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A Proof of Lemma 1

Proof. Since ∆f , E, and E′ are uncorrelated, and E′ is a independent copy of E which has zero
expectation and finite variance, then the expectation and variance of ∆Y can be derived as follows.

E[∆Y ] = E[Y ′ − Y ] = E[∆f ] + E[E′]− E[E] = E[∆f ] (A1)

Var(∆Y ) = Var(∆f) + Var(E′) + Var(E) = Var(∆f) + 2Var(E) (A2)

Consider a continuous f(·). Since Λ = ‖∆X‖, then Λ is a nonnegative random variable, then we
have

E[Λ]→ 0⇔ Λ→ 0⇔ ∆X→ 0M

⇒ f(X + ∆X)→ f(X)

⇔ ∆f → 0

⇔ E[∆f ]→ 0,Var(∆f)→ 0

(A3)

Therefore, it holds almost surely that
lim

E[Λ]→0
E[∆Y ] = 0

lim
E[Λ]→0

Var(∆Y ) = 2Var(E)
(A4)

If E is heteroscedastic, then g(X) is a variable rather than a constant, and thereby

lim
E[Λ]→0

Var(∆Y ) = 2E[g(X)2]E[Θ2]− 2E[g(X)]2E[Θ ]2

= 2E[g(X)2]Var(Θ) = 2E[g(X)2]
(A5)

Consider a f(·) that has removable or jump discontinuities. The domain of f(·) can be divided into a
set of sub-domains D = {Di} such that f(·) is continuous on each Di. Then,

E[∆f2] =

|D|∑
i=1

|D|∑
j=1

Pr(X ∈ Di,X
′ ∈ Dj)E[∆f2|X ∈ Di,X

′ ∈ Dj ] (A6)

Since limE[Λ]→0 X
′ = X, it holds over the entire domain that

lim
E[Λ]→0

Pr(X′ ∈ Di,X ∈ Dj) =

{
Pr(X ∈ Di), i = j
0, otherwise

(A7)

Then,

lim
E[Λ]→0

E[∆f2] = 0×
|D|∑
i=1

Pr(X ∈ Di) +

|D|∑
i 6=j

0× E[∆f2|X ∈ Di,X
′ ∈ Dj ] = 0

⇔ E[∆f ] = 0,Var(∆f) = 0

(A8)

and thus, (A4) and (A5) still hold.

B Proof of Theorem 1

Proof. First, nCor|∆|(X, Y ) has the same form as the Pearson product-moment correlation coeffi-
cient. According to the Cauchy Schwarz inequality, it should also have a value between ±1.
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Second, consider the numerator of (7).

Cov(|∆Y |, |∆Y ′′|)
= E[|∆Y ||∆Y ′′|]− E[|∆Y |]E[|∆Y ′′|]
= E[|∆f + E′ − E||∆f ′′ + E′′′ − E′′|]− E[|∆f + E′ − E|]E[|∆f ′′ + E′′′ − E′′|]

(A9)

If E is homoscedastic, then ∆f , ∆f ′′, E, E′, E′′, and E′′′ are independent with each other, and

E[|∆f + E′ − E||∆f ′′ + E′′′ − E′′|] = E[|∆f + E′ − E|]E[|∆f ′′ + E′′′ − E′′|]
⇒ Cov(|∆Y |, |∆Y ′′|) = 0

⇒ nCor|∆|(X, Y ) = 0

(A10)

Third, if E is heteroscedastic, it follows from (A9) that

Cov(|∆Y |, |∆Y ′′|)
= E[|∆f + g(X′)Θ ′ − g(X)Θ ||∆f ′′ + g(X′′′)Θ ′′′ − g(X′′)Θ ′′|]
− E[|∆f + g(X′)Θ ′ − g(X)Θ |]E[|∆f ′′ + g(X′′′)Θ ′′′ − g(X′′)Θ ′′|]

(A11)

It can be proved with similar arguments as for Lemma 1 that when Λ → 0, it holds that ∆f → 0,
g(X′) → g(X), g(X′′) → g(X), and g(X′′′) → g(X′′). Since g(X) ≥ 0 and E[|Θ ′ − Θ |] =
E[|Θ ′′′ −Θ ′′|], then it holds almost surely

lim
E[Λ]→0

Cov(|∆Y |, |∆Y ′′|)

= E[g(X)2]E[|Θ ′ −Θ |]E[|Θ ′′′ −Θ ′′|]− E[g(X)]2E[|Θ ′ −Θ |]E[|Θ ′′′ −Θ ′′|]
= Var(g(X))E[|Θ ′ −Θ |]2 > 0

(A12)

Consider the denominator of (7)

(Var(|∆Y |)Var(|∆Y ′′|))0.5
=
(
E[|∆Y |2]− E[|∆Y |]2

)0.5 (E[|∆Y ′′|2]− E[|∆Y ′′|]2
)0.5 (A13)

When Λ→ 0, ∆Y ′′ can be viewed as an independent copy of ∆Y , and therefore

lim
E[Λ]→0

(Var(|∆Y |)Var(|∆Y ′′|))0.5
= 2E[g(X)2]− E[g(X)]2E[|Θ ′ −Θ |]2 (A14)

Thus, it holds almost surely that

lim
E[Λ]→0

nCor|∆|(X, Y ) =
Var (g(X))E [|Θ ′ −Θ |]2

2E[g(X)2]− E [g(X)]
2 E [|Θ ′ −Θ |]2

> 0 (A15)

C Proof of Lemma 2

Proof. First, consider the situation where M = 1 and x is uniformly distributed on the interval [a, b],
therefore, ∆x(k:N) should obey a beta distribution with the expectation and variance of

E[∆x(k:N−1)] =
b− a
N + 1

Var(∆x(k:N−1)) =
N(b− a)2

(N + 2)(N + 1)2

(A16)

It follows that almost surely lim
N→∞

E[∆x(k:N−3)] = 0

lim
N→∞

Var(∆x(k:N−3)) = 0
⇒ lim

N→∞
∆x(k:N−3) = 0 (A17)
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If f(·) is continuous at all points of its domain, by the definition, when ∆x(k:N−3) → 0, ∆f[k:N−3] =
f(x(k:N) + ∆x(k:N−3))− f(x(k:N))→ 0, ∀1≤k≤N − 3. By Kolmogorov’s strong law of large
numbers, limN→∞∆y = e′ − e = 0 and limN→∞ var(∆y)=2var(e)=2g(x)2 with probability 1.

If f(·) has a finite number of removable or jump discontinuities. The index k = 1, 2, . . . , N − 2 can
be divided into m+ 1 sub-intervals [N1 + 1, N2], [N2 + 1, N3], . . . , [Nm + 1, Nm+1] where N1 = 0
and Nm+1 = N − 2, such that f(·) is continuous on each [x(Ni+1:N), x(Ni+1:N)].

∆y =

∑m
i=1

∑Ni+1−1
k=Ni+1 ∆y[k:N ]

N − 3
+

∑m
i=2 ∆y[Ni:N ]

N − 3
(A18)

Since m and each ∆y[Ni:N ] are finite numbers, then when N →∞, ∆y → 0. Moreover, it can be
proved similarly as above that, when N →∞, Var(∆y)→ 2var(e) = 2g(x)2 almost surely.

Second, consider the situation where M > 2 and each xi is uniformly distributed on the interval [a, b].
Finding the best permutation that satisfies (9) can be viewed as the procedure of solving a travelling
salesman problem (TSP), that is, to find the shortest possible path that visits each city (data point)
exactly once and returns to the origin one. Consider the Euclidean TSP for N cities uniformly and
independently distributed in the M -dimensional hypercube of unit volume. Let L∗(x(1), · · · , x(N))
be the length of the shortest path through these cities. The Beardwood-Halton-Hammersley limit law
(1959) proved the existence of a universal constant β such that with probability 1 [1],

lim
N→∞

L∗(x(1), · · · ,x(N))

N1−(1/M)
= β (A19)

where 0 < β <∞ is a positive constant that depends only on M , and is not known explicitly. For
M = 2, the best bounds for β (0.625 ≤ β ≤ 0.922) were originally established by [1] and later
improved by some studies [9]. For a larger M , β =

√
M/2πe(πM)1/2M (1 +O(1/M)), that is also

a finite positive constant [1, 5].

Let λn∗
kn

∗
k+1

= ‖x(nk+1) − x(nk)‖. Since {λn∗
kn

∗
k+1
} are i.i.d., then we have

N∑
k=1

λn∗
kn

∗
k+1

+ λn∗
1n

∗
N

= (b− a)L∗(x(1), · · · , x(N))

⇒ lim
N→∞

N∑
k=1

λn∗
kn

∗
k+1
≤ lim

N→∞
(b− a)βN1−(1/M)

⇒ lim
N→∞

E
[
λn∗

kn
∗
k+1

]
≤ lim

N→∞

(b− a)β

N1/M

⇒ lim
N→∞

E
[
λn∗

kn
∗
k+1

]
= 0

(A20)

λn∗
kn

∗
k+1

is a nonnegative random variable, therefore, E
[
λn∗

kn
∗
k+1

]
= 0 if and only if Pr

(
λn∗

kn
∗
k+1

=

0
)

= 1, that is, limN→∞ λn∗
kn

∗
k+1

= 0 almost surely. By the definition of λn∗
kn

∗
k+1

, it holds that
almost surely,

lim
N→∞

‖x(nk+1) − x(nk)‖ = 0

⇒ lim
N→∞

∆x(k:N−3) = 0M

⇒ lim
N→∞

∆y[k:N−3] = e[k+1:N−3] − e[k:N−3]

⇒ lim
N→∞

∆y = 0, and lim
N→∞

var(∆y) = 2g(x)2

(A21)

Moreovwe, finding the optimal route of an Euclidian TSP instance is in some sense equivalent to
finding the optimal path through the points in many small subset of the unit square and then patching
these together [1, 5]. Figure A1 shows the graph and the contour map of a functional relationship
with M = 2.
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Figure A1: The surface (a) and contour map (b) of a discontinuous functional relationship between
(x1, x2) and y which has jump discontinuities at two lines. In figure (b) the grid areas indicate the
subdomains surrounding the discontinuities, and the light shaded areas denote the neighbouring
subdomains around the dark shaded subdomain. Furthermore, the black dots represent all the data
points in a random ample, and the red edges form a short path through the data points within the the
dark shaded area .

As shown in the figure, the domain of f(·) (the entire square) can be partitioned into maximum
p× p subdomains (the tiny squares) such that at least one data point falls in almost every subdomain.
In this case, each point gets connected only with another point within the same or neighbouring
subdomains, so that the edge should have a length of λn∗

kn
∗
k+1
≤
√

8(b− a)/p. With larger N , the
entire square can be cut into more tiny squares, which implies that p increases with increasing N ,
while the opposite is true for λn∗

kn
∗
k+1

. Therefore, with a sufficiently large N , λn∗
kn

∗
k+1

can be limited
to an arbitrarily small value.

If f(·) is discontinuous at a finite number of lines in its domain, some of the neighbouring differences
may have limN→∞∆y[k:N−3] 6= e[k+1:N−3] − e[k:N−3] due to their corresponding edges being
across the discontinuous lines. This kind of edges could occur only between the data points inside
the subdomains that lie along the discontinuous lines. Let Pdiscon be the number of the subdomains
lying along the lines, and Ptotal be the total number of subdomains. Then, we can easily have
Pdiscon ≤ 3lp/(b− a) where l is the total length of the discontinuous lines. Since both l and b− a
are constant for a given f(·), Pdiscon/Ptotal ≤ 3l/(p(b − a)) decreases with increasing p, and
Pdiscon/Ptotal → 0 as p → ∞. When N → ∞, Ndiscon/N → 0, and therefore (A21) still holds.
For M > 2, it can be proved in the same way as above.

Third, consider the situation where M = 1 and x is non-uniformly distributed on the finite interval
[a, b]. The interval can be divided into a number of sufficiently small subintervals of equal length such
that the probability density function of x is monotonic in each subinterval [αj , βj ] as shown in Figure
A2. Let ρj denotes the maximal value satisfying that Pr(ξa < x < ξb) ≥ ρj(ξb−ξa) for any ξa < ξb
and ξa, ξb ∈ [α, βj ]. Consider a variable v that is uniformly distributed on [va, vb] where va ≤ αj ,
vb ≥ βj , and vb − va = 1/ρj . For any x(k:N−3) ∈ [α, βj ], if there exists a v(q:N−3) = x(k:N−3),
then it should have Pr(v(q:N−3) < x < v(q:N−3) + δ) ≥ Pr(v(q:N−3) < v < v(q:N−3) + δ) for
any 0 < δ ≤ βj − v(q:N−3), that is to say, E[∆x(k:N−3)] ≤ E[∆v(q:N−3)]. By (A16) and (A17),
limN→∞∆v(q:N−3) = 0, then limN→∞∆x(k:N−3) = 0, and thereby limN→∞∆y = e′ − e = 0,
and limN→∞ var(∆y) = 2var(e) = 2g(x)2 almost surely.

ForM > 1, it can be proved similarly as above by dividing the space of x into a number of subregions.
In brief, when N is sufficiently large, the sample points can be made any crowded in x, and the
distance between each pair of neighbouring points space can be reduced to arbitrary short.
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Figure A2: Sketch plot of dividing the interval of x into a number of subintervals

D Proof of Theorem 2

Proof. If a noise is homoscedastic, as proved in Theorem 1, the expectation of nCor|∆|(x, y) is zero.
nCor|∆| is in the form of the Pearson correlation coefficient, then, it should also have the same basic
properties such as |nCor|∆|| ≤ 1.

By using the Fisher transformation, the confidence limits of correlation estimates with sample size of
N − 3 are ± tanh

(
Φ−1(1 − α/2)/

√
(N − 6)

)
. A test rejects the independence of {(A[k], B[k])}

with a significance level of α when |nCor|∆|(x, y)| > tanh
(
Φ−1(1− α/2)/

√
(N − 6)

)
.

Consider a heteroscedastic noise. If both f(·) and g(·) are continuous, it can be proved similarly as in
Lemma 2 that when N → ∞, for all 1 ≤ k ≤ N − 3, A[k] → g[k:N ]|θ[k+1:N−3] − θ[k:N−3]|
and B[k] → g[k:N ]|θ[k+3:N−3] − θ[k+2:N−3]|. Moreover, |θ′ − θ| = |θ′′′ − θ′′| +

(
|θ[2:N ] −

θ[1:N ]| + |θ[3:N ] − θ[2:N ]| − |θ[N−3:N ] − θ[N−4:N ]| − |θ[N−2:N ] − θ[N−3:N ]|
)
/(N − 3) , hence,

limN→∞ |θ′′′ − θ′′| = |θ′ − θ|.
Then, the limit of the numerator of (12) can be derived as

lim
N→∞

N−3∑
k=1

A[k]B[k] − (N − 3)AB = (N − 3)
(

var(g(x))|θ′ − θ|
2

+ c
)

(A22)

where
c =g(x)2cov(|θ′ − θ|, |θ′′′ − θ′′|)

+ cov(g(x)2, |θ′ − θ||θ′′′ − θ′′|)
+ g(x) |θ′ − θ| cov(g(x), |θ′′′ − θ′′|)
+ g(x) |θ′′′ − θ′′| cov(g(x), |θ′ − θ|)
+ cov(g(x), |θ′ − θ|) cov(g(x), |θ′′′ − θ′′|)

(A23)

Since θ is a random noise and independent to g(x), all the covariance terms in (A23) should have
zero expectation. By Kolmogorov’s strong law of large numbers, limn→∞ c = 0 with probability
1. since limN→∞

∑M
k=1A

2
[k] = limN→∞

∑M
k=1B

2
[k] = 2(N − 3)g(x)2var(θ) and limN→∞A

2
=

limN→∞B
2

= g(x)
2
|θ′ − θ|

2
, then it holds almost surely

lim
N→∞

N−3∑
k=1

A[k]B[k] − (N − 3)AB = (N − 3)var(g(x))|θ′ −θ|
2

⇒ lim
N→∞

nCor|∆|(x, y) =
var(g(x))|θ′ − θ|

2

2g(x)2 − g(x)
2
|θ′ − θ|

2 > 0

(A24)

If f(·) and g(·) have removable or jump discontinuities (or x are distributed non-uniformly), the
domain of f(·) and g(·) can be divided into a number of subdomains such that both f(·) and g(·)
are continuous (or x approximately obey a multivariate uniform distribution) in each subdomain. In
such a situation, by Lemma 2, when N →∞, ∆y reamins zero mean and variance of 2g(x)2 (which
implies that ∆y is just a superposition of two realizations of e), and then it can be proved similarly as
above that (A24) still holds.

6



E Supplementary to Section 4.1

The first experiment: we applied two widely used heteroscedasticity tests, the Park test and the
White test to detect the relationships between x and ε = e (the underlying noise, representing the
residuals obtained by assuming f(·) is known). The White test is realized by using polynomials
expressed as below. Due to the high nonlinearity of g(x) in example 3, the maximum degree of the
White test was set to be 15, otherwise it may fail to detect the heteroscedasticity of the residuals.

ε̂ = a0 + a1x
1 + · · ·+ akx

k (A25)

The second experiment: we considered four R2 values (0, 0.2, 0.4, 0.8) to evaluate the proposed
method under different strength of functional relationship coexisted in the data. Here, R2 was directly
measured as V ar(β sin(πx))/V ar(y), and meanwhile different levels of R2 were exactly achieved
by adjusting the value of β for each dataset.

We also evaluated the performance of the proposed test under smaller sample sizes and extremely
large R2, and the experiment results are given in Figure A3. As shown in the figure, nCor|∆|
showed less detection power under smaller sample sizes, in which case the distances in x between
the neighbouring data points were not guaranteed to be sufficiently close. Moreover, when R2

was extremely large and x was nonuniformly distributed, the nCor|∆| incorrectly rejected the null
hypothesis of homoscedastic in E.1. This is because when 99% or even 99.9% of the variance of y is
predictable from x by f(x) and thus e becomes extremely small, ∆f between the outlier data points
(which have extreme values of x and thereby large ∆x) may considerably impact the estimation of
nCor|∆|. To address this problem, we removed 10% data points which were of the x values that were
the most far away from the mean value of x, and then used the reduced datasets to implement the
proposed test. The figure clearly suggests that by removing the isolated data points the performance
of nCor|∆| became acceptable especially with larger sample size.

The Third experiment: Four existing association measures were also implemented for make com-
parisons with the proposed method. These approaches are typical and well-established. MI is
the most well-known dependence measure developed in the context of information theory. dCor
can be viewed as a special case of kernel based method [8], which is a kind of more general
statistic defined on reproducing kernel Hilbert spaces [2, 3]. The basic idea behind MIC is
that if an association exists between two variables, then a grid can be drawn on the scatterplot
that partitions the data to encapsulate that relationship. Its outstanding performance has been
extensively evaluated [6, 7]. RDC enables an effective measure of non-linear dependence be-
tween random variables of arbitrary dimension based on the Hirschfeld-Gebelein-Rényi Maximum
Correlation Coefficient[4]. The source code in Matlab for dCor and k-NN based MI estimator
are enclosed in this supplementary material. The R code for conduting RDC can be found at
https://github.com/lopezpaz/randomized/dependence/coefficient. The MINE toolbox for implement-
ing MIC test can be found at http://www.exploredata.net/Downloads/MINE-Application. The number
of nearest neighbors k of the kNN based MI was set to be 1. The parameters of RDC were set as
k = 20 and s = 1/6.

The last experiment: we evaluate the performance of the proposed method under multiple indepen-
dent variables. The four underlying functions are give as follows.

Table A1: The four underlying functions used as E.1 to E.4.

y = β
∑M

i=1 sin(πx) + 0.3θ

y = β
∑M

i=1 sin(πx) +
∑M

i=1 (0.22 + 0.2x)θ

y = β
∑M

i=1 sin(πx) + 0.3
∑M

i=1 cos(πx)θ

y = β
∑M

i=1 sin(πx) +
∑M

i=1 (0.3 + 0.2sign(cos(πx))) θ

Figure A4 shows the detection results obtained from using the nCor|∆| and nCor tests. Figure
A5 depicts scatterplots of the observed data describing the relationships of (xi, y) and (xi, e). The
figure clearly suggests that the nCor lines of the same R2 are virtually superimposable in every
case although with different g(·). In contrast, the values of the nCor|∆| mainly depend on whether
or what type of g(·) exists. Both the two association measures displayed a decreasing detection
power as the dimension of x increased. Actually, all the multivariate association measures has this

7



(a) The box plots obtained from using nCor|∆| under sample sizes of 30, 50, 100, and 150.

(b) The box plots obtained from using nCor|∆| under R2 = 0.9, 0.99, 0.999.

(c) The box plots obtained from using nCor|∆| under R2 = 0.9, 0.99, 0.999
with 10% isolated data points removed.

Figure A3: The detection results obtained from the proposed method for the four examples given in
Figure 2 (E. 1 to E. 4) under smaller sample sizes and extremely large R2.

common problem. With a higher dimension, the data points in x space is more sparse and scattered
such that the relationship becomes indistinct and difficult to detect. Compared to the nCor, the
nCor|∆| exhibited less detection power on multivariate data especially when g(·) is nonlinear. This
is because the heteroscedasticity of e arises from the interaction with an unknown noise θ so that the
heteroscedastic relationships become too blurred to be diagnosed when M is large and g(·) is highly
nonlinear. For E.4 with M = 6, as shown in Figure A5, the heteroscedasticity of the noise is barely
perceptible by visual inspection of the scatterplot.
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Figure A4: Detection results obtained from using nCor|∆| and nCor

E. 2 (M=2) E. 3 (M=2) E. 4 (M=2)

E. 2 (M=6) E. 3 (M=6) E. 4 (M=6)

E. 2 (M=2) E. 3 (M=2) E. 4 (M=2)

E. 2 (M=6) E. 3 (M=6) E. 4 (M=6)

E. 2 (M=2) E. 3 (M=2) E. 4 (M=2)

E. 2 (M=6) E. 3 (M=6) E. 4 (M=6)
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(b) Scatterplots of e versus x1

Figure A5: The sccaterplots of the observed data with sample sizes of 200, 1000, and 5000.

F Supplementary to Section 4.2

Table A2 represents the eight associations adopted in Subsection 4.2 for generating simulation data.
x′ in D 1 to D 8 except D 6, and y′ in D 8 were set to be uniformly distributed rand variables with
range of [0 1]. Additive noise ex and ey were also uniformly distributed with zero mean and finite
variance. In D 7, t was uniformly distributed with range of [0 2π]. In other cases, u was set to be
a uniformly distributed binary variable. Moreover, when using ANN models to approximate the
underlying associations of D1 and D2, to avoid the problem of overfitting, original data was randomly
divided into a training set (70%) and a validation set(30%) for performing earlier stopping strategy.
In each case, 10 ANNs were trained and the ANN model with the lowest root-mean-squared-error
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(RMSE) was selected as the best fitted regression model. Finally, ANN modelling was conducted
using Matlab deep learning toolbox.

Table A2: Eight sets of functions for generating simulation datasets used in Subsection 4.2.

D 1
{
y = x′ + ey
x = x′ + ex

D 2
{
y = sin(4πx′) + ey
x = x′ + ex

D 3

 y =

{
x′ + ey, u = 0
0.1x′ + ey, u = 1

x = x′ + ex

D 4

 y =

{
x′ + ey, u = 0
0.25− (x′ − 0.5)2 + ey, u = 1

x = x′ + ex

D 5

 y =

{
2(x′ − 0.5) + ey, u = 0
−2(x′ − 0.5) + ey, u = 1

x = x′ + ex

D 6


u = sin(t)
x′ = cos(t)
y = 5.4 + 3u+ 0.6x′ + ey
x = x′ + ex

D 7

 y =

{
sin(4πx′), u = 0
sin(10πx′), u = 1

x = x′ + ex

D 8
{
y = uy′ + ey
x = (1− u)x′ + ex

G Detecting heteroscedastic relationships in real-world datasets

We used the nCor and nCor|∆| tests to explore a real-world large dataset which consists of 356
social, economic, health, and political indicators (variables) of 202 countries (samples) collected
from the World Health Organization (WHO) and partner organizations [1,2]. We detected tens of
millions of bivariate (126,380) and trivariate (22,369,260) relationships, and found a huge number of
heteroscedastic relationships (9,739) and many interesting associations including interaction effects.
Subsequently, ANN models was used to identify the relationships to confirm the detection results.
In these experiments, three layer feedforward ANN structure was adopted, and the hidden neuron
number was set to be 3 and 5 respectively for identifying bivariate and trivariate relationships.

Four examples of the detected associations are given in Tables A3 and A4 and Figure A6. Figure A6
clearly shows that in all the examples, nCor|∆| successfully detected the heteroscedasticity of the
underlying noises (residuals), which were subsequently verified by ANN base regression. Second,
nCor roughly approximate the R2 = var(f̂(·))/var(y) of the functional relationships. By using the
two measures together we can easily distinguish whether xa or xb influences the expected value or
variance of xc. Third, as given in Table A4, when the heteroscedastic noises occurred, there might
exist interaction effects between the variables.

H Source code

The source code in Matlab for conducting the nCor and nCor|∆| tests are also given as below.

Source code:
%———————————————
function [r1,r2] = ncor2(x,y)
% ncor2 returns the nCor and nCor|∆| scores between x and y

10



Table A3: The 12 variables that were used in the four examples in Figure A.5
Notation Variable name

x-1 Continent
x-309 Old version of income per person
x-107 Age-standardized mortality rate for cardiovascular diseases (per 100000 population)
x-11 Population median age (years)
x-336 Stomach cancer deaths per 100000 men
x-58 Per capit total expenditure on health at average exchange rate (USD)
x-9 Population in urban areas
x-227 Female labour force
x-276 Lung cancer new cases per 100000 women
x-108 Age-standardized mortality rate for injuries (per 100000 population)
x-121 Healthy life expectancy (HALE) at birth (years) both sexes
x-140 Years of life lost to injuries

Table A4: Association detection and regression modelling results for the four examples. ∆R2

denotes the increment of R2 when using the two independent simultaneously, which was computed
as ∆R2 = R2

xa,xb→xc
− R2

xa→xc
− R2

xb→xc
. ∆R2 equals to the total R2 of f̂a,b(xa, xb) with the

individual R2 of the two main effects of f̂a(xa) and f̂b(xb) removed so that it directly implies the
strength of the interaction effect of xa and xb

Relationships nCor|∆| nCor R2 ∆R2

(x-1,x-107) 0.310 0.168 0.133 –
(x-309,x-107) 0.300 0.232 0.386 –

(x-1,x-309,x-107) – 0.684 0.667 0.148
(x-11,x-58) 0.300 0.435 0.434 –
(x-336,x-58) 0.208 0.084 0.147 –

(x-11,x-336,x-58) – 0.755 0.726 0.145
(x-9,x-276) 0.171 0.116 0.278 –

(x-227,x-276) 0.290 0.096 0.053 –
(x-9,x-227,x-276) – 0.559 0.527 0.196

(x-108,x-140) 0.325 0.013 0.058 –
(x-121,x-140) 0.288 0.318 0.387 –

(x-108,x-121,x-140) – 0.715 0.762 0.316

% x has N rows and M columns and y has N rows and one column
% r1 and r2 respectively denotes the nCor and nCor|∆| scores

% Check the sizes of x and y
if size(x,1) = size(y,1)

error(’x and y must have the same number of rows’)
elseif size(y,2)>1

error(’y must have one column’)
end

% Normalize x before computing distance matrix
if size(x,2)>1

for i = 1:size(x,2)
x(:,i) = x(:,i)-mean(x(:,i));
x(:,i) = x(:,i)/std(x(:,i));

end
end

% Generate permutation by order statistics or NN algorithm
if size(x,2)>1

dis = squareform(pdist(x));
perm = computePerm(dis,1);
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Figure A6: The scatterplots of the four examples. The red lines and surfaces respectively represent
the predicted bivariate and trivariate relationships obtained from using the best fitted ANNs.

12



else
[∼,perm] = sort(x);

end

% Compute the correlation values
y = y(perm);
temp = corrcoef(y(1:end-1),y(2:end));
r1 = temp(1,2); % the nCor score
y1 = abs(y(2:end-2)-y(1:end-3));
y2 = abs(y(4:end)-y(3:end-1));
temp = corrcoef(y1,y2);
r2 = temp(1,2); % the nCor|∆| score

%———————————————
function perm = computePerm(dis)
% Generate permutation using NN algorithm
perm = 1+zeros(1,length(dis));
N = 2:length(dis);
for i = 2:length(perm)

[∼,temp] = min(dis(perm(i-1),N));
perm(i) = N(temp);
N(temp) = [];

end
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