations. This is very difficult to achieve, even if the environment260

is low dimensional. As shown by Section 6, many existing algorithms fail to do so.261

(a) Upright. The task is based on Pendulum-v0 in Open AI Gym [Brockman et al., 2016], as shown in262

Figure 1a. The agent can apply torque to control a pole. The environment involves the crucial quantity:263

the tilt angle θ which is defined to be the angle between the pole and a vertical line. The safety264

requirement is that the pole does not fall below the horizontal line. Technically, the user-specified265

safety set is {θ : |θ| ≤ θmax = 1.5} (note that the threshold is very close to π
2 which corresponds to266

90◦.) The reward function r is r(s, a) = −θ2, so the optimal policy minimizes the angle and angular267

speed by keeping the pole upright. The horizon is 200 and the initial state s0 = (0.3,−0.9).268

(b) Tilt. This action set, dynamics, and horizon, and safety set are the same as in Upright. The reward269

function is different: r(s, a) = −(θlimit − θ)2. The optimal policy is supposed to stay tilting near the270

angle θ = θlimit where θlimit = −0.41151684 is the largest angle the pendulum can stay balanced. The271

challenge is during exploration, it is easy for the pole to overshoot and violate the safety constraints.272

(c) Move. The task is based on a cart pole and the goal is to move a cart (the yellow block) to control273

the pole (with color teal), as shown in Figure 1b. The cart has an x position between −1 and 1, and274

the pole also has an angle θ ∈ [−π2 ,
π
2 ] with the same meaning as Upright and Tilt. The starting275

position is x = θ = 0. We design the reward function to be r(s, a) = x2. The user-specified safety276

set is {(x, θ) : |θ| ≤ θmax = 0.2, |x| ≤ 0.9} where 0.2 corresponds to roughly 11◦. Therefore, the277

optimal policy needs to move the cart and the pole slowly in one direction, preventing the pole from278

falling down and the cart from going too far. The horizon is set to 1000.279
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with independent randomness. The solid curves indicate the mean of four runs and the shaded areas
indicate one standard deviation around the mean.
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(c) Chφ after 10 epochs
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Figure 3: Visualization of the growing viable subsets learned by CRABS in Move. To illustrate
the 4-dimensional state space, we project a state from [x, θ, ẋ, θ̇] to [x, θ]. The red curve encloses
superlevel set Chφ , while the green points indicate the projected trajectory of the current safe policy.
We can also observe that policy π learns to move left as required by the task. We note that shown
states in the trajectory sometimes seemingly are not be enclosed by the red curve due to the projection.

(d) Swing. This task is similar to Move, except for a few differences: The reward function is280

r(s, a) = θ2; The user-specified safety set is {(x, θ) : |θ| ≤ θmax = 1.5, |x| ≤ 0.9}. So the optimal281

policy will swing back and forth to some degree and needs to control the angles well so that it does282

not violate the safety requirement.283

For all the tasks, once the safety constraint is violated, the episode will terminate immediately and284

the agent will receive a reward of -30 as a penalty. The number -30 is tuned by running SAC and285

choosing the one that SAC performs best with.286

6 Experimental Results287

In this section, we conduct experiments to answer the following question: Can CRABS learn a288

reasonable policy without safety violations in the designed tasks?289

Baselines. We compare our algorithm CRABS against four baselines: (a) Soft Actor-Critic (SAC)290

[Haarnoja et al., 2018], one of the state-of-the-art RL algorithms, (b) Constrained Policy Optimiza-291

tion (CPO) [Achiam et al., 2017], a safe RL algorithm which builds a trust-region around the current292

policy and optimizes the policy in the trust-region, (c) RecoveryRL [Thananjeyan et al., 2021]293

which leverages offline data to pretrain a risk-sensitive Q function and also utilize two policies to294

achieving two goals (being safe and obtaining high rewards), and (d) SQRL [Srinivasan et al., 2020]295

which leverages offline data in an easier environment and fine-tunes the policy in a more difficult296

environment. SAC and CPO are given an initial safe policy for safe exploration, while RecoveryRL297

and SQRL are given offline data containing 40K steps from both mixed safe and unsafe trajectories298

which are free and are not counted. CRABS collects more data at each iteration in Swing than in299

other tasks to learn a better dynamics model T̂ . For SAC, we use the default hyperparameters because300

we found they are not sensitive. For RecoveryRL and SQRL, the hyperparameters are tuned in the301

8



same way as in Thananjeyan et al. [2021] . For CPO, we tune the step size and batch size. More302

details of experiment setup and the implementation of baselines can be found in Appendix C.303

Results. Our main results are shown in Figure 2. From the perspective of total rewards, SAC achieves304

the best total rewards among all of the 5 algorithms in Move and Swing. In all tasks, CRABS can305

achieve reasonable total rewards and learns faster at the beginning of training, and we hypothesize306

that this is directly due to its strong safety enforcement. RecoveryRL and SQRL learn faster than307

SAC in Move, but they suffer in Swing. RecoveryRL and SQRL are not capable of learning in Swing,308

although we observed the average return during exploration at the late stages of training can be as309

high as 15. CPO is quite sample-inefficient and does not achieve reasonable total rewards as well.310

From the perspective of safety violations, CRABS surpasses all baselines without a single safety311

violation. The baseline algorithms always suffer from many safety violations. SAC, SQRL, and312

RecoveryRL have a similar number of unsafe trajectories in Upright, Tilt, Move, while in Swing,313

SAC has the fewest violations and RecoveryRL has the most violations. CPO has a lot of safety314

violations. We observe that for some random seeds, CPO does find a safe policy and once the policy315

is trained well, the safety violations become much less frequent, but for other random seeds, CPO316

keeps visiting unsafe trajectories before it reaches its computation budget.317

Visualization of learned viable subset Chφ . We visualized the viable set Chφ in Figure 3. As318

shown in the figure, our algorithm CRABS succeeds in certifying more and more viable states and319

does not get stuck locally, which demonstrates the efficacy of the regularization at Section 4.2.320

Handcrafted barrier function h. To demonstrate the advantage of learning a barrier function,321

we also conduct experiments on a variant of CRABS, which uses a handcrafted barrier certificate322

by ourselves and does not train it, that is, Algorithm 2 without Line 5. The results show that this323

variant does not perform well: It does not achieve high rewards, and has many safety violations. We324

hypothesize that the policy optimization is often burdened by adversarial training, and the safeguard325

policy sometimes cannot find an action to stay within the superlevel set Ch.326

7 Related Work327

Prior works about Safe RL take very different approaches. Dalal et al. [2018] adds an additional328

layer, which corrects the output of the policy locally. Some of them use Lagrangian methods to329

solve CMDP, while the Lagrangian multiplier is controlled adaptively [Tessler et al., 2018] or by a330

PID [Stooke et al., 2020]. Achiam et al. [2017], Yang et al. [2020] build a trust-region around the331

current policy. Eysenbach et al. [2017] learns a reset policy so that the policy only explores the states332

that can go back to the initial state. Turchetta et al. [2020] introduces a learnable teacher, which333

keeps the student safe and helps the student learn faster in a curriculum manner. Srinivasan et al.334

[2020] pre-trains a policy in a simpler environment and fine-tunes it in a more difficult environment.335

Bharadhwaj et al. [2020] learns conservative safety critics which underestimate how safe the policy336

is, and uses the conservative safety critics for safe exploration and policy optimization. Thananjeyan337

et al. [2021] makes use of existing offline data and co-trains a recovery policy.338

Another line of work involves Lyapunov functions and barrier functions. Donti et al. [2020] constructs339

sets of stabilizing actions using a Lyapunov function, and project the action to the set, while Chow340

et al. [2019] projects action or parameters to ensure the decrease of Lyapunov function after a step.341

Ohnishi et al. [2019] is similar to ours but it constructs a barrier function manually instead of learning342

such one. Ames et al. [2019] gives an excellent overview of control barrier functions and how to343

design them. Perhaps the most related work to ours is Cheng et al. [2019], which also uses a barrier344

function to safeguard exploration and uses a reinforcement learning algorithm to learn a policy.345

However, the key difference is that we learn a barrier function, while Cheng et al. [2019] handcrafts346

one. The works on Lyapunov functions [Berkenkamp et al., 2017, Richards et al., 2018] require the347

discretizating the state space and thus only work for low-dimensional space.348

8 Conclusion349

In this paper, we propose a novel algorithm CRABS for training-time safe RL. The key idea is that350

we co-train a barrier certificate together with the policy to certify viable states, and only explore in351

the learned viable subset. The empirical rseults show that CRABS can learn some tasks without a352

single safety violation. We consider using model-based policy optimization techniques to improve353

the total rewards and sample efficiency as a promising future work. Another fascinating direction is354

how to deal with less accurate learned dynamics model in higher dimension environments.355
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A Gradient of C∗(hφ, U, π)502

Recall the definition of C∗ is503

C∗(hφ, U, π) := max
s:hφ(s)≤1

U(s, π(s), hφ),

The tricky part about optimizingC∗ is that both the constraint andU function depend on the parameter504

φ, so the gradient of C∗ is not merely just the gradient of U evaluated at the maximizer of U w.r.t s.505

We first prove a more general lemma (Lemma 1). The gradient of C∗(hφ, U, π) w.r.t. φ can be506

directly computed using Lemma 1.507

Lemma 1. Let f, g : Rn × Rm → R be two differentiable functions. For any y ∈ Rm, define508

x∗ = arg maxx:g(x,y)≤0 f(x, y) and f∗ = f(x∗, y). The gradient of f∗(y) w.r.t. y is given by:509

∇yf∗(y) = ∇yf(x, y)|x∗ −
‖∇xf(x, y)|x∗‖2
‖∇xg(x, y)|x∗‖2

∇yg(x, y)|x∗ .
510

Proof. Let L(x, y, λ) = f(x, y)− λg(x, y) be the Lagrangian. For a suitable choice of λ, we have
f∗(y) = min

x
L(x, y, λ) = min

x
f(x, y)− λg(x, y).

In this way, we remove the constraint from x, so511

∇yf∗(y) = ∇y[min
x
f(x, y)− λg(x, y)]

= ∇yf(x, y)|x∗ − g(x∗, y)∇yλ− λ∇yg(x, y)|x∗ .
(7)

Now we’re going to simplify the second term g(x∗, y)∇yλ. In the case g(x∗, y) = 0, g(x∗, y)∇yλ512

is definitely 0. In the case g(x∗, y) 6= 0, x∗ is in the interior of the feasible set {x : g(x, y) ≤ 0}. By513

KKT condition, λ = 0. To analyze ∇yλ in this case, we consider a neighbor y + ∆y of y. When514

‖∆y‖ is small enough, x∗ is still in the feasible set {x : g(x, y + ∆y) ≤ 0} so λ does not change,515

which means∇yλ = 0. In both cases, we have g(x∗, y)∇yλ = 0. Therefore we can simplify (7):516

∇yf∗(y) = ∇yf(x, y)|x∗ − λ∇yg(x, y)|x∗ . (8)
Once again by KKT condition:517

∇xf(x, y)|x∗ − λy∇xg(x, y)|x∗ = 0,

so518

λ =
‖∇xf(x, y)|x∗‖2
‖∇xg(x, y)|x∗‖2

, (9)

The last step is simply plugging (9) into (8).519

B Reward Optimizing in CRABS520

As in original SAC, we maintain two Q functions Qψiand their target networks Qψ̄i for i ∈ {1, 2},521

together with a learnable temperature α. The objective for the policy is to minimize522

Lπ(θ) = Es∼D̂,a∼πθ
[
α log πexpl

θ (a|s)− Q̂ψ1
(s, a)

]
, (10)

where Q̂ψ1
(s, a) = Qψ1

(s, a) if U(s, a, h) ≤ 0, otherwise Q̂ψ1
(s, a) = −C − U(s, a, h) for a large523

enough constant C. The heuristics behind the design of Q̂ψ1
is that we should lower the probability524

of πexpl
θ proposing an action which will possibly leave the superlevel set Chφ to reduce the frequency525

of invoking the safeguard policy during exploration.526

The temporal difference objective for the Q function is527

LQ(ψi) = E(s,a,r,s′)∼D̂Ea′∼πexpl
θ (s′)

[
(Qψi(s, a)− (r + γ min

i∈{1,2}
Qψ̄i(s, a)))2IU(s′,a′,hφ)≤0

]
,

(11)
We remark that we reject all a′ ∼ πexpl

θ (s′) such that U(s′, a′, hφ) > 0, as our safe exploration528

algorithm (Algorithm 3) will reject all of them eventually. The temperature α is learned the same as529

in Haarnoja et al. [2018]:530

Lα(α) = Es∼D̂[−α log πexpl
θ (a|s)− αH̄], (12)

where H̄ is hyperparameter, indicating the target entropy of the policy πexpl
θ .531
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Algorithm 4 Modified SAC to train a policy while constraining it to stay within Chφ
input A policy π, the replay buffer D̂

1: Sample a batch B from buffer D̂.
2: Train θ to minimize Lπ(θ) using B.
3: Train Q to minimize LQ(ψi) for i ∈ {1, 2} using B.
4: Train α to minimize Lα(α) using B.
5: Invoke MALA to training s∗ adversarially (as in L4-5 in Algorithm 1).
6: Train θ minimize C∗(hφ, U, πθ).
7: Update target network ψ̄i for i ∈ {1, 2}.

C Experiment Details532

Our code is implemented by Pytorch [Paszke et al., 2019] and runs in a single RTX-2080 GPU.533

Typically it takes 12 hours to run one seed for Upright, Tilt and Move, and for Swing it takes around534

60 hours.535

C.1 Environment536

All the environments are based on OpenAI Gym [Brockman et al., 2016] where MuJoCo [Todorov537

et al., 2012] serves as the underlying physics engine. We use discount γ = 0.99.538

The tasks Upright and Tilt are based on Pendulum-v0. The obsevation is [θ, θ̇] where θ is the angle539

between the pole and a vertical line, and θ̇ is the angular velocity. The agent can apply a torque540

to the pendulum. The task Move and Swing is based on InvertedPendulum-v2 with observation541

[x, θ, ẋ, θ̇]. The agent can control how the cart moves.542

As all of the constraints are in the form of ‖θ‖ ≤ θmax and |x| ≤ xmax. For each type of constraint,543

we design Bsafe to be544

Bsafe(s) = max (ω (θ/θmax) , ω (x/xmax)) ,

with ω(x) = max(0, 100(|x| − 1)). If there is no constraint of x, we just take Bsafe(s) = ω (θ/θmax).545

One can easy check that Bsafe(s) is continuous and equals to 1 at the boundary of safety set.546

C.2 Hyperparameters547

Policy We parametrize our policy using a feed-forward neural network with ReLU activation and548

two hidden layers, each of which contains 256 hidden units. Similar to Haarnoja et al. [2018], the549

output of the policy is squashed by a tanh function.550

The initial policy is obtained by running SAC for 105 steps, checking the intermediate policy for551

every 104 steps and picking the first safe intermediate policy.552

In all tasks, we optimize the policy for 2000 steps in a single epoch.553

Dynamics Model We use an ensemble of five learned dynamics models as the calibrated dynamcis554

model. Each of the dynamics model contains 4 hidden layers with 400 hidden units and use Swish555

as the activation function [Ramachandran et al., 2017]. Following Chua et al. [2018], we also train556

learnable parameters to bound the output of σω . We use Adam [Kingma and Ba, 2014] with learning557

rate 0.001, weight decay 0.000075 and batch size 256 to optimize the dynamics model.558

In the experiment Move and Swing, the initial model is obtained by traininng one a data for 20000559

steps with 500 safe trajectories, obtained by adding different noises to the initial safe policy.560

At each epoch, we optimize the dynamics models for 1000 steps.561

Barrier certificate h The barrier certificate is parametrized by a feed-forward neural network with562

ReLU activation and two hidden layers, each of which contains 256 hidden units. The coefficient λ563

in Equation (5) is set to 0.001.564
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Collecting data. In Upright, Tilt and Move, the Line 3 in Algorithm 2 collects a single episode. In565

Swing, the Line 3 collects six episodes, two of which are from Algorithm 3 with a uniform random566

policy, another two are from the current policy, and the remaining two are from the current policy567

but with more noises. In Algorithm 3, we first draw n = 100 Gaussian samples ζi ∼ N (0, I), and568

the sampled actions are ai = tanh(µθ(s) + ζiσθ(s)), where σθ(s) and µθ(s) are the outputs of the569

exploration policy πexpl.570

C.3 Baselines571

RecoveryRL We use the code in https://github.com/abalakrishna123/recovery-rl. We572

remark that when running experiments in Recovery RL, we do not add the violation penalty for an573

unsafe trajectory. We set εrisk = 0.5 (chosen from [0.1, 0.3, 0.7, 0.7]) and discount factor γrisk = 0.6574

(chosen from [0.8, 0.7, 0.6, 0.5]). The offline dataset Doffline, which is used to pretrain the Qπrisk,575

contains 20K transitions from a random policy and another 20K transitions from the initial (safe)576

policy used by CRABS. The violations in the offline dataset is not counted when plotting.577

Unfortunately, with chosen hyperparameters, we do not observe reasonable high reward from the578

policy, but we do observe that after around 400 episodes, RecoveryRL visits high reward (15-20)579

region in the Swing task and there are few violations since then.580

SAC We implement SAC ourselves with learned temperature α, which we hypothesize is the reason581

of it superior performance over RecoveryRL and SQRL. The violation penalty is chosen to be 30582

from [3, 10, 30, 100] by tuning in the Swing and Move task. We found out that with violation penalty583

being 100, SAC has slightly fewer violations (around 167), but the total reward can be quite low (< 2)584

after 106 samples, so we choose to show the result of violation penalty being 30.585

SQRL We use code provided by RecoveryRL with the same offline data and hyperparameters.586

However, we found out that the ν parameter (that is, the Lagrangian multiplier) is very important and587

tune it by choosing the optimal one from [3, 10, 30, 100, 300] in Swing. The optimal ν is the same as588

that for SAC, which is 30. As SQRL and RecoveryRL use a fixed temperature for SAC, we find it589

suboptimal in some cases, e.g., for Swing.590

CPO We use the code in https://github.com/jachiam/cpo. To make CPO more sample591

efficient and easier to compare, we reduce the batch size from 50000 to 5000 (for Move and Tilt) or592

1000 (for Tilt and Upright). We tune the step size in [0.02, 0.05, 0.005] but do not find substantial593

difference, while tuning the batch size can significantly reduce its sample efficiency, although it is594

still sample-inefficient.595

D Metropolis-Adjusted Langevin Algorithm (MALA)596

Given a probability density function p on Rd, Metropolis-Adjusted Langevin Algorithm (MALA)
obtains random samples x ∼ p when direct sampling is difficult. it is based on Metropolis-Hastings
algorithm which generates a sequence of samples {xt}t. Metropolis-Hastings algorithm requires a
proposal distribution q(x′|x). At step t ≥ 0, Metropolis-Hastings algorithm generates a new sample
x̂t+1 ∼ q(·|xt) and accept it with probability

α(x→ x′) = min

(
1,
p(x′)q(x|x′)
p(x)q(x′|x)

)
.

If the sample x̂t+1 is accepted, we set xt+1 = x̂t+1; Otherwise the old sample xt is used: xt+1 = xt.597

MALA considers a special proposal function qτ (x′|x) = N (x+ τ∇p(x), 2τId). See Algorithm 5598

for the pseudocode.599

For our purpose, as we seek to compute C∗(hφ, U, πθ), we maintain m = 104 sequences of samples
{{s(i)

t }t}i∈[m]. Recall that C∗ involves a constrained optimization problem:

C∗(hφ, U, πθ) := max
s:hφ(s)≤1

U(s, πθ(s), hφ),

so for each i ∈ [m], the sequence
{
s

(i)
t

}
t

follows the Algorithm 5 to sample s ∼600

exp(λ1U(s, πθ(s), hφ) − λ2Is∈Ch) with λ1 = 30, λ2 = 1000. The step size τ is chosen such601
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Algorithm 5 Metropolis-Adjusted Langevin Algorithm (MALA)
Require: A probability density function p and a step size τ .

1: Initialize x0 arbitrarily.
2: for t from 0 to∞ do
3: Draw ζt ∼ N (0, Id).
4: Set x̂t+1 = xt + τ∇ log p(Xt) +

√
2τζt.

5: Draw ut ∼ Uniform[0, 1].
6: if ut ≥ α(xt → x̂t+1) then
7: Set xt+1 = x̂t+1.
8: else
9: Set xt+1 = xt.

that the acceptance rate is approximately 0.6. In practice, when s(i)
t 6∈ Ch, we do not use MALA, but602

use gradient descent to project it back to the set Ch.603

E Limitations604

• Our work relies on learning a calibrated dynamics model. However, as we pointed out in605

Section 4.3, it is often very difficult to learn a well-calibrated dynamics model. The fact that606

our algorithm of training a barreir certificate certifies the safety of a policy for infinition607

horizon requires a very well-calibraetd dynamics model. This limitation can be possibly608

reduced by leveraging domain knowledge.609

• CRABS has a very slow training speed, mostly due to adversarial training and the use of an610

ensemble of dynamics model.611

• CRABS did not find the optimal policy in the sense that the total reward is lower than some612

baselines (SAC).613

• We do not guarantee that the Algorithm 1, which learns a barrier certificate for a policy614

w.r.t. a calibrated dynamics model, can always succeed, even if the policy is safe in the real615

environment.616

F Negative Social Impact617

Our algorithm aims to achieve zero safety violations, but we only tested our algorithm on simulated618

environments. So the algorithm cannot be applied to safety-critical real environments directly without619

further testing. If the algorithm is deployed without further testing, there might be undesirable620

consequences that have negative social impacts, e.g., the valuable devices might be broken, or when621

applied to health care, it might endanger the patients.622
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