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Abstract

The goal of zero-shot action recognition (ZSAR) is to classify action classes which
were not previously seen during training. Traditionally, this is achieved by training
a network to map, or regress, visual inputs to a semantic space where a nearest
neighbor classifier is used to select the closest target class. We argue that this
approach is sub-optimal due to the use of nearest neighbor on static semantic space
and is ineffective when faced with multi-label videos - where two semantically
distinct co-occurring action categories cannot be predicted with high confidence.
To overcome these limitations, we propose a ZSAR framework which does not
rely on nearest neighbor classification, but rather consists of a pairwise scoring
function. Given a video and a set of action classes, our method predicts a set of
confidence scores for each class independently. This allows for the prediction of
several semantically distinct classes within one video input. Our evaluations show
that our method not only achieves strong performance on three single-label action
classification datasets (UCF-101, HMDB, and RareAct), but also outperforms
previous ZSAR approaches on a challenging multi-label dataset (AVA) and a
real-world surprise activity detection dataset (MEVA).

1 Introduction

Current image and video classification models require large labeled training datasets but they perform
really well on previously seen classes. However, if novel classes are presented to these models, as
is the case in many real-world applications, they tend to fail. The system has to be retrained with
additional samples for this class to correctly predict these novel classes, which requires additional
training time as well as computational resources. Therefore, it would be beneficial if we can train a
single system on a fixed dataset which can be applied to new, previously unseen classes. To this end,
zero-shot learning (ZSL) approaches [1] have been proposed which leverage semantic information,
e.g. textual descriptions or class names, and relate them to new unseen class categories.

In this work, we focus on zero-shot action recognition (ZSAR), where the goal is to classify videos of
unseen action categories. There has been a great progress focusing on ZSAR [2, 3, 4], however, most
of these existing methods utilize a similar fundamental approach. These approaches project a video
representation to a fixed semantic space (e.g. a text embedding space generated from a pre-trained
Word2Vec [5] model) and perform classification using a nearest neighbor operation. We argue that
such a solution is sub-optimal because the class selection is performed on a static text-based semantic
space. This formulation forces classes that are more similar in the semantic space to have closer
classification boundaries, even if they are visually dissimilar; conversely, actions that are visually
similar, can appear further apart in the semantic space. For example, the action "Tennis Swing" is
closer in semantic space to "Swing" (i.e. a child on a swing) than "Table Tennis Shot" even though it
is more visually similar to the latter action.
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Figure 1: C onventional nearest neighbor ZSAR methods (top) cannot predict semantically dissimilar
actions "Walking" and "Talking" without actions "Running" and "Jumping" also being predicted. Our
proposed pairwise scoring approach (bottom), can predict two dissimilar classes by mapping the
video and semantic embeddings to a joint embedding space which can be linearly separated.

In addition, this is detrimental in the multi-label case where multiple semantically distinct actions
can occur within a sample. This is illustrated in Figure 1 (top). In conventional ZSAR approaches,
the video network can only generate a single representation in the semantic space so the actions
"Walking" and "Talking" can not both be predicted without many incorrect action categories also
being predicted. This issue could be solved by fine-tuning the textual encoder which generates
the semantic space (i.e. moving the representations of "Walking" and "Talking" closer together).
However, previous approaches train the video models by regressing to the action class’s semantic
feature vector. If the vector is not fixed (i.e. the text encoder is fine-tuned), this would collapse to a
trivial solution: it can map all classes to zero vectors which are easily regressed to by the video model.
Several constraints could prevent this collapse, however such solutions to the best of our knowledge,
have not been proposed in the ZSAR literature.

We propose a novel solution to this problem where a model finds agreement between the features
from a pair of inputs (i.e. the video and a semantic/textual feature vector) and outputs a match vs.
no-match probability score. Our method consists of a pairwise scoring function which has two main
benefits. First, the model can refine the input text features through additional parameterized layers,
without collapsing to a trivial solution. Second, the method outputs individual action probability
scores used for classification instead of relying on nearest neighbor. Figure 1 (bottom) depicts this
behaviour. The Pairwise Scoring ZSAR (PS-ZSAR) approach is able to map the merged visual
and semantic representations into a joint space, on which a decision boundary can be created to
successfully predict both "Walking" and "Talking" without predicting irrelevant actions.

PS-ZSAR is trained end-to-end using standard classification losses. We evaluate our proposed
network on five video datasets. On three single-label action recognition datasets - UCF-101, HMDB,
and RareAct - it achieves strong performance when compared to previous approaches. We report, to
the best of our knowledge, the first results for zero-shot multi-label action recognition on the AVA
dataset, which we believe will be a challenging baseline for future ZSAR methods. Lastly, we use
PS-ZSAR in the NIST ActEV challenge "Surprise Activity" task which demonstrates the method’s
ability to scale to difficult real-world scenarios.

2 Related Work

There is a vast literature pertaining the zero-shot action recognition (ZSAR) [1]. There are bodies of
work on transductive ZSAR [6, 7, 8, 9], where test data (i.e. videos) are available during training but
classes are not, and generalized ZSAR (GZSAR) [10, 11, 12, 13, 14, 15] which evaluates method
performance on both seen and unseen classes. However, in this work, we concentrate on inductive
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ZSAR in which the test data and classes are unknown during training and the method is evaluated
only on unseen classes.

2.1 Zero-shot Action Recognition

Typical zero-shot video classification systems [16, 17, 3, 18, 19] extract visual features from frames
or 3D video clips using pre-trained image or video networks, resepctively (e.g. ResNet [20] or C3D
[21] models), and then train a separate model that maps the visual features to a semantic embedding
space. For ZSAR methods, if video networks generalize well to the semantic space, the model can
perform well on semantic embeddings for classes previously unseen during training. At test time,
these methods predict the class which has semantic embedding that is the nearest neighbor of the
model’s output. The semantic space usually takes the form of text embeddings from a Word2Vec [5]
model. In other methods [22, 23, 24], the semantic space consists of attributes manually selected by
an expert; however, such methods are difficult to apply to real-world scenarios.

There have been a variety of methods to learn models which can map video representations to
semantic space. Zhu et al. [2] treat ZSAR as a generalized multi-instance learning problem and learn
a kernelized representation that can be directly compared with unseen action prototypes. Action2Vec
[3] uses a combination of supervised classification loss and a ranking loss to map video features to
textual space. Recently, Brattoli et al. [4] showed that large performance increases can be obtained
by learning the video model rather than using pre-extracted video features. We find that this idea
can be extended to the text model: by learning improved text representations, i.e. refining the static
Word2Vec embeddings, we achieve improved generalization on unseen classes.

2.2 Multi-label Zero Shot Learning

Multi-label zero shot learning has been explored in limited capacity, primarily for images. Lee [25]
utilized a graph structure to learn semantic dependencies between words in a class name to learn
relevant textual features. Huynh and Elhamifar [26] used an attention framework to map important
segments of an image to a join visual-label embedding space for classification. Huang [27] used a
similar approach while also proposing transferring learned embedding spaces from systems trained
on ImageNet. However, multi-label zero shot learning for action recognition is a far less explored
space. To the best of our knowledge, Wang and Chen [28] propose the first work to address this
problem. Their work focuses on learning temporal relationships between frames in a video, then
using a ranking loss to learn alongside a semantic encoder. In this work, we simplify the multi-label
ZSAR task by proposing a pairwise scoring network that can be trained end-to-end with cross-entropy
loss. Furthermore, we evaluate on two multi-label datasets, AVA and MEVA, and show that our
approach can scale to these challenging benchmarks.

3 Method

3.1 Problem Formulation

Zero-shot action recognition aims to classify unseen actions, U , by transferring knowledge learned
from seen training classes, S. The training set, DS = {(x, y) |x ∈ X , y ∈ S}, consists of labeled
videos x in video space X and label y. The test set is defined as DU = {(x, y) |x ∈ X , y ∈ U}. The
action classes in both datasets must be disjoint, i.e. S ∩ U = ∅. The goal of ZSAR is to predict a
label for a videos of unseen class (activities), i.e. X → U .

For each class, a semantic embedding vector ψ (y) ∈ RD of length D is obtained. These vectors
are traditionally obtained by averaging word2vec [5] embeddings for each word in the class name,
however different text encoders (e.g. sent2vec [29], BERT [30]) could also be used. Conventional
ZSAR methods learn a parameterized model fθ which maps an input video to the semantic space, i.e.
fθ : X → RD. Then, for a given video, x, a classification is performed by a nearest neighbor in the
set of test class embeddings, as defined by:

F (x) = argmin
y∈U

d (fθ (x) , ψ (y)) , (1)

where d is a distance metric (e.g. cosine distance).
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Figure 2: Overview of our proposed network architecture. Our method consists of four main
parts: (a) The Video Encoder which extracts video features from a given video clip, (b) the Text
Encoder which generates the semantic embedding from the action class name or natural language
description, (c) Text Refining module which fine-tunes the semantic embeddings during training, and
(d) the Scoring Function which generates the probability that the pair of inputs match. The network
is trained end-to-end using cross-entropy loss.

We argue that this two stage approach - metric learning on the semantic space and nearest neighbor
classification - is ineffective. Instead, we reformulate the ZSAR problem to learn a scoring function
hθ which predicts a match vs. no-match probability when given a video and semantic embedding
pair, i.e. hθ : X × RD → [0, 1]. Once the network is trained, the final action classification can be
obtained by selecting the class which achieves the highest probability:

F (x) = argmax
y∈U

hθ (x, ψ (y)) . (2)

This formulation allows for multi-label action recognition by selecting all classes with probabilities
over the threshold τ , i.e.

F (x) = {y ∈ U|hθ (x, ψ (y)) > τ}, (3)

whereas nearest neighbor classification can not predict multiple semantically dissimilar actions to
occur within a given video.

3.2 Proposed ZSAR Framework

Our proposed network architecture is illustrated in Figure 2. Here, we describe the different compo-
nents of our architecture.

Video and Text Encoders Given a video clip x ∈ RT×H×W of T frames with a height and width
of H and T respectively, we learn a 3D-CNN [21, 31], gv, to extract a video feature representation,
gv (x) ∈ RDv . Also, we obtain the semantic embedding (text encoding), ψ (y), by passing the action
class name through a fixed pre-trained text encoder. Unless otherwise stated, a Word2Vec embedding
is created for each word and the embeddings over all words in the action name are averaged to obtain
a 300 dimensional text feature representation, ψ (y) ∈ R300. We also present results with the more
recent Sent2Vec text encoder in Section 4.4.

Refining Text Embedding Since text encoders are trained on large text corpora, they tend to lack
information about visual attributes of actions. For example, "running water" and "person running"
are visually distinct, but embedding for the word "running" is the same for both. To remedy this,
we propose a module, gt, which refines, or fine-tunes, the text encodings to learn vision-specific
representations and generates a new text representation with dimension Dt: gt (ψ (y)) ∈ RDt .

Merging Features and Scoring With the extracted visual features and refined textual features, we
need to determine whether or not the inputs match. We first merge the features to obtain a single
representation for the pair of inputs, m (gv (x) , gt (ψ (y))) ∈ RDm . This merging operation can take
many forms (concatenation, addition, multiplication, etc.), which are explored in Section 4.4.
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Once merged, the joint feature representation is passed through an MLP, gcls, to obtain classification
logits:

flogits (x, ψ (y)) = gcls (m (gv (x) , gt (ψ (y)))) . (4)

Then, final probability score is obtained by using a softmax operation across all classes:

P (y|x) = hθ (x, ψ (y)) =
exp (flogits (x, ψ (y)))∑

y′∈S
exp (flogits (x, ψ (y′)))

. (5)

The final probability scores are then be used for either single-label or multi-label classification
following equations 2 and 3, respectively.

Training Procedure We train the network in an end-to-end manner using cross-entropy loss. When
training on a single-label dataset, we compute the loss

L = − 1

B

B∑
i=1

logP (yi|xi) , (6)

on a mini-batch of samples B = {(x1, y1) , ..., (xK , yK)}. When training on multi-label data, which
is the case for our experiments on the MEVA dataset, the softmax activation is replaced with sigmoid
so that each probability is independent and binary-cross entropy loss is used.

4 Experimental Evaluation

Implementation Details For our experiments, the video encoder is the PyTorch [32] implemen-
tation of the R(2+1)D-18 [31] network. This network outputs a visual embedding dimension of
Dv = 512 for each 16-frame video clip. As with previous, work [4, 33] we average predictions over
25 clips per video at test time. Unless stated otherwise, the text encoder is a pretrained Word2Vec
[5] model with max-pooling over words, resulting in a 300-dimensional text embeddings. We also
present results using the Sent2Vec [29] model, which is pre-trained on twitter unigrams and results in
a 700-dimensional embedding for a given sequence of words. Our Text Refining module consists
of a learned 3-layer MLP with hidden dimensions of 1024 and ReLU activations, and a final output
dimension of Dt = 600. The output is passed through a sigmoid activation to obtain an embedding
in the range [0, 1]. The loss of our model is minimized using the Adam optimizer [34] with a starting
learning rate of 1e-3 and a batch size of 114. The model is trained for 50 epochs with a learning rate
decrease by a factor of 10 at epoch 30. All experiments are performed on two of Nvidia Tesla V100
GPUs.

Training Dataset We train our models on the Kinetics 700 [35] action recognition dataset. Follow-
ing [4], we ensure that these experiments remain true zero-shot tasks by filtering out classes from
Kinetics that are not sufficiently different than our testing classes. This results in 545,317 training
videos consisting of 662 action classes1.

4.1 Single-label Action Recognition

Evaluation Datasets We evaluate on the UCF-101 [36], HMDB [37], and RareAct [38] dataests.
UCF101 has 101 action classes across 13320 videos taken from YouTube. HMDB has 51 human
focused actions based around sports and everyday activities across 6767 videos sourced from com-
mercial areas as well as YouTube. RareAct is a video dataset containing unusual actions such as
"blend phone", "cut keyboard", and "microwave shoes". It contains 905 videos with 122 different
actions created by combining rarely co-occuring action verb pairs.

Evaluation Protocols To compare with previous ZSAR methods, we use two evaluation protocols
on UCF-101 and HMDB. The first, proposed in [4], involves testing on all videos from each dataset.
The second involves randomly selecting and evaluating on half of the actions from a dataset (50

1It should be noted that [4] trains on 664 classes, but due to differences in dataset versions (i.e. changed
action names) we have 2 fewer classes for training.
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Table 1: Evaluation on all classes of UCF-101 and HMDB datasets.
UCF-101 HMDB RareAct

Method Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

URL[2] 34.2 - - - - -
Brattoli et al. [4] 37.6 62.5 26.9 49.8 9.4 24.8

PS-ZSAR (ours) 40.1 66.3 27.3 55.7 11.5 32.8

Table 2: Evaluation on UCF-101 and HMDB-51 datasets. Accuracies are the average of 10 random
splits each with 50% of the classes.

UCF101 HMDB

DataAug [2] 18.3 19.7
InfDem [39] 17.8 21.3
BiDrectional [9] 21.4 18.9
FairZSL [40] - 23.1
TARN [16] 19.0 23.5
Action2Vec [3] 22.1 23.5
Brattoli et al.[4] 48.0 32.7

PS-ZSAR (ours) 49.2 33.8

for UCF-101 and 25 for HMDB). This is repeated 10 times and the averaged results are reported2.
Since RareAct is composed of "positive", "negative", and "hard negative" samples, we consider only
positive clips; we follow the first evaluation protocol and evaluate on all 1765 positive video samples.

Comparison with State-of-the-art Methods For the first evaluation protocol, we compare to Zhu
et al. [2] and Bratolli et al. [4]. The results are presented in Table 1. Our approach outperforms the
previous state-of-the-art methods on both datasets, with a large improvement in Top-5 accuracy (3.8%
and 5.9% improvements on UCF-101 and HMDB, respectively). We also observe this performance
improvement when compared to other previous ZSAR methods using the second evaluation protocol
in Table 2. The RareAct dataset presents a challenging benchmark for zero-shot action classification,
because the actions are drastically different than those used during training. Again, we find that our
approach outperforms the strongest baseline with a 2.1% improvement on Top-1 accuracy and 8%
improvement in Top-5 accuracy.

4.2 Multi-label Action Recognition on AVA

Evaluation Dataset The Atomic Visual Actions (AVA) dataset [41] annotates 80 atomic visual
actions in 340 15-minute video clips. All people in each video are exhaustively annotated at a rate of
one frame-per-second, and each person can perform multiple actions at once. We present results on
the validation set which contains 64 videos split into 54k one-second clips.

Evaluation Protocol Since action localization (i.e. predicting bounding-box localizations for
all actors in a video) is out of scope for this work, we evaluate only our the action recognition
capabilities on the AVA dataset. To this end, we extract video clips centered on each actor’s ground-
truth bounding-box, and pass these through the ZSAR model to obtain class predictions. For fair
comparison with [4], we generate multiple predictions using several strategies which are outlined
in the Supplemental Material. Ultimately, selecting all classes using a threshold on the distance
from predictions to the text embedding leads to best scores, which are reported in this work. The
resulting predictions are then used to compute the f-mAP metric as well as the standard multi-label
classification metric F1-score.

As previous methods were not designed with multi-label action recognition, these systems must
be modified to allow for comparison; specifically, to compute the mAP metric they must predict

2This evaluation protocol is greatly influenced by the random seed used to generate the splits. We discuss
this further in the Supplementary Materials.
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Table 3: Multi-label action recognition evaluation on
the AVA Dataset. w2v indicates Word2Vec is used
as the text encoder; s2v indicates Sent2Vec is used.

Text Enc. mAP F1-score

Brattoli et al. [4] w2v 6.4 10.0

PS-ZSAR (ours) w2v 6.5 11.4
PS-ZSAR (ours) s2v 7.0 12.3

Supervised (I3D) [44] - 23.4 -

Table 4: Results from the MEVA Se-
questered Data Leaderboard. For both met-
rics, lower score is better.

Pmiss@0.02TFA Pmiss@0.04TFA

IBM-Purdue 0.8898 0.8176
CMU-DIVA 0.8795 0.8044
Purdue 0.8537 0.7617
UMCMU 0.8724 0.8009

PS-ZSAR 0.7752 0.6686

confidence scores for their final classifications. We apply the method in [4] and obtain a confidence
score for each class by computing the softmax over the inverse cosine distances between the video
encoding and the classes’ textual encoding. As most resultant distances are relatively close, we scale
them by a factor of 10 prior to use in the softmax. For final class predictions, we follow equation 3,
which we find leads to the best results for the baseline3.

Results We present results on the AVA dataset in Table 3. We find that, when using the same
Word2Vec text encoder, our model outperforms previous approaches when modified for multi-label
action classification in terms of F1-score. This improvement is more noticable when using Sent2Vec
as the text encoder - we achieve a 0.6% improvement in terms of mAP and a 2.3% improvement in
F1-score.

4.3 Real-world Action Recognition on MEVA

Dataset So far, the previous evaluation datasets have been curated to contain specific action classes.
Also, unseen classes are identified by class names, rather than natural language sentences, which is
not ideal for real-world applications. To demonstrate our approach’s ability to deal with real-world
scenario, we train and evaluate on the Multiview Extended Video with Activities (MEVA) dataset
[42]. This dataset consists 9,300 hours of untrimmed video collected from multiple viewpoints and
scenes. For 144 hours of video, bounding-box annotations are available for actors performing 37
possible activities. Each actor can perform multiple actions at once and each activity has detailed
natural language descriptions, which is beneficial for learning ZSAR models. The data is split into
22 hours for training and 122 hours are sequestered for the NIST Activity in Extended Video (ActEV)
challenge. This challenge has a "Surprise Activity" task, which involves classifying previously unseen
classes (i.e. classes not within the annotated 37 activities) from natural language descriptions. As the
test data is sequestered, the number of unseen action categories as well as the number of instances
are unknown.

Training and Evaluation Protocol On this dataset, PS-ZSAR is trained using the natural language
descriptions of the activities (rather than their names). Since these descriptions consist of full-length
sentences, we use Sent2Vec as our text encoder. Evaluation is performed by submitting a system to
the ActEV challenge website. Performance is evaluated based on the probability of missed detection
at fixed time-based false alarm per minute (Pmiss@TFA). The time-based false alarm per minute is
set to 0.02 and 0.04 (i.e. Pmiss@0.02TFA and Pmiss@0.04TFA). We refer to MEVA SDL [43] for detailed
explanations of the evaluations as well as evaluation code.

Results Our method achieves strong performance when compared with other submitted systems, as
seen in Table 4. We find that our approach greatly outperform all other systems on the Pmiss@TFA
metric. These experiments highlight our method’s ability to scale to large amounts of real-world
video data as well as its ability to leverage natural language activity descriptions for the ZSAR task.

3We include various methods for obtaining confidence scores and final class predictions in the Supplementary
Materials

7



Table 5: Ablation on Text Refining Module.
Dataset UCF-101 HMDB

Top-1 Top-5 Top-1 Top-5

No Refining 32.0 58.5 18.9 45.6
Single layer 36.3 64.2 23.7 50.1
Full Model 40.1 66.3 27.3 55.7

Table 6: Ablation on how modalities are merged.
Dataset UCF-101 HMDB

Top-1 Top-5 Top-1 Top-5

Concat. 34.4 60.6 21.3 47.7
Add. 35.1 62.6 24.0 51.6
Mult. 40.1 66.3 27.3 55.7

Table 7: Ablation on different textual encoders.
Dataset UCF-101 HMDB RareAct

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Word2Vec 40.1 66.3 27.3 55.7 11.5 32.8
Sent2Vec 39.7 65.4 23.9 51.2 7.3 22.7
BERT 31.8 58.9 22.2 45.6 8.3 22.9

4.4 Ablations

We perform several ablations on the UCF-101 and HMDB datasets to evaluate various components
of our network.

Text Refining Module We evaluate the importance fine-tuning the textual features during training.
We first remove the text refining module, and merge the semantic embedding, ψ(y), with the visual
features. This results in a Top-1 accuracy of 32.0% and 18.9% on UCF-101 and HMDB, respectively.
Next, we use a single dense layer of size 1024 before merging features;his improves performance
by 4.3% on UCF-101 and 5.7% on HMDB. Finally, we use our full 3-layer refining module which
outputs a new textual encoding. We find that this leads to the best results with accuracies of 40.1%
on UCF-101 and 27.3% on HMDB. This suggests that a single linear transformation (i.e. single
dense layer) is insufficient to learn the visual semantics for given action classes, and a deeper refining
module is required.

Modality Merging To determine the most effective technique for combining video and textual
features, we use three common methods: multiplication, addition, and concatenation. For these
experiments, all other components of the network remain unchanged while varying the merging
method. We find that addition and concatenation perform similarly, but multiplication substantially
outperforms them with a 5% improvement on UCF-101 and 3.3% improvement on HMDB.

Importance of the Textual Encoder Traditionally, ZSAR methods are trained using a Word2Vec
encoder with max-pooling over the words of an action name. Pooling, however, can lead to loss of
vital information. Newer text encoding methods like Sent2Vec or BERT [30] do not pool feature
representation, but rather generate a single feature vector when given a sequence of words. We
report scores on the UCF-101, HMDB, and RareAct datasets for various text encoders in Table 7.
We find that for these datasets, Word2Vec tends to outperform these sentence based encoders; this
can be attributed to the fact that the class names used in these datasets consist of a few words (the
majority of classes are fewer than 2 words) so the max-pooling operation used with Word2Vec has
minimal negative effect. This is supported by our experiments on the MEVA dataset, where Sent2Vec
outperforms Word2Vec+Pooling since action classes are described with natural language descriptions.

4.5 Analysis

Improved Textual Embeddings We first analyse the text representations generated by our Text
Refining module. We present a t-SNE [45] visualization of the Word2Vec encodings and the refined
encodings in Figure 3. We find that the representations are changed based on the visual semantics of
the given action class. For example, the original Word2Vec embedding for the action "Tennis Swing"
is closer to the action "Swing" (i.e. child on a swing) than the action "Table Tennis Shot" which is
visually more similar. Our Text Refining module, however, learns to bring "Tennis Swing" and "Table
Tennis Shot" closer together in the feature space.
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Figure 3: A comparison of the texual embeddings of UCF-101 classes of the previous method [4]
and PS-ZAR, reduced to 2-dimensions via t-SNE. "Swing" and "Tennis Swing" both contain the
word "Swing", and therefore averaging of Word2Vec embeddings falsely associates the two, while
the more visually similar "Table Tennis Shot" class is further away. In PS-ZAR, the more visually
similar classes are grouped closer together in the embedding space.

Figure 4: Qualitative results on multi-label samples from the AVA dataset for PS-ZSAR and the
state-of-the-art baseline [4]. Our proposed approach is able predict semantically distinct classes,
which leads to improved multi-label accuracy.

Predicting Multiple Actions We argue that previous nearest-neighbor based ZSAR approaches are
ineffective when dealing with multi-label data, since semantically distinct actions cannot be predicted
together. We show some qualitative results to this effect in Figure 4 - for a given video we compare
the top-5 predictions for the method [4] and our approach. We observe that our method successfully
predicts semantically dissimilar classes while the previous approach can only predict classes which
are similar.

5 Conclusion

In this work, we reformulate zero-shot action recognition such that it does not rely on nearest
neighbor classification, but rather consists of a pairwise scoring function. Given a video and a set of
action classes, our method predicts a set of probabilities for each class, allowing for semantically
distinct classes to be predicted with high confidence. The proposed method improves on previous
state-of-the-art zero-shot action detection models. We explore the use of feature merging as opposed
to simply learning on a static textual embedding space, as well as multiple textual encoding schemes
that preserve semantic relationships. Our results highlight the need for zero-shot learning models
to learn both visual and textual spaces to properly represent unseen classes. The PS-ZSAR method
achieves state-of-the-art performance on 5 zero-shot action classification benchmarks including in
the challenging multi-label dataset AVA. Finally, we demonstrate our approach’s ability to deal with
real-world surprise activity detection by providing results on the MEVA dataset.
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