
Outline of Appendices

In Appendix A, we introduce some basic notation and definitions used throughout all of the appendices.
In Appendix B, we introduce a general framework that allows us to prove our main theorems about
consistent estimation (Theorem 2.1, Theorem 2.2 and Theorem 2.3).

Appendices C to F are devoted to the proofs of theorems from Section 2. Concretely, in Appendix C
we prove Theorem 2.1, Appendix D contains a proof of Theorem 2.2 and in Appendix E we prove
Theorem 2.3. Complementing these algorithmic results, we prove a lower bound (Theorem 2.4) in
Appendix F.

Finally, Appendix G contains the proofs of a few facts about the Huber loss and Appendix H contains
a few facts from probability theory.

A Preliminaries

Notation. For � 2 íd we define the function k�k0 :⇤
Õ

i2[d] 1[�i,0] . For a subspace ⌦ ✓ íd we
denote the projection of � onto ⌦ by �⌦. We write ⌦? for the orthogonal complement of ⌦. For
N 2 é we denote [N] :⇤ {1, 2, . . . ,N}. We write log for the logarithm to the base e.

For a matrix X 2 íd⇥d we denote by rspan(X) and cspan(X) respectively the rows and columns
span of X, and we write kXk for the spectral norm of X, kXkF for its Frobenius norm, kXknuc for
its nuclear norm and kXkmax :⇤ maxi , j2[n]

��Xij
��. For a vector v 2 íN we write kvk for its Euclidean

norm, kvk1 ⇤
ÕN

i⇤1 |vi | and kvi k1 ⇤ maxi2[N] |vi |. For a norm k·k we write k·k⇤ for its dual. We
denote by G ⇠ N(0, 1)n⇥d a random n-by-d matrix G with i.i.d. standard Gaussian entries. Similarly,
we denote by 1 ⇠ N(0, 1)n an n-dimensional random vector 1 with i.i.d. standard Gaussian entries.

For a set S and a metric ⇢ : S ⇥S ! [0,1), we denote an "-net in S by N",⇢(S). That is, N",⇢(S)
is a subset of S such that for any u 2 S there exists v 2 N",⇢(S) satisfying ⇢(u , v) 6 ".

B Meta-Theorem

We present a high-level theorem which will be applied to prove Theorem 2.1, Theorem 2.2 and
Theorem 2.3. Recall the general setting an estimation problem: we start with a family of probability
distributions P :⇤ {ê✓ | ✓ 2 ⌦} over some space Z and indexed by some parameter ✓ 2 ⌦. We
observe a collection of n independent samples Z ⇤ (Z1 , . . . , Zn) taking value in Z, drawn from
an unknown probability distribution ê✓⇤ 2 P. We assume ⌦ ✓ íd and Z ✓ íD for some integers
d and D. Our goal is then to recover ✓⇤. That is, given Z, the goal is to find ✓̂ 2 íd such that for
some suitable error function E : íd ! [0,1), the value E �

✓⇤ � ✓̂� is as small as possible. It is clear
that this general setting also captures settings in which the observations are perturbed by oblivious
adversarial noise.

On a high level, we will use the following scheme:

1. Let k·kreg : íd ! [0,1) be a norm, and let � 2 í be a scalar. Design a cost function
F : íd ! í>0 which depends on Z .

2. For a set C ✓ íd , show that the target parameter (or some approximation of it)

✓̂ :⇤ arg min
✓2C

�
F(✓) + �k✓kreg

�
satisfies E �

✓⇤ � ✓̂� 6 R for some acceptable R > 0 with high probability over the samples
Z .

3. Argue that ✓̂ can be computed efficiently.

The norm k·kreg is often referred to as a regularizer. Its role is to enforce a certain structure on the
target parameter. For example, in the context of sparse linear regression y ⇤ X�⇤ + ⌘ with �⇤ 2 íd

being a k-sparse vector, the LASSO estimator: �̂ :⇤ arg min�2íd

⇣��X� � y
��2

+ �
�����1

⌘
follows the
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description above. In this example, the cost function is the squared euclidean norm and the regularizer
corresponds to a convex relaxation of the norm

�����0 .

If the cost function and the set C are convex and satisfy mild assumptions, the estimator can be
computed efficiently (in polynomial time). The estimators that we use for PCA and sparse linear
regression can be computed in polynomial time. For more details on computational aspects of convex
optimization, see (Vis18).

For convex cost functions the meta-theorem below (which appears in different forms in the literature,
e.g. see (Wai19), section 9.4) can be used to mechanically bound the guarantees of the estimator.
Before stating the theorem, let’s define the following set: for a norm k·kreg and for a vector subspace
V ✓ íd and b > 1, we denote

Sb(V) ⇤
�

u 2 íd
�� kukreg 6 bkuV kreg

 
,

where uV is the orthogonal projection of u on V .

Theorem B.1. Let �, , R, s be positive real numbers and let C ✓ íd be a convex set. Consider a
vectors space ⌦ ✓ íd and let ✓⇤ 2 ⌦ \ C.

Let k·kreg : íd ! [0,1) be a norm and consider a continuous error function E : íd ! [0,1) such
that E(0) ⇤ 0. Let F : íd ! í be a convex differentiable cost function.

Suppose that there exists a vector space ⌦ such that ⌦ ✓ ⌦ ✓ íd and such that the following
properties hold:

(Decomposability) For all u 2 ⌦ and v 2 ⌦?
,

kv + ukreg ⇤ kvkreg + kukreg . (B.1)

(Contraction) For all u 2 S4(⌦),
kukreg 6 s · E(u) . (B.2)

(Gradient bound) The dual norm of k·kreg of gradient of F at ✓⇤ satisfies

krF(✓⇤)k⇤reg 6 �/2 . (B.3)

(Restricted local strong convexity) Let BR :⇤
�

u 2 íd
�� E(u) ⇤ R , ✓⇤ + u 2 C

 
. Then

8u 2 BR \ S4(⌦) F(✓⇤ + u) > F(✓⇤) + hrF(✓⇤), ui + 
2
(E(u))2 . (B.4)

(Bound on radius) Parameters �,, R and s satisfy
� · s

6 R/4 . (B.5)

Then, for every ✓0 2 C such that F(✓0) + �k✓0kreg 6 F(✓⇤) + �k✓⇤kreg ,

E(✓0 � ✓⇤) < R .

For completeness, we include a proof of Theorem B.1. We will need the following lemma.
Lemma B.2. Consider the settings of Theorem B.1. If ✓ 2 C satisfies

F(✓) + �k✓kreg 6 F(✓⇤) + �k✓⇤kreg ,

then ✓ � ✓⇤ 2 S4(⌦).

Proof. Denote � ⇤ ✓ � ✓⇤ . By the decomposability of the regularizer Eq. (B.1),

k✓⇤ + �kreg ⇤

���✓⇤⌦ + �⌦ + �
⌦

?

���
reg
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>
���✓⇤⌦ + �

⌦
?

���
reg

�
���⌦��reg (Triangle Inequality)

⇤
��✓⇤⌦��reg +

����
⌦

?

���
reg

�
���⌦��reg . (Decomposability of k·kreg ).

By convexity of the cost function and Hölder’s inequality,

F(✓⇤ + �) � F(✓⇤) > �|hrF(✓⇤),�i | > �krF(✓⇤)k⇤reg · k�kreg .

Hence by the gradient bound and the decomposability of the regularizer,

F(✓⇤ + �) � F(✓⇤) > ��
2
· k�kreg ⇤ ��

2

✓���⌦��reg +

����
⌦

?

���
reg

◆
.

Recall that F(✓⇤ + �) + � k✓⇤ + �kreg 6 F(✓⇤) + � k✓⇤kreg, hence

0 > �
⇣
k✓⇤ + �kreg �

��✓⇤⌦��reg

⌘
+ (F(✓⇤ + �) � F(✓⇤))

> �
⇣
k✓⇤ + �kreg �

��✓⇤⌦��reg

⌘
� �

2

✓���⌦��reg +

����
⌦

?

���
reg

◆

> �
✓����

⌦
?

���
reg

�
���⌦��reg

◆
� �

2

✓���⌦��reg +

����
⌦

?

���
reg

◆

⇤
�
2

✓����
⌦

?

���
reg

� 3
���⌦��reg

◆
.

Therefore, we have
����
⌦

?

���
reg
6 3

���⌦��reg, and thus

k�kreg 6
����
⌦

?

���
reg

+
���⌦��reg 6 4

���⌦��reg.

⇤

We are now ready to prove the theorem.

Proof of Theorem B.1. Denote G(✓) ⇤ F(✓) + �k✓kreg.

Assume by contradiction that there exists ✓0 2 C such that E(✓0 � ✓⇤) > R and G(✓0) 6 G(✓⇤).
By continuity of E, there should exist a point ✓̃ on the segment between ✓0 and ✓⇤ such that
E(✓̃ � ✓⇤) ⇤ R. Since C is convex, ✓̃ 2 C, so ✓̃ � ✓⇤ 2 BR. By convexity of G, G(✓̃) 6 G(✓⇤).
Denote �̃ ⇤ ✓̃ � ✓⇤. We get

F
�
✓⇤ + �̃

� � F(✓⇤) 6 �
⇣
k✓⇤kreg �

���̃ + ✓⇤
��

reg

⌘ �
Definition of �̃ & G(✓̃) 6 G(✓⇤)�

6 � ·
���̃��reg (Triangle Inequality)

6 � · s · E(�̃) . (Lemma B.2 & Contraction (Eq. (B.2)))
By restricted local strong convexity (Eq. (B.4)) and the Gradient bound (Eq. (B.3)), we have

�E(�̃)�2 6
2


�|hrF(✓⇤),�i | + �
F
�
✓⇤ + �̃

� � F(✓⇤)� � (Eq. (B.4))

6
2


�|hrF(✓⇤),�i | + � · s · E(�̃)� �
F
�
✓⇤ + �̃

� � F(✓⇤) 6 � · s · E(�̃)�
6

2


⇣
krF(✓⇤)k⇤regk�̃kreg + � · s · E(�̃)

⌘
(Hölder’s inequality)

< 4 · � · s · E(�̃)


(Eq. (B.3) & Lemma B.2 & Eq. (B.2))
6 R · E(�̃) . (Eq. (B.5))

So E(�̃) < R, leading to a contradiction. Hence every ✓0 2 C such that G(✓0) 6 G(✓⇤) satisfies
E(✓0 � ✓⇤) < R. ⇤
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C Principal component analysis with oblivious outliers (Theorem 2.1)

We will prove Theorem 2.1, that we restate in this section

Recall that for L 2 ín⇥n , Fh(L) ⇤
Õ

i , j2[n] fh
�
Li j

�
, where

fh(t) :⇤
⇢ 1

2 t2 for |t | 6 h ,
h(|t | � h

2 ) otherwise.

Theorem (Restatement of Theorem 2.1). Let L⇤ 2 ín⇥n be an unknown deterministic matrix, let
N ⇤ 2 ín⇥n be a random matrix with independent, symmetrically distributed (about zero) entries and
let ↵ :⇤ mini , j2[n] ê

���Ni j
�� 6 ⇣ for some ⇣ > 0. Suppose that rank(L⇤) ⇤ r and kL⇤kmax 6 ⇢/n.

Consider the following estimator:

L̂ B argmin
L2ín⇥n , kLkmax6⇢/n

�
Fh(Y � L) + �kLknuc

�
, (C.1)

where h ⇤ ⇣ + ⇢/n and � ⇤ 100
p

n
�
⇣ + ⇢/n

�
.

Then, with probability at least 1 � 2�n over N , given Y ⇤ L⇤ + N , ⇣ and ⇢, the estimator L̂ satisfies

��L̂ � L⇤��
F 6 O

✓p
rn
↵

◆
· (⇣ + ⇢/n) .

In light of Theorem B.1, we can prove Theorem 2.1 by showing that the estimator L̂ in Eq. (C.1)
fulfills all the conditions of Theorem B.1 with F(L) :⇤ Fh(Y � L) ⇤ F⇣+⇢/n(Y � L), k·kreg :⇤ k·knuc,
� ⇤ 100

p
n
�
⇣ + ⇢/n

�
and E(·) :⇤ k·kF.

To this end, we define the two vector spaces in Theorem B.1, ⌦ and ⌦, as follows:

⌦ :⇤
�
L 2 ín⇥n

�� rspan(L) ✓ rspan(L⇤) , cspan(L) ✓ cspan(L⇤)
 
, (C.2)

⌦
?

:⇤
�
L 2 ín⇥n

�� rspan(L) ✓ rspan(L⇤)? , cspan(L) ✓ cspan(L⇤)?
 
. (C.3)

It is easy to see that ⌦ ✓ ⌦ and the nuclear norm is decomposable per Eq. (B.1) with respect to ⌦
and ⌦

?
. That is, for all L 2 ⌦ and L0 2 ⌦?

, we have kL + L0knuc ⇤ kLknuc + kL0knuc, satisfying
condition Eq. (B.1).

Moreover, since L⇤ has rank r, Eq. (C.3) implies that any matrix in ⌦ has rank at most 2r. Hence,
we immediately obtain that for all L 2 S4(⌦) ⇤

�
L 2 ín⇥n

�� kLknuc 6 4
��L⌦

��
nuc

 
, kLknuc 6

4
p

2rkLkF, satisfying condition Eq. (B.2) with s ⇤ 4
p

2r.

It remains to prove the gradient bound of the condition Eq. (B.3), i.e., a bound on the spectral norm
of rFh(Y � L⇤) (since the dual norm of the nuclear norm is the spectral norm), and the local strong
convexity of the condition Eq. (B.4).

We start with proving the gradient bound:
Lemma C.1 (Gradient bound of spectral norm). Consider the settings of Theorem 2.1, and let
� 2 (0, 1). Then with probability at least 1 � �/2,

krFh(Y � L⇤)k 6 10h
p

n + log (2/�) .

Proof. By definition of the Huber penalty for all i , j 2 [n]
�h 6 r fh(Yi j � L⇤

i j) ⇤ r fh(Ni j) 6 h .

That is, entries are independent, symmetric and bounded by h in absolute value. Hence by Fact H.7,
with probability 1 � �/2 the spectral norm of this matrix is bounded by 10h

p
n + log (2/�). ⇤
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Proof of local strong convexity. We first bound the size of an "-net for the set of approximately
low-rank matrices (Lemma C.2) and then apply this bound to derive a lower bound for the second-
order integral of the Huber-loss function with penalty h (Lemma C.3).
Lemma C.2 ("-Net for approximately low-rank matrices). Let 0 < " < 1 and s > 1. Define

Ls :⇤
�
L 2 ín⇥n

�� kLknuc 6 skLkF , kLkF 6 1
 
.

Then Ls has an "-net of size exp
h

16s2n
"2

i
.

Proof. Let W be a n-by-n random matrix with i.i.d entries Wij ⇠ N(0, 1). By Sudakov’s minoration
Fact H.9, we haveq

log
��N",k·kF

(Ls)
�� 6 2
"
Ö sup

L2Ls

hW, Li (Fact H.9)

6
2
"

sup
L2Ls

ÖkW k · kLknuc (Hölder’s inequality)

6
2s
"
ÖkW k (Definition of Ls)

6
4s
p

n
"

(Fact H.6) ,
where in the last inequality we use a bound on the expected spectral norm of a Gaussian matrix
Fact H.6. ⇤

Hence the intersection of the set S4(⌦) ⇤
�
L 2 ín⇥n

�� kLknuc 6 4
��L⌦

��
nuc

 
with the ball

{L 2 ín⇥n | kLkF 6 1} has "-net of size exp
⇥ 16·32·n
"2

⇤
6 exp

⇥ 600·n
"2

⇤
.

Now we can prove the restricted local strong convexity:
Lemma C.3 (Restricted local strong convexity of Huber-loss). Consider the settings of Theorem 2.1.
Let 0 < � < 1, R > 0 and h > ⇢/n + ⇣.

Define

BR :⇤
�
� 2 ín⇥n

�� k�kF ⇤ R , kL⇤
+ �kmax 6 ⇢/n

 
.

Suppose that

R > 2000 · ⇢/n
↵

·
p

rn + log(2/�) .

Then with probability at least 1 � �/2, for all � 2 BR \ S4(⌦),
Fh(L⇤

+ �) >Fh(L⇤) + hrFh(L⇤),�i + 0.01 · ↵ · k�k2
F .

Proof. Denote M ⇤ ⇢/n. Consider L such that kLkmax 6 M. Since h > ⇣ + M, by Lemma G.2,

Fh(L) � Fh(L⇤) � hrFh(L⇤), L � L⇤i

>
1
2

’
i , j2[n]

(Li j � L⇤
i j)2 1h���L⇤

i j

���6h�⇣
i · 1h���Li j�L⇤

i j

���6⇣i ( Lemma G.2)

⇤
1
2

’
i , j2[n]

(Li j � L⇤
i j)2 1[|Ni j |6⇣]. (kL⇤kmax 6 M 6 h � ⇣ & Li j � L⇤

i j ⇤ Nij)

We will lower bound this quantity for every L such that L � L⇤ 2 BR \ S4(⌦). Denote CR :⇤
BR \ S4(⌦) and let � :⇤ L � L⇤ 2 CR. By Lemma C.2, there exists (" · R)-net N"R,k·kF

(CR) of
size at most exp

⇥ 16·32·n
"2

⇤
6 exp

⇥ 600·n
"2

⇤
. (recall that s2 ⇤ 32r). Thus, we can write � 2 CR as a sum

A + B 2 ín⇥n where A 2 N"R,k·kF
(CR) and kBkF 6 "R . It follows that’

i , j2[n]
�2

i j · 1[|Ni j |6⇣] ⇤
’

i , j2[n]
(Aij + Bij)2 · 1[|Ni j |6⇣]
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>
1
2

’
i , j2[n]

A2
i j · 1[|Ni j |6⇣] �

’
i , j2[n]

B2
i j · 1[|Ni j |6⇣] . (C.4)

Let " ⇤
p
↵/4. Then ’

i , j2[n]
B2

i j · 1[|Ni j |6⇣] 6 kBk2
F 6 "

2R2 6
↵ · R2

16
. (C.5)

Denote E :⇤ Ö
Õ

i , j2[n]
A2

i j · 1[|Ni j |6⇣]. Since A 2 N"R,k·kF
(CR) ⇢ CR, we have kAkF ⇤ R, hence

E > ↵kAk2
F >
↵ · R2

2
. (C.6)

Moreover, since kAkmax 6 k�L⇤kmax + kA+L⇤kmax 6 2M (recall A 2 BR) and ↵i j ⇤ ê
���Nij

�� 6 ⇣� ,
we have

���A2
i j

⇣
1[|Ni j |6⇣] � ↵i j

⌘��� 6 4M2, implying that
’

i , j2[n]
ÖA4

i j

⇣
1[|Ni j |6⇣] � ↵i j

⌘2
6 4M2

’
i , j2[n]

ÖA2
i j

���1[|Ni j |6⇣] � ↵i j

���
⇤ 4M2

’
i , j2[n]

⇣
↵i j · A2

i j · 0 + (1 � ↵i j) · A2
i j · ↵i j

⌘

⇤ 4M2
’

i , j2[n]
A2

i j · (↵i j � ↵2
i j)

6 4M2E .

Applying Bernstein’s inequality (Fact H.3) with t > 1 we get

ê
©≠
´

������
’

i , j2[n]
A2

i j

⇣
1[|Ni j |6⇣] � ↵i j

⌘������ > t · 2M ·
p

E + t2 · 4M2™Æ
¨
6 2 exp

��t2/4
�
.

Note that
��N"R,k·kF

(CR)
�� 6 exp

⇥ 600rn
"2

⇤
6 exp

⇥ 10000rn
↵

⇤
. Therefore, if we set

t ⇤

r
40000rn
↵

+ 8 log(2/�)
and take a union bound over N"R,k·kF

(CR), we obtain that with probability at least 1 � �/2, we have������
’

i , j2[n]
A2

i j ·
⇣
1[|Ni j |6⇣] � ↵i j

⌘������ 6400M ·
p

E ·
r

rn
↵

+ log(2/�) + (400M)2
⇣ rn
↵

+ log(2/�)
⌘
.

for all A 2 N"R,k·kF
(CR). Now since E >

↵R2

2
and R >

1000Mp
↵

r
rn
↵

+ log(2/�), we have

p
E >

p
↵ · Rp

2
> 1400M

r
rn
↵

+ log(2/�),

hence, with probability at least 1 � �/2,������
’

i , j2[n]
A2

i j ·
⇣
1[|Ni j |6⇣] � ↵i j

⌘������ 6
2
7
· E +

✓
2
7

◆2

· E 6 4E .

By combining this with Eq. (C.4), Eq. (C.5) and Eq. (C.6), we obtain that with probability at least
1 � �, we have’

i , j2[n]
�2

i j · 1[|Ni j |61] >
1
2
(E � 0.4E) � ↵ · R2

16
> 0.15↵ · R2 � 0.0625↵ · R2 > 0.08↵R2

concluding the proof. ⇤
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Putting everything together. We can now combine the above results with Theorem B.1 to prove
Theorem 2.1.

Proof of Theorem 2.1. By Lemma C.1 and Lemma C.3, we can apply Theorem B.1 with � ⇤

100
�
⇣ + ⇢n

�p
n + log(2/�),  ⇤ 0.01↵, and s ⇤ 4

p
2r.

It follows that for

R &
�
⇣ + ⇢/n

�r r(n + log(2/�))
↵2

the estimator L̂ defined in Eq. (C.1) satisfies
��L̂ � L⇤��

F < R with probability at least 1 � �. With
� ⇤ 2�n we get the desired bound. ⇤

D Sparse linear regression with oblivious outliers (Theorem 2.2)

We prove Theorem 2.2, which will be restated below. Before the restatement, for easier reference, we
list the three assumptions in Section 2.2 for the design matrix X 2 ín⇥n :

1. For every column Xi of X,
��Xi

�� 6 p
⌫n.

2. Restricted eigenvalue property (RE-property): For every vector u 2 íd such that12��usupp(�⇤)
��

1 > 0.1 · kuk1, 1
n kXuk2 > � · kuk2 for some parameter � > 0.

3. Well-spreadness property: For some m 2 [n] and for every vector u 2 íd such that��usupp(�⇤)
��

1 > 0.1 · kuk1 and for every subset S ✓ [n] with |S | > n � m, it holds that
k(Xu)Sk > 1

2 kXuk.

Recall that F2(�) ⇤
Õn

i⇤1 f2
�
yi � hXi , �i

�
, where

f2(t) :⇤
⇢ 1

2 t2 for |t | 6 2 ,
2|t | � 2 otherwise.

Theorem D.1 (Restatement of Theorem 2.2). Let �⇤ 2 íd be an unknown k-sparse vector and let
X 2 ín⇥d be a deterministic matrix such that for each column Xi of X, kXi k 6 p

⌫n, satisfying the
RE-property with � > 0 and well-spreadness property with m & k log d

�·↵2 (recall that n > m). Further,
let ⌘ be an n-dimensional random vector with independent, symmetrically distributed (about zero)
entries and ↵ ⇤ mini2[n] ê

���⌘i
�� 6 1

 
. Consider the following estimator:

�̂ B arg min
�2íd

⇣
F2(�) + 100

p
⌫n log d ·

�����1

⌘
. (D.1)

Then, with probability at least 1 � d�10 over ⌘, given X and y ⇤ X�⇤ + ⌘, the estimator �̂ satisfies

1
n

���X
⇣
�̂ � �⇤

⌘���2
6 O

✓
⌫
�

· k log d
↵2 · n

◆
and

���̂ � �⇤��2
6 O

✓
⌫
�2 · k log d

↵2 · n

◆
.

We assume d > 2 since for d ⇤ 1 Theorem D.1 is trivially true (since the probability 1 � d�10 ⇤ 0 in
this case).

As for principal component analysis (Appendix C), we will prove Theorem D.1 by showing that
the estimator Eq. (D.1) fulfills the conditions of Theorem B.1 with F(�) ⇤ F2(�), kukreg ⇤ kuk1,
� ⇤ 100

p
n log d and E(u) ⇤ 1p

n kXuk.

Let ⌦ :⇤ {� 2 íd | supp � ✓ supp(�⇤)} and ⌦ :⇤ ⌦. Clearly, for any v 2 ⌦ and any v0 2 ⌦?
,

kv + v0k1 ⇤ kvk1 + kv0k1 .

12For a vector v 2 íd and a set S ✓ [d], we denote by vS the restriction of v to the coordinates in S.
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That is, k·k1 is decomposable, satisfying condition Eq. (B.1).

The contraction condition Eq. (B.2) holds for s ⇤ 4
p

k/� since for all v 2 S4(⌦) ⇤n
v

��� kvk1 6 4kv
⌦
k1

o
, kvk1 6 4

p
kkvk 6 4

p
k/� · 1p

n kXvk, where the last inequality comes
from the RE-property.

It remains to provide a gradient bound of the form in Eq. (B.3) and local strong convexity in Eq. (B.4).
Lemma D.2 (Gradient bound). Consider the settings of Theorem D.1. Then, with probability at least
1 � �/2, ��rF2(�⇤)

��
max 6 20

p
⌫ · n · (log d + log(2/�)) .

Proof. By definition of f2,

r
 

n’
i⇤1

f2(yi � hXi , �⇤i)
!
⇤ z>X

where z is a n-dimensional random vector with independent, symmetric entries f 02(⌘i) bounded by 2
in absolute value. By Hoeffding’s inequality (Fact H.2), for t > 0,

ê(|hz ,Xii | > 10t · 2 · kXi k) 6 exp
��t2� .

Since kXi k 6
p
⌫n, taking a union bound over all j 2 [d] yields the statement. ⇤

Proof of local strong convexity. We first bound the size of an "-net for the set of approximately
sparse vectors (Lemma D.3) and then prove the required local strong convexity bound (Lemma D.4).
Lemma D.3 ("-Net for approximately sparse vectors). Let 0 < " < 1 and

Us :⇤
⇢
� 2 íd

���� �����1 6 s · 1p
n

��X�
�� , 1p

n

��X�
�� 6 1

�
.

Then Us has an "-net of size exp
h

16s2⌫ log d
"2

i
in terms of distance ⇢(�, �0) :⇤ 1p

n

��X
�
� � �0���.

Proof. Let w be an n-dimensional random Gaussian vector w ⇠ N(0, Idn). By Sudakov’s minoration
(Fact H.9), forq

log
��N",⇢(·,·)(Us)

�� 6 2
"
Ö

1p
n

sup
�2Us

hw ,X�i (Fact H.9)

⇤
2
"
Ö

1p
n

sup
�2Us

hXTw , �i

6
2
"
Ö

1p
n

sup
�2Us

��XTw
��

max

�����1 (Hölder’s inequality)

6
2s
"
Ö

1p
n

��XTw
��

max (Definition of Us),

6
4s

p
⌫ log d
"

,

where in the last inequality we use the bound on the expected maximal entry of a vector with
⌫-subgaussian entries Fact H.4. ⇤

Lemma D.4 (Restricted local strong convexity of Huber-loss). Consider the settings of Theorem D.1.
Let 0 < � < 1, R > 0. Define

BR :⇤
⇢

u 2 íd
���� 1p

n
kXuk ⇤ R

�
.
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Suppose that the set size m from the well-spread property satisfies m > 4R2n and

R > 100 ·
r
⌫k log d + log(2/�)

� · ↵2 · n
.

Then with probability at least 1 � �/2, for all u 2 BR \ S4(⌦),

F2(�) >F2(y � X�⇤) + hrF2(�⇤), ui + 0.01 · ↵n · 1
n
kXuk2 .

Proof. Denote CR ⇤ BR \ S4(⌦) and let u 2 CR. By Lemma G.2,

F2(�⇤ + u) � F2(�⇤) � hrF2(�⇤), ui >
1
2

’
i2[n]

hXi , ui21[|⌘i |61] · 1[|hXi ,ui |61] .

Note that for any u 2 BR there are at most 4R2n coordinates of Xu larger than 1/4 in absolute value,
and since X is well-spread for sets of size m ⇤ 4R2n,’

i2[n]
hXi , ui21[hXi ,ui261/4] >

1
4
kXuk2 .

Thus

E :⇤ Ö
’
i2[n]

hXi , ui21[|⌘i |61] · 1[hXi ,ui261/4] >
1
4
· ↵ · kXuk2

⇤
↵R2n

4

We now bound the deviation. We have

for all i 2 [n] , hXi , ui21[|⌘i |61] · 1[hXi ,ui261/4] 6 1

and Ö
’
i2[n]

h
hXi , ui2 · 1[hXi ,ui261/4] ·

⇣
1[|⌘i |61] � ↵i

⌘i2

6 Ö
’
i2[n]

hXi , ui2 · 1[hXi ,ui261/4] · 1[|⌘i |61]

6 E .

Applying Bernstein’s inequality Fact H.3

ê
©≠
´
’
i2[n]

hXi , ui2 · 1[hXi ,ui261/4] ·
⇣
1[|⌘i |61] � ↵i

⌘
> t ·

p
E + t2™Æ

¨
6 exp

�
�t2/4

 
.

It remains to extend uniformly this bound over all u 2 CR. By Lemma D.3 there exists an (" · R)-
net N"R(CR) of size exp

h
256⌫k log d
�"2

i
(recall that s ⇤ 4

p
k/�). Thus for any u 2 CR there exists

u0 2 N"R(CR) such that 1p
n kX(u � u0)k 6 "R and consequently’

i2[n]
hXi , u0i21[|⌘i |61] · 1[hXi ,u0i261/4] 6

’
i2[n]

hXi , u0i21[|⌘i |61] · 1[hXi ,ui261]1[hXi ,u0i261/4] + "
2R2n

62
’
i2[n]

hXi , ui21[|⌘i |61] · 1[hXi ,ui261] · 1[hXi ,u0i261/4] + "
2R2n

+ 2
’
i2[n]

hXi , u0 � ui21[|⌘i |61] · 1[hXi ,ui261] · 1[hXi ,u0i261/4]

62
’
i2[n]

hXi , ui21[|⌘i |61] · 1[hXi ,ui261] + 3"2R2n .

The first inequality holds since each term at the first sum that doesn’t appear in the second sum
corresponds to the index i 2 [n] such that hXi , u � u0i2 > 1/4, and since each term is bounded by
1/4, their sum is bounded by

Õ
i2[n]hXi , u � u0i2 6 "2R2n.
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Setting " ⇤
p
↵/4 and taking a union bound, with probability at least 1 � �/2 for all unit vectors

u 2 Lk ,R we get

’
i2[n]

hXi , ui21[|⌘i |61]1[hXi ,ui264] >
E
2
� 3"2R2n

2
�
p

E

q
64⌫k log d + 4 log( 2

� )p
�"

�
128⌫k log d + 4 log( 2

� )
�"2

>0.01 · ↵ · R2n .

⇤

Putting things together. We combine the above results with Theorem B.1.

Proof of Theorem 2.2. By Lemma D.2 and Lemma D.4, we can apply Theorem B.1 with � ⇤

100
p
⌫ · n(log d + log(2/�)),  ⇤ 0.01 · ↵ · n and s ⇤ 4

p
k/�. It follows that for

R &

r
⌫ · k · (log d + log(2/�))

� · ↵2 · n
,

the estimator �̂ defined in Eq. (D.1) with probability 1 � � satisfies 1
n

���X
⇣
�̂ � �⇤

⌘��� 6 R. Taking

� ⇤ d�10, we get the desired bound. Since �̂ � � 2 S4(⌦), we also get the desired parameter error���̂ � ��� 6 R/
p
�. ⇤

E Sparse linear regression with Gaussian design (Theorem 2.3)

In this section we will prove Theorem 2.3. As before, we will use Theorem B.1. Recall that in this
setting, our model looks as follows:

y ⇤ X�⇤ + ⌘

where X 2 ín⇥d is a random matrix whose rows X1 , . . . ,Xn are i.i.d. N(0,⌃) and ⌘ 2 ín is
a deterministic vector such that ↵n coordinates have absolute value bounded by 1. We restate
Theorem 2.3 here for completeness:

Theorem E.1 (Restatement of Theorem 2.3). Let �⇤ 2 íd be an unknown k-sparse vector and let
X be a n-by-d random matrix with i.i.d. rows X1 , . . .Xn ⇠ N(0,⌃) for a positive definite matrix
⌃. Further, let ⌘ 2 ín be a deterministic vector with ↵ · n coordinates bounded by 1 in absolute
value. Suppose that n & ⌫(⌃)·k log d

�min(⌃)·↵2 , where ⌫(⌃) is the maximum diagonal entry of ⌃ and �min(⌃) is
its smallest eigenvalue. Then, with probability at least 1 � d�10 over X , given X and y ⇤ X�⇤ + ⌘,
the estimator Eq. (2.3) satisfies

1
n

���X
⇣
�̂ � �⇤

⌘���2
6 O

✓
⌫(⌃) · k log d
�min(⌃) · ↵2 · n

◆
and

���̂ � �⇤��2
6 O

 
⌫(⌃) · k log d
�2

min(⌃) · ↵2 · n

!
.

As in the previous section, we assume d > 2 since for d ⇤ 1 Theorem 2.3 is true (since the probability
1 � d�10 ⇤ 0 in this case).

First, we bound the gradient of Huber loss. Then, to prove restricted local strong convexity of Huber
loss, we show that the values of the empirical covariance (as a quadratic form) on approximately k-
sparse vectors are well-concentrated near the values of the actual covariance. The proof first appeared
in (RWY10), but they only stated the result in terms of a lower bound on the values of empirical
covariance and did not discuss an upper bound, though the proof of the upper bound is very similar.
Then we use this concentration to prove well-spreadness and restricted local strong convexity.

Recall that F2(�) ⇤
Õn

i⇤1 f2
�
yi � hXi , �i

�
, where

f2(t) :⇤
⇢ 1

2 t2 for |t | 6 2 ,
2|t | � 2 otherwise.
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Gradient bound for Gaussian design.
Lemma E.2. Consider the settings of Theorem 2.3. Then with probability at least 1 � �/2��rF2(�⇤)

��
max 6 4

p
⌫(⌃) · n · (log d + log(2/�)) .

Proof. By definition of the Huber loss and choice of the Huber penalty

rF2(�⇤) ⇤ r
 

n’
i⇤1

f2(yi � hXi , �⇤i)
!
⇤ z>X

where z is an n-dimensional vector whose entries f 02(⌘i) are bounded by 2 in absolute value. Since
1
kzk⌃

�1/2XTz ⇤ 1 ⇠ N(0, 1)n ,
��z>X

�� ⇤ kzk ·
��⌃1/21

�� 6 2
p

n ·
p
⌫(⌃) · (2 log d + 4 log(2/�)) ,

where we used the union bound over all j 2 [d] and the standard tail bounds for Gaussian variables�
⌃1/21

�
j whose variance is ⌃ j j . ⇤

Concentration of empirical covariance on approximately k-sparse vectors. To prove well-
spreadness and restricted local strong convexity in case of Gaussian design X , we will need the
fact that for all approximately k-sparse vectors u, 1

n kXuk2 ⇡
��⌃1/2u

��2
as long as n & ⌫(⌃)k log d

�min(⌃) .
Formally, we will use the following theorem:
Theorem E.3. Let X be a n-by-d random matrix with i.i.d. rows X1 , . . .Xn ⇠ N(0,⌃), where ⌃
is a positive definite matrix. Suppose that for some K > 1, n > 1000 · ⌫(⌃)

�min(⌃) · K log d. Then with

probability at least 1 � exp(�n/100), for all u 2 íd such that kuk1 6
p

Kkuk,

1
2

��⌃1/2u
�� 6 1p

n
kXuk 6 2

��⌃1/2u
�� . (E.1)

The first inequality of Theorem E.3 was shown in (RWY10) (see also (Wai19), section 7.3.3), and
the second inequality can be proved in a very similar way. For completeness, we provide a proof of
second inequality.

Proof of the second inequality of Theorem E.3. Since the inequality is scale invariant, it is enough to
show it for u 2 íd such that

��⌃1/2u
�� ⇤ 1. For s > 0 denote

Us :⇤
�

u 2 íd
�� ��⌃1/2u

�� ⇤ 1 , kuk1 6 s
 

and Ms(X) :⇤ sup
u2Us

1p
n
kXuk .

First, we bound the expectation of Ms(X):
Lemma E.4.

ÖMs(X) 6 1 + 2s

r
⌫(⌃) log d

n
.

Proof. Consider Gaussian process Wu ,v ⇤ vTXu for (u , v) 2 Us ⇥ Sn�1, where Sn�1 is a unit
sphere in ín . Denote P ⇤ Us ⇥ Sn�1. Our goal is to bound 1p

n Ö sup
(u ,v)2P

Wu ,v .

Denote G ⇤ X⌃�1/2. For all (u , v), (ũ , ṽ) 2 P,

Ö(Wu ,v � Wũ ,ṽ)2 ⇤ ÖhXT , uvT�ũ ṽTi2
⇤ ÖhGT ,⌃1/2uvT�⌃1/2ũ ṽTi2

⇤
��⌃1/2uvT � ⌃1/2ũ ṽT

��2
F .

Now consider another Gaussian process Zu ,v ⇤ 1T⌃1/2u + hTv, where 1 ⇠ N(0, Idd) and h ⇠
N(0, Idn). For all (v , u), (ṽ , ũ) 2 P,

Ö(Zu ,v � Zũ ,ṽ)2 ⇤ Öh1 ,⌃1/2(u � ũ)i2
+Öhh , v � ṽi2

⇤
��⌃1/2u � ⌃1/2ũ

��2
+ kv � ṽk2 .
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Note that for every quadruple of unit vectors x , x̃ 2 íd , y , ỹ 2 ín ,

kx yT � x̃ ỹTk2
F ⇤k(x � x̃)yT

+ x̃(yT � ỹT)k2
F

⇤kyk2kx � x̃k2
+ k x̃k2ky � ỹk2

+ 2 Tr y(x � x̃)T x̃(yT � ỹT)
⇤kx � x̃k2

+ ky � ỹk2
+ 2

�hx , x̃i � k x̃k2� · �kyk2 � hy , ỹi�
6kx � x̃k2

+ ky � ỹk2 .

Hence for all (u , v), (ũ , ṽ) 2 P, Ö(Wu ,v � Wũ ,ṽ)2 6 Ö(Zu ,v � Zũ ,ṽ)2, and by Sudakov–Fernique
theorem Fact H.8,

Ö sup
(u ,v)2P

Wu ,v 6 Ö sup
(u ,v)2P

Zu ,v .

Therefore, it is enough to boundÖ sup
u2Us

1T⌃1/2u+Ö sup
kvk⇤1

hTv. The second term is just an expectation

of � distributed variable, and can be bounded using Jensen’s inequality:

Ö sup
kvk⇤1

hTv ⇤ Ökhk 6
p
Ökhk2 6

p
n .

The first term can be bounded as follows:

Ö sup
u2Us

1T⌃1/2u 6 Ökuk1 · k⌃1/21kmax 6 s Ök⌃1/21kmax 6 2s
p
⌫(⌃) log d ,

where we used Fact H.4 to bound the max norm of a vector ⌃1/21 whose entries are ⌫(⌃)-subgaussian.
Dividing by

p
n, we get the desired bound. ⇤

Now, we bound the deviation of Ms(X):
Lemma E.5. For all t > 0,

ê[|Ms(X) �ÖMs(X)| > t] 6 2 exp
⇥
�nt2/2

⇤
.

Proof. For A 2 ín⇥d denote Fs(A) ⇤
p

n · Ms(A⌃1/2) ⇤ supu2Us

��A⌃1/2u
��. Note that for all

A, B 2 ín⇥d ,

Fs(A)� Fs(B) 6 sup
u2Us

⇣��A⌃1/2u
�� � ��B⌃1/2u

��⌘ 6 sup
u2Us

��(A � B)⌃1/2u
�� 6 kA � Bk 6 kA � BkF .

Hence Fs is 1-Lipschitz, and by Fact H.5, for all ⌧ > 0,

ê[|Fs(G) �ÖFs(G)| > ⌧] 6 2 exp
⇥
�⌧2/2

⇤
,

where G ⇤ X⌃�1/2 is a matrix with i.i.d. standard Gaussian entries. Taking ⌧ ⇤ t
p

n, we get the
desired bound. ⇤

Taking t ⇤ 0.2, we conclude that with probability at least 1 � 2 exp(�0.02n),

Ms(X) 6 1.2 + 2s

r
⌫(⌃) log d

n
.

For s ⇤
p

K/�min(⌃) this bound implies that for all u such that
��⌃1/2u

�� ⇤ 1 and kuk1 6
p

Kkuk,
with probability at least 1 � 2 exp(�0.02n),

1p
n
kXuk 6 1.2 + 2

s
⌫(⌃)K log d
�min(⌃) · n

6 1.3 ,

and we get the desired bound. ⇤
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Well-spreadness of Gaussian matrices. If n & ⌫(⌃)
�min(⌃) · k log d, then an n ⇥ d random matrix X

with i.i.d. rows X1 , . . . ,Xn ⇠ N(0,⌃) satisfies the RE-property with parameter �min(⌃)/4 over all
sets of size k where �min(⌃) is the smallest eigenvalue of ⌃ (it is a consequence of Theorem E.3).
Also, norms of columns of X are bounded by O

⇣p
⌫(⌃)n

⌘
with high probability. Hence, X satisfies

Assumption 1 and 2 of Theorem D.1, with high probability.

In the next lemma, we show that it also satisfies the last assumption, namely the well-spreadness
assumption:
Lemma E.6. Let X be a n-by-d random matrix with i.i.d. rows X1 , . . .Xn ⇠ N(0,⌃), where ⌃
is a positive definite matrix. Suppose that for some K > 1, n > 106 · ⌫(⌃)

�min(⌃) · K log d. Then with

probability at least 1 � exp(�n/1000), for all u 2 íd such that kuk1 6
p

Kkuk and for all sets
S ✓ [n] of size d0.999ne,

kXSuk > 1
2
kXuk . (E.2)

Proof. For a set M ✓ [n] of size at most n/1000 independent of X , Theorem E.3 implies that
kXM uk 6 0.1

p
n ·

��⌃1/2u
�� and kXuk > 0.5

p
n ·

��⌃1/2u
�� with probability at least 1�2 exp(�n/100).

Using a union bound over all sets M of size n � d0.999ne, with probability

1 � 2 exp[�n/100 + n log(1000e)/1000] > 1 � exp(�n/1000) ,
we get

kXM uk2 6 0.1kXuk2 .

Since for S ⇤ [n] \ M, kXuk2
⇤ kXM uk2

+ kXSuk2, we get the desired bound. ⇤

Now we can prove restricted strong convexity.

Restricted local strong convexity of Huber loss for Gaussian design.
Lemma E.7. Consider the settings of Theorem 2.3. Let 0 < � < 1, R > 0. Define

BR :⇤
⇢

u 2 íd
���� 1p

n
kX(u)k ⇤ R

�
.

Suppose that R 6 1
200 . Then with probability at least 1 � 3 exp(�↵n/1000), for all u 2 BR \S4(⌦),

F2(�⇤ + u) > F2(�⇤) + hrF2(�⇤), ui +
↵n
200

· 1
n
kXuk2 .

Proof. Let u 2 BR \ S4(⌦), where ⌦ is the support of �⇤. By Lemma G.2,

F2(�⇤ + u) � F2(�⇤) � hrF2(�⇤), ui >
1
2

’
i2[n]

hXi , ui21[|⌘i |61] · 1[|hXi ,ui |61] .

Denote A ⇤
�

i 2 [n]
�� |⌘i | 6 1

 
. Matrix XA is an ↵n ⇥ d random matrix with i.i.d. rows X j ⇠

N(0,⌃). By Theorem E.3, with probability 1 � 2 exp(�↵n/100),

16↵R2n ⇤ 16↵kXuk2 > 4↵n
��⌃1/2u

��2
> kXAuk2 >

↵n
4

��⌃1/2u
��2
>
↵
16

kXuk2
⇤
↵
16

R2n .

By Lemma E.6, with probability 1 � exp(�↵n/1000), XA satisfies well-spread property for sets of
size ↵n/1000 and for all u 2 S4(K). Since number of entries of XAu which are larger than 1 is at
most 16↵R2n 6 ↵n/1000, we get’

i2[n]
hXi , ui21[|⌘i |61] · 1[|hXi ,ui |61] ⇤

’
i2A

hXi , ui21[|hXi ,ui |61] >
1
4
kXAuk2 >

↵
64

R2n .

Hence with probability at least 1 � 3 exp(�↵n/1000) we get the desired bound. ⇤
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Putting everything together. Let’s check that the conditions of Theorem B.1 are satisfied for
⌦ ⇤ ⌦ ⇤ supp(�⇤) and E(u) ⇤ 1p

n kXuk. Decomposability is obvious. As a consequence
of Theorem E.3 X satisfies the RE-property with � > �min(⌃)/4 with probability at least
1 � exp(�n/100), so contraction is satisfied with s ⇤ 8

p
k/�min(⌃). By Lemma E.2, gradient

is bounded by 15
p
⌫(⌃) · n · (log d) with probability 1 � d�10/2. By Lemma E.7, with probability

at least 1 � 3 exp(n/1000), Huber loss satisfies restricted local strong convexity with parameter
 ⇤ 0.01↵n. Hence for

n &
⌫(⌃) · k log d
�min(⌃) · ↵2 and R &

s
⌫(⌃) · k log d
�min(⌃) · ↵2 · n

and since then we have �̂ � �⇤ 2 BR \ S4(⌦) the estimator �̂ defined in Eq. (D.1) satisfies
1p
n

���X
⇣
�̂ � �⇤

⌘��� 6 R with probability at least 1� d�10. Since �̂� � 2 S4(⌦), we also get the desired

parameter error
���̂ � ��� 6 2R/

p
�min(⌃).

F Optimal fraction of inliers for principal component analysis under
oblivious noise (Theorem 2.4)

In this section we prove Theorem 2.4. Recall that a successful (", �)-weak recovery algorithm
(where ", � 2 (0, 1)) for PCA is an algorithm that takes Y as input and returns a matrix L̂ such that��L̂ � L⇤��

F 6 " · ⇢ with probability at least 1 � � (where ⇢, Y and L⇤ are as in Theorem 2.1).

Let’s restate Theorem 2.4:
Theorem F.1 (Restatement of Theorem 2.4). Let Y ⇤ L⇤ + N 2 ín⇥n , where rank(L⇤) ⇤ r,
kL⇤kmax 6 ⇢/n and the entries of N are independent and symmetric about zero. Let ⇣ > 0.

Then there exists a universal constant C0 > 0 such that for every 0 < " < 1 and 0 < � < 1, if
↵ :⇤ mini , j2[n] ê[|Ni , j | 6 ⇣] satisfies ↵ < C0 · (1� "2)2 · (1� �) ·

p
r/n, and n is large enough, then

it is information-theoretically impossible to have a successful (", �)-weak recovery algorithm. The
problem remains information-theoretically impossible (for the same regime of parameters) even if we
assume that L⇤ is incoherent; more precisely, even if we know that L⇤ has incoherence parameters
that are as good as those of a random flat matrix of rank r, the theorem still holds.

More in detail, we construct distributions over L⇤ and N such that the assumptions of the theorem are
satisfied and if ↵ < C0 · (1 � "2)2 · (1 � �) ·

p
r/n, weak recovery is not possible.

We will assume without loss of generality that 0 6 ⇣ 6 ⇢/n ⇤ 1. Indeed, weak recovery property is
scale invariant, so we can assume ⇢ ⇤ n. We can assume ⇣ 6 1 since if the theorem is true for ⇣ ⇤ 1,
then it is true for all ⇣ > 1.

A generative model for the hidden matrix

In the following, we will denote the all-zeros vector of dimension n as 0n . Similarly, we will denote
the all-ones vector of dimension n as 1n .

For the sake of simplicity, we will assume that n
r is an integer.13 We will divide the the matrix L⇤ into

r blocks of n
r ⇥ n sub-matrices.

For every 1 6 k 6 r, let uk be an arbitrary but fixed and deterministic vector in the set
n
0(k�1)· n

r

o
⇥

{�1,+1} n
r ⇥

n
0(r�k)· n

r

o
, and let vk be a random flat vector chosen uniformly from {�1,+1}n . We

further assume that the random vectors {vk}16k6r are mutually independent. The hidden matrix L⇤ is
constructed as follows:14

13All the subsequent proofs can be adapted for a general r with minor modifications.
14For the general case in which n

r may not be an integer, we divide L⇤ into r blocks of disjoint sub-matrices
of dimensions b n

r c ⇥ n and d n
r e ⇥ n.
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L⇤
⇤

r’
k⇤1

uk · vT
k .

Note that L⇤ is a flat matrix, i.e., L⇤ 2 {�1,+1}n⇥n . Furthermore, the rank of L⇤ is at most r, and
with high probability, L⇤ is incoherent with parameter µ 6 O(log n).

The noise distribution

Let (Ni j)i , j2[n] be i.i.d. random variables that are sampled according to the distribution

ê[Ni , j ⇤ `] ⇤

8>>>>><
>>>>>:

⇠
p

r
2
p

n � ⇠pr

✓
1 � ⇠

r
r
n

◆ |` |/2

if ` 2 2ö ⇤ {. . . ,�4,�2, 0, 2, 4, . . .},

0 otherwise,

(F.1)

where 0 < ⇠ 6 1/2 is a constant. Furthermore, we assume that N is independent from L⇤. The
distribution of N is symmetric and satisfies

↵ :⇤ ê[|Ni j | 6 1] ⇤ ê[Ni j ⇤ 0] ⇤ ⇠
p

r
2
p

n � ⇠pr
⇤ ⇥

✓
⇠

r
r
n

◆
.

Define
Y ⇤ L⇤

+ N .

Upper bound on the mutual information

Lemma F.2. The mutual information I(L⇤; Y ) between L⇤ and Y can be upper bounded as follows:

I(L⇤; Y ) 6 O(⇠ · n · r) .

Proof. Notice that for every ` 2 2ö, we have

ê[Ni j ⇤ ` + 2] ⇤ ê[Ni j ⇤ `] ·
✓
1 � ⇠

r
r
n

◆sign(`+1)
, (F.2)

where

sign(x) ⇤
⇢
1 if x > 0,
�1 if x < 0.

For every L⇤ 2 {�1,+1}n⇥n and every Y 2 (2ö + 1)n⇥n , we have

ê[Y ⇤ Y |L⇤
⇤ L⇤] ⇤ ê[N ⇤ Y � L⇤]

⇤

÷
i , j

ê[Ni j ⇤ Yij � L⇤
i j]

⇤

÷
i , j

ê[Ni j ⇤ Yij � 1 + 1 � L⇤
i j]

(⇤)
⇤

÷
i , j

266664
ê[Ni j ⇤ Yij � 1] ·

✓
1 � ⇠

r
r
n

◆ 1
2 ·(1�L⇤

i j )·sign(Yij�1+1)377775
⇤ ê

⇥
N ⇤ Y � 1n1T

n
⇤
·
÷
i , j

✓
1 � ⇠

r
r
n

◆ 1
2 ·(1�L⇤

i j )·sign(Yij )
,
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where (⇤) follows from Eq. (F.2). Therefore, we can write

ê[Y ⇤ Y |L⇤
⇤ L⇤] ⇤ ê

⇥
N ⇤ Y � 1n1T

n
⇤
· f (L⇤ ,Y), (F.3)

where

f (L⇤ ,Y) ⇤
÷
i , j

✓
1 � ⇠

r
r
n

◆ 1
2 ·(1�L⇤

i , j )·sign(Yij )

⇤

✓
1 � ⇠

r
r
n

◆ 1
2
·
’
i , j

(1 � L⇤
i , j) · sign(Yij)

⇤

✓
1 � ⇠

r
r
n

◆ 1
2 ·h1n1T

n�L⇤ ,sign(Y)i
,

(F.4)

where sign(Y) is the n ⇥ n matrix defined as sign(Y)i , j ⇤ sign(Yi , j). Furthermore, from Eq. (F.3) we
can deduce that for every Y 2 (2ö + 1)n⇥n , we have

ê[Y ⇤ Y] ⇤ ê
⇥
N ⇤ Y � 1n1T

n
⇤
· 1(Y), (F.5)

where
1(Y) ⇤ ÖL⇤[ f (L⇤ ,Y)]. (F.6)

Now from Hölder’s inequality, we have��⌦1n1T
n � L⇤ , sign(Y)

↵�� 6 ��1n1T
n � L⇤��

nuc · ksign(Y)k
6

⇣��1n1T
n
��

nuc + kL⇤knuc

⌘
· ksign(Y)k

⇤ (n + kL⇤knuc) · ksign(Y)k.

If L⇤ is in the support of the distribution of L⇤, then there exist r vectors {vk}16k6r such that
vk 2 {�1,+1}n for every 1 6 k 6 r, and

L⇤
⇤

r’
k⇤1

uk · vT
k .

Therefore,

kL⇤knuc 6
r’

k⇤1

��uk · vT
k

��
nuc ⇤

r’
k⇤1

r
n
r
·
p

n ⇤ r
np
r
⇤ n

p
r . (F.7)

Hence, ��⌦1n1T
n � L⇤ , sign(Y)

↵�� 6 n · (
p

r + 1) · ksign(Y)k 6 2n
p

r · ksign(Y)k.

By combining this with Eq. (F.4), we get

✓
1 � ⇠

r
r
n

◆n
p

r·ksign(Y)k
6 f (L⇤ ,Y) 6

✓
1 � ⇠

r
r
n

◆�n
p

r·ksign(Y)k
. (F.8)

Furthermore, from Eq. (F.6) and Eq. (F.8), we get
✓
1 � ⇠

r
r
n

◆n
p

r·ksign(Y)k
6 1(Y) 6

✓
1 � ⇠

r
r
n

◆�n
p

r·ksign(Y)k
. (F.9)

The mutual information between L⇤ and Y is given by

I(L⇤; Y ) ⇤
’
L⇤ ,Y

ê[L⇤
⇤ L⇤ , Y ⇤ Y] · log2

ê[Y ⇤ Y |L⇤ ⇤ L⇤]
ê[Y ⇤ Y]
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(†)
⇤

’
L⇤ ,Y

ê[L⇤
⇤ L⇤ , Y ⇤ Y] · log2

ê[N ⇤ Y � 1n1T
n ] · f (L⇤ ,Y)

ê[N ⇤ Y � 1n1T
n ] · 1(Y)

⇤

’
L⇤ ,Y

ê[L⇤
⇤ L⇤ , Y ⇤ Y] · log2

f (L⇤ ,Y)
1(Y)

⇤ Ö


log2

f (L⇤ , Y )
1(Y )

�
,

where (†) follows from Eq. (F.3) and Eq. (F.5). Now from Eq. (F.8) and Eq. (F.9), we get

I(L⇤; Y ) 6 Ö
266664
log2

©≠
´
✓
1 � ⇠

r
r
n

◆�2n
p

r·ksign(Y )k™Æ
¨
377775

⇤ �2n
p

r · log2

✓
1 � ⇠

r
r
n

◆
· Ö[ksign(Y )k]

⇤ � 2
log 2

n
p

r · log
✓
1 � ⇠

r
r
n

◆
· Ö[ksign(Y )k]

(‡)
6

4
log 2

n
p

r · ⇠
r

r
n
· Ö[ksign(Y )k]

⇤
4⇠ · pn · r

log 2
· Ö[ksign(Y )k],

(F.10)

where (‡) follows from the fact that � log(1 � t) 6 2t for every t 2 [0, 1/2].
Now let S ⇤ sign(Y ). In order to estimate Ö[ksign(Y )k] ⇤ Ö[kSk], we first condition on L⇤ ⇤ L⇤
for a fixed L⇤:

Ö
⇥
kSk

��L⇤
⇤ L⇤⇤

⇤ Ö
h��S �Ö[S |L⇤

⇤ L⇤] +Ö[S |L⇤
⇤ L⇤]

�����L⇤
⇤ L⇤

i

6 Ö
h��S �Ö[S |L⇤

⇤ L⇤]
�����L⇤

⇤ L⇤
i
+ kÖ[S |L⇤

⇤ L⇤]k.

Notice that

Ö
⇥
S
��L⇤

⇤ L⇤⇤
⇤ Ö

⇥
sign(L⇤

+ N)
��L⇤

⇤ L⇤⇤
⇤ Ö[sign(L⇤

+ N)]
⇤ ↵ · L⇤ ,

where

↵ ⇤ ê[Ni j ⇤ 0] ⇤ ⇠
p

r
2
p

n � ⇠pr
.

Therefore,

Ö
⇥
kSk

��L⇤
⇤ L⇤⇤ 6 Öh��Ŝ

�����L⇤
⇤ L⇤

i
+ ↵ · kL⇤k ,

where
Ŝ ⇤ S �Ö[S |L⇤

⇤ L⇤] ⇤ S � ↵ · L⇤.

Now given L⇤ ⇤ L⇤, the entries of Ŝ are centered and conditionally mutually independent. Further-
more,

��Ŝ
��

max 6 kSkmax + ↵ · kL⇤kmax ⇤ 1 + ↵ 6 2. Therefore, by Fact H.7, there is a universal
constant C > 2 such that

Ö
h��Ŝ

�����L⇤
⇤ L⇤

i
6 C

p
n.

We conclude that
Ö[ksign(Y )k] ⇤ Ö[kSk] 6 C

p
n + ↵ · Ö[kL⇤k]. (F.11)
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Now notice that kL⇤k ⇤ U · VT , where U ⇤ [u1 . . . ur] is the n ⇥ r matrix whose columns are
u1 , . . . , ur , and V ⇤ [v1 . . . vr] is the n ⇥ r matrix whose columns are v1 , . . . , vr . We have:

Ö[kL⇤k] ⇤ Ö
⇥��U · VT

��⇤ 6 Ö⇥
kUk ·

��VT
��⇤ ⇤ kUk · Ö

⇥��VT
��⇤

⇤

r
n
r
· Ö

⇥��VT
��⇤ (o)
6

r
n
r
· C

p
n ⇤ C

np
r
,

where (o) follows from the fact that V is an n ⇥ r matrix with i.i.d. zero-mean entries and satisfying
kVkmax ⇤ 1 and Fact H.7. By inserting this in Eq. (F.11), we get

Ö[ksign(Y )k] 6 C
p

n +
⇠
p

r
2
p

n � ⇠pr
· C

np
r

6 C
p

n +

p
rp
n
· C

np
r

⇤ 2C
p

n ,

By combining this with Eq. (F.10), we get

I(L⇤; Y ) 6 4⇠ · pn · r
log 2

· 2C
p

n

6
8C⇠
log 2

· n · r

⇤ O(⇠ · n · r).
⇤

Successful weak-recovery reduces entropy

Lemma F.3. If there exists a (�, ")-successful weak recovery algorithm that takes Y ⇤ L⇤ + N as
input and returns a matrix L̂ as output in such a way that

ê
⇥��L̂ � L⇤��

F 6 " · n
⇤
> 1 � �,

then the mutual information between L⇤ and Y can be lower bounded as follows:

I(L⇤; Y ) > (1 � "2)2
8 log 2

· (1 � �) · n · r � 1.

Proof. Define the set

⌦ ⇤

(
r’

k⇤1

uk vT
k : 8k 2 [r], vk 2 ín and kvk kmax 6 1

)
.

It is easy to see that ⌦ is a closed and convex set. Let L̂⌦ be the orthogonal projection of L̂ onto ⌦.
Since L⇤ 2 ⌦, we have

��L̂⌦ � L⇤��
F 6

��L̂ � L⇤��
F. Therefore,

ê
⇥��L̂⌦ � L⇤��

F 6 " · n
⇤
> ê

⇥��L̂ � L⇤��
F 6 " · n

⇤
> 1 � �.

Using an inequality that is similar to the standard Fano-inequality, we will show that the existence of
a successful weak-recovery algorithm implies a linear decrease in the entropy of the random vectors
(vk)k2[r].

Define the random variable Z as follows:

Z ⇤ 1[kL̂⌦�L⇤ kF6"·n].
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Furthermore, for every L 2 ⌦, define

BL," ⇤

(
(vk)k2[r] 2 {�1,+1}n·r :

�����L �
r’

k⇤1

uk vk
T

�����
F

6 " · n

)
.

Clearly, if Z ⇤ 1, then (vk)k2[r] 2 BL̂⌦ ,".

Let H
�(vk)k2[r]

��L̂⌦� be the conditional entropy of (vk)k2[r] given L̂⌦. We have:

H
�(vk)k2[r]

��L̂⌦� 6 H
�
Z , (vk)k2[r]

��L̂⌦�
⇤ H

�
Z
��L̂⌦� + H

�(vk)k2[r]
��L̂⌦ , Z�

6 H(Z) + H
�(vk)k2[r]

��L̂⌦ , Z ⇤ 0
� · ê[Z ⇤ 0] + H

�(vk)k2[r]
��L̂⌦ , Z ⇤ 1

� · ê[Z ⇤ 1]
6 1 + n · r · ê[Z ⇤ 0] + (1 � ê[Z ⇤ 0]) · H

�(vk)k2[r]
��L̂⌦ , Z ⇤ 1

�
,

where the last inequality follows from the fact that Z is a binary random variable (and hence H(Z) 6
log2(2) ⇤ 1), and the fact that (vk)k2[r] 2 {�1,+1}n·r , which implies that H

�(vk)k2[r]
��L̂⌦ , Z ⇤ 0

�
6

log2
��{�1,+1}n·r �� ⇤ n · r.

Since ê[Z ⇤ 0] 6 � and H
�(vk)k2[r]

��L̂⌦ , Z ⇤ 1
�
6 log2

��{�1,+1}n·r �� ⇤ n · r, we have

H
�(vk)k2[r]

��L̂⌦� 6 1 + n · r + (1 � �) · H
�(vk)k2[r]

��L̂⌦ , Z ⇤ 1
�
.

Now notice that

H
�(vk)k2[r]

��L̂⌦ , Z ⇤ 1
� (⇤)
6 log2

��BL̂⌦ ,"
�� 6 max

L2⌦
log2 |BL," |,

where (⇤) follows from the fact that given Z ⇤ 1, we have (vk)k2[r] 2 BL̂⌦ ,". On the other hand, for
every L 2 ⌦, we have

log2 |BL," | ⇤ n · r + log2
|BL," |
2n·r ⇤ n · r + log2 ê

⇥
(vk)k2[r] 2 BL,"

⇤
,

where the last equality follows from the fact that (vk)k2[r] is uniformly distributed in {�1,+1}n·r .
Therefore,

H
�(vk)k2[r]

��L̂⌦� 6 1 + n · r + (1 � �) · max
L2⌦

log2 ê
⇥
(vk)k2[r] 2 BL,"

⇤
. (F.12)

Now fix L 2 ⌦ and let (vk)k2[r] be k vectors in ín such that kvk kmax 6 1 and L ⇤

r’
k⇤1

uk vT
k . We

have (vk)k2[r] 2 BL," if and only if kL⇤ � LkF 6 " · n. Notice that

kL⇤ � Lk2
F ⇤

*
r’

k⇤1

uk · (vk � vk)T ,
r’

k0⇤1

uk0 · (vk0 � vk0)T
+

⇤ Tr©≠
´
 

r’
k⇤1

uk · (vk � vk)T
!T

·
 

r’
k0⇤1

uk0 · (vk0 � vk0)T
!™Æ
¨

⇤

r’
k⇤1

r’
k0⇤1

Tr
�(vk � vk) · uT

k · uk0 · (vk0 � vk0)T
�

(†)
⇤

n
r
·

r’
k⇤1

Tr
�(vk � vk) · (vk � vk)T

�
⇤

n
r
·

r’
k⇤1

kvk � vk k2

⇤
n
r
·

r’
k⇤1

n’
i⇤1

(vk ,i � vk ,i)2 ⇤
n
r
·

r’
k⇤1

n’
i⇤1

⇣
v2

k ,i + v2
k ,i � 2vk ,i · vk ,i

⌘
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(‡)
>

n
r
·
 
n · r � 2

r’
k⇤1

n’
i⇤1

vk ,i · vk ,i

!
,

where (†) follows from the fact that (uk)k2[r] are orthogonal to each other, and kuk k2
⇤ n

r for every
k 2 [r]. Note that (vk ,i)16i6n and (vk ,i)16i6n are the entries of vk and vk , respectively. (‡) follows
from the fact that vk 2 {�1,+1}n for every k 2 [r]. Therefore,

kL⇤ � Lk2
F > n2 � 2n

r
·

r’
k⇤1

n’
i⇤1

vk ,i · vk ,i ,

which implies that

ê
⇥
(vk)k2[r] 2 BL,"

⇤
⇤ ê

⇥
kL⇤ � Lk2

F 6 "
2 · n2⇤

6 ê

"
n2 � 2n

r
·

r’
k⇤1

n’
i⇤1

vk ,i · vk ,i 6 "2 · n2

#

⇤ ê

"
r’

k⇤1

n’
i⇤1

vk ,i · vk ,i >
1
2
· (1 � "2) · n · r

#
.

Note that the random variables (vk ,i · vk ,i)k2[r],i2[n] are independent. Moreover, for every 1 6 k 6 r
and every 1 6 i 6 n, we have

Ö[vk ,i · vk ,i] ⇤ 0.

Furthermore, since kvk kmax 6 1 and vk 2 {�1,+1}n , the random variables (vk ,i · vk ,i)k2[r],i2[n] can
be uniformly bounded as

|vk ,i · vk ,i | 6 |vk ,i | 6 1.

It follows from Hoeffding’s inequality Fact H.2 that

ê
⇥
(vk)k2[r] 2 BL,"

⇤
6 exp

✓
� (1 � "2)2 · n2 · r2

8 · n · r

◆

⇤ exp
✓
� (1 � "2)2

8
· n · r

◆
.

Since this is true for every L 2 ⌦, we get from Eq. (F.12) that

H
�(vk)k2[r]

��L̂⌦� 6 1 + n · r � (1 � �) · (1 � "2)2
8 log 2

· n · r.

Therefore, the mutual information between (vk)k2[r] and L̂⌦ satisfies:

I
�(vk)k2[r]; L̂⌦

�
⇤ H

�(vk)k2[r]
� � H

�(vk)k2[r]
��L̂⌦�

> n · r � 1 � n · r + (1 � �) · (1 � "2)2
8 log 2

· n · r

⇤
(1 � "2)2

8 log 2
· (1 � �) · n · r � 1.

Now since (vk)k2[r] ! L⇤ ! Y ! L̂ ! L̂⌦ is a Markov chain, it follows from the data-processing
inequality that

I(L⇤; Y ) ⇤ I
�(vk)k2[r]; Y

�
> I

�(vk)k2[r]; L̂⌦
�
>

(1 � "2)2
8 log 2

· (1 � �) · n · r � 1.

⇤
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Putting everything together

Now we are ready to prove Theorem 2.4:

Proof of Theorem 2.4. From Lemma F.2 and Lemma F.3 we can deduce that if there exists a (�, ")-
successful weak recovery algorithm then we must have

8C⇠
log 2

· n · r > I(L⇤; Y ) > (1 � "2)2
8 log 2

· (1 � �) · n · r � 1.

Therefore, if n is large enough and

⇠ <
(1 � "2)2

64C
· (1 � �) � log 2

8C
· 1

r · n
,

it is impossible to have a (�, ")-successful weak recovery algorithm. Now since ↵ ⇤ ⇥

✓
⇠

r
r
n

◆
, we

get the result. ⇤

G Facts about Huber loss

Fact G.1 (Integration by parts for absolutely continuous functions). Let F,G : í! í be absolutely
continuous functions, i.e. there exist locally integrable functions f , 1 : í ! í such that for all
a , b 2 í, π b

a
f (t) dt ⇤ F(b) � F(a) and

π b

a
1(t) dt ⇤ G(b) � G(a) .

Then for all a , b 2 í,π b

a
f (t)G(t) dt ⇤ F(b)G(b) � F(a)G(a) �

π b

a
F(t)1(t) dt .

Proof.π b

a
f (t)G(t) dt ⇤ G(a) · (F(b) � F(a)) +

π b

a
f (t)

π b

a
1[⌧2[a ,t]]1(⌧) d⌧ dt (By definition of G)

⇤ G(a) · (F(b) � F(a)) +
π b

a
1(⌧)

π b

a
f (t)1[t2[⌧,b]] dt d⌧ (By Fubini’s theorem)

⇤ G(a) · (F(b) � F(a)) +
π b

a
1(⌧) · (F(b) � F(⌧)) d⌧ (By definition of F)

⇤ G(a) · (F(b) � F(a)) + F(b)(G(b) � G(a)) �
π b

a
1(⌧)F(⌧) d⌧

⇤ F(b)G(b) � F(a)G(a) �
π b

a
F(t)1(t) dt .

⇤

Lemma G.2 (Second order behavior of Huber-loss function). Let h > 0. For all ⌘, � 2 í, and all
0 6 ⌧ 6 h,

fh(⌘ + �) � fh(⌘) � f 0h(⌘) · � >
�2

2
1[|⌘|6h�⌧] · 1[|� |6⌧] .

Proof. Consider 1 : í! í defined as 1(t) ⇤ fh
�
⌘ + t · �� . Note that for all a , b 2 í,

f 0h(⌘ + b�) � f 0h(⌘ + a�) ⇤
π ⌘+b�

⌘+a�
1[|x |6h] dx .
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Changing the variable x ⇤ ⌘ + t�, we get

10(b) � 10(a) ⇤ �2
π b

a
1[|⌘+t� |6h] dt .

By Fact G.1,

�2
π 1

0
1[|⌘+t� |6h] · (1 � t) dt ⇤ �10(0) + 1(1) � 1(0) .

Note that 1(0) ⇤ fh(⌘), 1(1) ⇤ fh(⌘+ �) and 10(0) ⇤ � f 0h(⌘). Since for all 0 6 ⌧ 6 h, 1[|⌘+t� |6h] >
1[|⌘|6h�⌧] · 1[|� |6⌧] and

Ø 1
0 (1 � t) dt ⇤ 1/2, we get the desired bound. ⇤

H Tools for Probabilistic Analysis

This section contains some technical results needed for the proofs in the main body of the paper.
Fact H.1 (Chernoff’s inequality, (Ver18)). Let ⇣1 , . . . , ⇣n be independent Bernoulli random vari-
ables such that ê(⇣i ⇤ 1) ⇤ ê(⇣i ⇤ 0) ⇤ p. Then for every � > 0,

ê

 
n’

i⇤1

⇣i > pn(1 + �)
!
6

✓
e��

(1 + �)1+�
◆pn

.

and for every � 2 (0, 1),

ê

 
n’

i⇤1

⇣i 6 pn(1 � �)
!
6

✓
e��

(1 � �)1��
◆pn

.

Fact H.2 (Hoeffding’s inequality, (Wai19)). Let z1 , . . . , zn be mutually independent random vari-
ables such that for each i 2 [n], zi is supported on [�ci , ci] for some ci > 0. Then for all t > 0,

ê

 
n’

i⇤1

(zi �Ö zi) > t

!
6 exp

 
� t2

2
Õn

i⇤1 c2
i

!
,

and

ê

 �����
n’

i⇤1

(zi �Ö zi)
����� > t

!
6 2 exp

 
� t2

2
Õn

i⇤1 c2
i

!
.

Fact H.3 (Bernstein’s inequality, (Wai19)). Let z1 , . . . , zn be mutually independent random vari-
ables such that for each i 2 [n], zi is supported on [�B, B] for some B > 0. Then for all t > 0,

ê

 
n’

i⇤1

(zi �Ö zi) > t

!
6 exp

 
� t2

2
Õn

i⇤1Ö z2
i +

2Bt
3

!
.

Fact H.4 (Subgaussian maxima, (Wai19)). Let d > 2 be an integer and let z be a d-dimensional
random vector with zero mean �-subgaussian entires. Then

Ökzkmax 6 2�
p

log d .

Fact H.5 (Lipschitz functions of Gaussian vectors, (Wai19)). Let 1 ⇠ N(0, 1)m for some m 2 é
and let F : ím ! í be L-Lipschitz with respect to Euclidean norm, where L > 0. Then for all t > 0,

ê[|F(1) �Ö F(1)| > t] 6 2 exp
✓
� t2

2L2

◆
.

Fact H.6 (Spectral norm of Gaussian matrices, (Wai19)). Let W ⇠ N(0, 1)n⇥d . Then

ÖkW k 6
p

n +
p

d .

Moreover, for all t > 0,

ê
h
kW k >

p
n +

p
d + t

i
6 2 exp(�t2/2) .
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Fact H.7 (Spectral norm of matrices with bounded independent zero-mean entries, (RV10)). Let M
be an n-by-n random matrix with independent zero-mean entries Mi j supported on [�1, 1]. Then

ÖkM k 6 (2 + o(1))
p

n

as n ! 1. Moreover, for all t > 0,

ê
h
kM k > ÖkM k +

p
2⇡ + t

i
6 2 exp(�t2/2) .

Fact H.8 (Sudakov–Fernique theorem, (Adl90)). Let ⇥ be a compact subset of ím , where m 2 é.
Let W✓ and Z✓ be real-valued sample-continuous zero-mean Gaussian processes indexed by elements
of ⇥. Suppose that 8✓, ✓0 2 ⇥, Ö(W✓ � W✓0)2 6 Ö(Z✓ � Z✓0)2. Then

Ö sup
✓2⇥

W✓ 6 Ö sup
✓2⇥

Z✓ .

Fact H.9 (Sudakov Minoration, (Wai19)). Let {1✓ | ✓ 2 ⇥} be a zero-mean Gaussian process
indexed by elements of some non-empty set ⇥. Let ⇢ : ⇥ ⇥ ⇥ ! [0,1) be a (pseudo)metric
⇢(✓, ✓0) :⇤

�
Ö(1✓ � 1✓0)2

�1/2. Then

Ö sup
✓2T
1✓ > sup

">0

"
2

q
log

��N",⇢(⇥)�� ,
where

��N",⇢(⇥)�� is the minimal size of "-net in ⇥ with respect to ⇢.
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