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Abstract

Recent interest in learning large variational Bayesian Neural Networks (BNNs)
has been partly hampered by poor predictive performance caused by underfitting,
and their performance is known to be very sensitive to the prior over weights.
Current practice often fixes the prior parameters to standard values or tunes them
using heuristics or cross-validation. In this paper, we treat prior parameters in a
distributional way by extending the model and collapsing the variational bound with
respect to their posteriors. This leads to novel and tighter Evidence Lower Bounds
(ELBOs) for performing variational inference (VI) in BNNs. Our experiments show
that the new bounds significantly improve the performance of Gaussian mean-field
VI applied to BNNs on a variety of data sets, demonstrating that mean-field VI
works well even in deep models. We also find that the tighter ELBOs can be good
optimization targets for learning the hyperparameters of hierarchical priors.

1 Introduction

There has been a lot of recent interest in developing methods for Bayesian Neural Networks (BNNs),
and variational methods provide computationally cheap approximations to the posterior over weights
when compared to alternatives like MCMC. Research on Variational Inference (VI) for BNNs has seen
multiple advances enabling optimization of the Evidence Lower Bound (ELBO) [29, 165, [24} (7}, 138]],
allowing for scaling to large neural networks and datasets [57} 163} |15 |16} 66]. However, the under-
confidence of mean-field VI (MF-VI) in output-space has caused poor adoption of VI in applications,
especially in sequential decision making [9}160.169]. Although a lot of work has improved performance
by deriving better estimators of the gradient of the ELBO [29} 165 24, [7, [38]], this work has focused
on the variational parameters of distributions over weights, with the prior over weights usually fixed
to zero-mean isotropic Gaussians [S5[70} 74, 15} 120} (7} 40].

In this paper, we also apply inference to the prior parameters of Gaussian BNNs (e.g. means and
variances of a Gaussian prior over weights). We do this by using collapsed VI bounds [36} 43,147, 64],
which analytically solve the inference over prior parameters and allow us to derive tighter ELBOs for
performing VI in BNNs. Many previous works argue that point estimates for parameters of Gaussian
prior in BNNs can be learned reliably by maximizing the ELBO [72, 152} [50} [31]], although there
have also been arguments against such an approach [7]]. Experiments using our derived ELBOs lead
to two findings: (i) MF-VI performs well in deep models where the prior parameters of Gaussian
distributions over weights have been learned, but severely under-fits data in output space if the prior
over weights is fixed and, (ii) the derived tighter ELBOs are good optimization targets to learn
the hyperparameters of hierarchical Gaussian priors, even in large networks. We provide the code
implementing the introduced algorithms at https://github.com/marctom/collapsed_bnns.
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2 Collapsed Variational Bounds for Bayesian Neural Networks

We consider performing VI in a supervised learning scenario given N data points D = {(x;, y;)} ;.
We denote a neural network as fy, the observation model as p(y| fw (x)), where W denotes the
vectorized weights and biases of the network, and the likelihood of the weights W as p(D|W) =
Hf\;l p(y;|fw (x;)). We focus on Gaussian mean-field priors (with non-zero means) over vectorized
network weights p(Wu,,02) = N (W |p,,, 02) meaning w ~ N (1, 02) for any coordinate w in
W (both p,, and crf, are also vectors in this notation). Similarly, we restrict our attention to mean-field
Gaussian approximate posteriors ¢(W |, 02) = N(W |, o'2). VI finds an approximate posterior
q(W|p,,o2) by minimizing the KL divergence D 1.(¢(W |, o2)|[p(W D, p,,, 03)) w.r.t. the
variational parameters f,, 0'3. This is done by optimizing the Evidence Lower Bound (ELBO)
(28 i4]:
N

L(pg, 05 1y, 03) = Zq(mlg Uz)logp(infw(wi)) — D (a(Wlpg. o)|lp(Wp,, 03)).
i=1 7 q
(D

We denote the first term on RHS as Laata(ty, 02). As D r(q(Wpy, o2)|[p(W|D, p,,, 62)) > 0,
the ELBO lower bounds log marginal likelihood log p(D|w,,02) > L(p,, 02; p,,, 07). Previous
work [[7} 38]] introduces low variance updates for mean-field VI by reparametrizing weights W.
Bayesian predictions are approximated by integrating the learned variational posterior ¢* (W |, 0'3)

as p(’y* |$*,D) ~ Eq*(W|pq,ag)p(y* ‘fW(w*))

For BNN, prior means are most often set to zero p,, = 0, and prior variances are set to a constant
012) = ~1 (often scaled by the size of a previous layer [55,[13]]). We consider a more general setup
where the weights of a BNN are defined by a hierarchical model p(W |p,,, o2)p(p,)p(o?) and aim

to perform inference over weights W and p,,, 0'120. For clarity, we will refer to p,,, 012, as prior
parameters, leaving the term hyperparameters for any other free variables.

2.1 Deriving collapsed variational bounds

In this section, we develop an efficient optimization scheme for variational BNNs with weights
defined in a hierarchical fashion, where the inference over prior parameters is done analytically
and prior parameters are subsequently marginalized out. This defines new learning objectives for
learning variational BNNs, which we show by providing specific examples later in the text. More
specifically, we apply collapsed variational bounds [36, 43\ 147, 26] to BNNs, and present a general,
systematic way of deriving novel, tighter lower bounds on the model evidence which are useful for
learning variational posteriors over weights. The idea behind a collapsed bound is simple: Suppose
we maximize f(x,y) and we can derive the optimal z*(y) = argmax, f(x, y). Substituting z* into
f results in f(x*(y),y), which only depends on y, is easier to optimize, and has the property that
vy f(@*(y),y) > f(z,y). Collapsed variational bounds apply this reasoning to the ELBO with
factorized variational posteriors taking the roles of = and .

Inferring prior parameters in BNN. We consider inference over both network weights W' and
prior parameters f,, and 0'12), which we treat as latent variables and subsequently discuss collapsing

. . 2 . . 2 2 o
the inference w.r.t. prior parameters p,, and o,. We use the factorization q(W, Koy, o'p| B o'q) =
q(Wlp,, 02)q(p,, o2), where we omit the variational parameters of g(p,,, o2) for concise notation.
Learning q(p,), a%) under this assumption does not complicate computing the BNN’s predictive

distribution p(y|xz, D), i.e. Ky 0'3 do not need to be sampled at the prediction time, since,

pylz, D) =Epw p, .02 0Pyl fw (®) = Eqow o2y Pyl fw () =Eqw i, 02)p(yl fwv (2)).
To apply inference, we invoke the variational principle which lower bounds the log marginal likeliho((%ci
log p(D) as:

p(D,W,p,,032)
Wik, o3)a(py, o3
The bound in Eq. (E) reduces to L(p,, o) in Eq. (E) when ¢(p,,02) = q(p,)q(03) and q(p,),

q(o2) are delta functions. If we are able to analytically derive the distribution ¢* (u,,, o) maximizing

logp(D) 2 Eqw |, ,02)q(u,.02) 108 a0 7= LYpg, 00 q(my00).  (3)



L9, we can substitute the resulting distribution into Eq. (3) to derive a tighter (collapsed) bound on
the marginal likelihood, saving the need to perform coordinate ascent or gradient updates to learn the
prior parameters:

p(D,W,p,, 03)
Wi, o3)a (py, 03)
where L£*(p,,, 0'(21) > L9y, 0'3, q(p,, Uf,)) and £* depends only on the variational parameters
2

Ky, 0. Collapsed variational bounds are desirable as they have been shown to make learning
significantly more efficient [64]. The tighter bound in Eq. (4) has been also referred to as a KL
corrected bound [36]] and marginal VI bound [43] 47].

Collapsing the variational bound for BNNs. We now provide a method to derive a collapsed
variational bound by maximizing £(p,, 02, q(p,,03)) w.rt. the posterior over weights prior
parameters ¢(ft,,, o'5) in BNNs. We use the property that the BNN likelihood term log p(y|x, fw (x))
does not depend on the prior parameters p,, and o2, i.e. p(D|W, u,,,02) = p(D|W). The bound
L4 from Eq. (3) decomposes into three terms:

Ly, 05, 4(1y, 03)) = Laata (B 02) + ® (g, 05, a1y, 03)) + Hla(W g, 03)], (5

where H[q(W |p,, 02)] denotes the differential entropy, and we have defined

log p(D) =2 Eqw|u,,02)¢* (1,,02) 108 i =L (pg, a3), )

O(pg, 05,41y, 03)) = E E  logp(Wlp,,o2) | —Dxr(q(m,, o)l lp(p,)p(a2)).
a(py,:02) | a(Wlpg,02)
(6)

Only ® depends on the posterior ¢(u,,, o), and therefore finding ¢*(,,, 63) can be done by
maximizing ®(p,, 02, q(p,, 03)).

We can significantly simplify this by noting that the objective in Eq. (6) is analogous to Eq. (D),
hence optimizing & takes the form of a nested VI problem: we want to infer ¢( Ky, o‘i) where the
“data” distribution is replaced by the current variational posterior over weights q(W | Ky a'g). This
implies the solutions ¢* (/,Lp, 0'127) are straightforward to derive in closed-form for priors/approximate

posteriors from the exponential family [5,16]. Specifically, we can write the maximizer q*(up, 012))
as:

log ¢* (p,,, 073) o log p(p,,) + log p(oy) + Egw |, o2) log p(W p,,, 03). (7)

Substituting the optimal variational posterior ¢* (., 0'127) into Eq. (@) gives us ®*, and we can substi-
tute this into Eq. (5) to give our final collapsed bound £*(pt,, 62) = Laata + * +H[g(W |, 02)].
Furthermore, when calculating ®*, the inferred prior parameters q*(up, o-i) can be analytically
integrated out in many cases, i.e. the outer expectation on the RHS in Eq. (6) can be solved in
closed-form (we provide examples in Section [2.2), leading to a concise optimization objective.

The final optimization target to learn the variational posterior ¢(W |, o2) is given by L*(p,, 02).

Compared to gradient learning of p,, and 0'12,, eliminating p,, and 0'12, from L£* performs better (as
we show in Section ), and halves both the memory requirement and time taken per update. It is
important to remember that optimizing £* learns both the variational parameters p, 0'2 and the

posterior over prior parameters g*( Mo 0'?)), but the latter is implicit as we express it as a function of
Fgs 0'2 given by Eq. .
In summary, there are four steps to derive a collapsed bound £*, which we directly use to learn the

variational posterior of a BNN. These steps are given in Algorithm[I. We next give two concrete
examples of collapsed bounds.

2.2 Examples of tighter ELBOs

Learn prior means, fix prior variances. As an easier example, we first consider fixing the prior
variance of weights, and learning prior means. We follow the four steps of Algorithm I|to derive our
collapsed bound. Detailed derivations are in Appendix

Step I: This step defines a model and the family of variational approximations. We choose
p(Wp,) = N(W|p,,v1) with a Gaussian prior p(p,|a) = N(p,|0,al), where a and v are



Algorithm 1 Deriving a collapsed bound £* for BNN in four steps.

StepI:  Choose priors p(i,), p(or2), p(W |p,, o2),

and approximate posteriors q(p,, o), (W |p,, o2) over network weights.
Step II:  Calculate optimal prior parameters ¢*( Ko, 0'12,) using Eq. .
Step III:  Form ®* and solve Eq*(upﬂf,) {EQ(W\uqvaﬁ) log p(Wp,y, 012,)} in Eq. @)
Step IV:  The collapsed bound is £* = Laqra + ®* + Hlg(W|p,, o2)].

hyperparameters. We also employ a mean-field Gaussian posterior ¢(Wpu,,, a'g) and a Gaussian
posterior q(g,,).

Step II: This step analytically finds the optimal variational distribution ¢*(p,,). Substituting our
distributions into Eq. (7)) for every coordinate y,, gives us

* (Nq - Mp)Q M;t%
1 e _Fel P 8
0g q" (kp) o 5 )

In this case the variational posterior ¢*(u,) matches the true posterior, as the above dependency
is equivalent Bayesian inference over p,, given Gaussian likelihood/prior and observation g, so

0 (1p) = N1y 355 gs 275 1).
Step 111: This step forms ®* by calculating the divergences between optimal posteriors ¢* and priors

and simplifies the derived optimization objective by marginalizing out approximate prior parameters.
The divergence between two Gaussians D1, (q* (1,,)|[p(ps,,)) is straightforward to compute. Next

we solve the integral Z = Eg- () [Eq(wu, 02) log D(W |p,,, o)]:

T2 _

{1%3 + (g — )" (1 — up)} o Yoi  amgmg
Nty | 595 g, 251) 2y 2y 2(a+9)?

Step IV: This step forms a collapsed bound that will be used to learn variational posteriors. Substituting
the above into L* = Larq + ®* + H|[q(W |, o2)] results in our new bound:

1 1 D
L3, (1 Ug) £ Laata(Bg a'g) - % {ITU,QI + a,»(fgun,uq} + §1T log 0'{21 + 5} log ttreg,  (9)

where we have defined the hyperparameter «,.., = /(v + «) € (0, 1), and for fixed  there is a
1-to-1 relation between « and ayegq.

When o — 0 (so .y — 1) we recover the standard expression for the ELBO given by Eq. (1) with
q(W|p,, o2) and prior (W0, y1). This corresponds to a dogmatic prior p(g,) = N (p,[0, a1)
converging to a delta spike at 0, and no inference of p,,. When we allow for inference, the regulariza-
tion of the (approximate) posterior mean p,, decreases. When v,y — 0 (uninformative prior) the
modeling can be prone to over-fitting due to insufficient regularization in the model specification.
Note that this is reflected by the term % log avreq Wwhich can be interpreted as an Occam’s Razor
penalty [39]: this term penalizes small .. as it diverges to negative infinity when .., — 0. Since
Qreg € (0,1), this enables finding well-performing values of o, by evaluating £, (without having
a validation set) [30], and we show this in our experiments in Section@

We find that cv,.e4 € (0.01,0.1) significantly improves upon the predictions of MF-VI with fixed Gaus-
sian priors. For existing implementations learning BNNs with Gaussian variational posterior/prior
we suggest the default setting «v,.., = 0.05 in front of the mean regularization in the expression for
KL divergence to instantaneously improve the predictions (as opposed to down-weighting the whole
KL divergence term). Larger o, increases the strength of the regularization of the model.

Learn both prior means and variances. We now discuss a scheme to learn hyperparameters of
both prior means and variances. We follow the same four steps from Algorithm[I] We again defer the
detailed derivations to Appendix

Step I: p(W |, 7p) = N(W|p,, T—lp) and p(p,[tT) = N(n,|0, %), p(T) = G(7|a, B). We
again consider posteriors ¢(W |, 02) = N(Wp,,02), q(p,|mp) = N(p,) and g(,,) = G(7}).
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Figure 1: Comparison of regularizing terms in £, £, and L, scaled to unity. In the absence of
gradients from L4, (approximate) posteriors over weights converge to the blue region (red cross-
mark). Optimizing £ prunes weights to prior Gaussians which still influence predictions causing

under-fitting (see SectionE[) and is opposite to optimizing L, which prunes to spiked Gaussians.

Step II: The optimal posteriors ¢* are given by ¢*(p,,) = N (1, |15 1y> =) and ¢* (7)) =

(A+t)7p
G(rpl(a+ 5)1. 8 + g + 507).
. * 2
Steps Il and IV: The bound L*(u,,, o) becomes,

. 1 ) 1 1
Lon(bys02) 2 Laaraby 03) = (@ + )17 log [81+ Sl + 502] + 517 logo?, (10)

where 6 = t/(1+1t). Eq. recovers the case of setting prior mean g, = 0 and learning only prior

variances 0'12j when the prior precision {7, over p,, goes to oo, i.e. t — oo. Setting § < 1 in Eq. li
weakens the regularization of posterior mean g, allowing it to vary more. The regularizer in Eq. (10)
is a decreasing function of 4, i.e. without gradients from Lgq:,, the posterior mean ji, of a weight
w converges to 0. In Section 4{we show that £, = outperforms standard MF-VI.

Comparison of regularizing terms. We compare the regularization terms on g, and ag in the
standard mean-field ELBO in Eq. (T) and introduced ELBOs in Eq. (9) and Eq. @) in Figure I}
where we use prior the p(w) = N (w|0, 1). We consider what happens in the absence of gradients
from the data term L4, to better understand the bounds. In Figure |I (left) we see that Gaussian
posteriors (in the absence of data) optimized with Eq. (E) converge to their prior A/ (w0, 1) [[7, 68].
In Figure (middle) we are down-weighting ug K, in Eq. (9), hence weakening the regularization of
t,- This allows posterior means to vary more, and can be interpreted as scaling the y;, axis in Figure

by va. As we show in Section this enables posterior means (i, to saturate activations and reduce
the noise from pruned weights. Optimizing Eq. (I0) is roughly opposite to Eq. () and causes weights
to be pruned to N (0, 23) (Figureright, where 5 = 0.01). Weights pruned in this way do influence
the predictions for small 5 and this fixes the excessive injection of noise by pruned weights, as we
show in Section 4]

3 Related work

Performance of BNNs is known to be sensitive to prior hyperparameters [54,[71,131]], but optimizing
hyperparameters in BNNs has not been widely adopted, although there are exceptions [0, [72].
Some authors heuristically propose using a Gaussian centered on the MAP estimate as a prior for
BNNGs [8,139]. The Laplace approximation has been used for hyperparameter selection in BNNs
[49, 31, 161], but it does not use the ELBO. Hierarchical models in BNNs have been explored in
many works [23} 1221146} 33| 134,158 13,112} 2]]. The closest to our approach is learning a hierarchical
horseshoe prior over BNNs weights [23]. However, their approach is computationally costly, does
not consider collapsed bounds to derive tighter ELBOs, and does not learn prior means. There is
an active discussion in the community as to whether the true BNN posterior provides satisfactory
predictions with work supporting the Bayesian approach [54, 74, 32} [1]] and arguing against [70]].
Similarly, there are conflicting views on the performance of MF-VI in BNNs with fixed Gaussian
priors as some authors claim it can work well [17] and others arguing against [[63, 19} [18]. A number
of problems of mean-field VI BNNs have been exposed in shallow networks including over-pruning
[68] and poor uncertainty in output space [[19, |18, [23]]. To resolve under-fitting of mean-field BNNs,
previous work has re-weighted terms arising from the KL divergence e.g. [45].
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Figure 2: Top: Comparison of collapsed bounds with other algorithms on UCI regression data sets.
Bottom: CM-MF-VI (red) and standard MF-VI with a default isotropic Gaussian prior (blue) for
deeper networks, where CM-MF-VTI avoids severe degradation of predictions.

4 Experiments

In this section we explore the predictive performance of the introduced variational bounds and
benchmark them together with other algorithms. We find that using the bounds in Eq. (9) and Eq.
significantly improves the predictive performance of standard MF-VI BNNs (fixed Gaussian priors).
We also find that learning the prior means according to Eq. (9) is more effective and gives sufficiently
good predictive performance, whereas learning prior variances (Eq. (I0)) mostly does not lead to
significant gains in the quality of predictions. We defer the details of the experimental setup to
Appendix [C|and report additional experimental results in Appendix [D.

The algorithms we propose in this paper optimize various tighter ELBOs: CM-MF-VTI optimizes
L, from Eq. (9); CM-MF-VI OPT additionally optimizes ., using the tighter ELBO (Eq. (9));
CV-MF-VI optimizes for just prior variances, using the bound £,,, from Eq. when § — 1 (prior
mean g, fixed to 0); and CMV-MF-VI optimizes both prior means and variances from Eq. . We
compare to the following baselines: MF-VI LRT learns zero-mean mean-field Gaussian priors with
fixed variances [55] (which we call standard MF-VI) using local reparametrization [38]; MF-VI FV
learns a mean-field Gaussian posterior with fixed variances [68]]; MF-VI BD is mean-field Gaussian
VI while down-weighting KL penalty by 0.5; MF-VI EB learns prior means with ELBO gradient
updates [S1,[72]; BBB is Bayes by Backprop using the ADAM optimizer (as opposed to SGD in [[7]);
MF-VI k-tied normal distribution [63]]; ELRG/SLANG learn low rank posteriors [66} 53]].

wTx+b (b-?lRemoving pruned posterior weights
ol T ME-VI
activation 2s

0 02 30 0 50
removed units in last layer

Figure 3: (a.) Pruned weights in standard MF-VI contribute noise to predictions as noise leaks
through the activation function. (b.) Removing pruned weights from BNN can improve performance,
as the removed weights contribute only to the predictive variance and cause under-fitting.



400 units 800 units

algorithm test NLL | test ER | test NLL | test ER |
CM-MF-VI 0.047 +0.006 1.34 +0.24% 0.048 £0.005 1.42 £ 0.26%
CV-MF-VI 0.068 +£0.007 2.134+0.34%  0.066 &+ 0.003  2.09 + 0.10%
CMV-MF-VI 0.049 +0.005 1.45+0.25% 0.052+0.004 1.60 £ 0.01%
CM-MF-VI (4000 batch) 0.041 4 0.002 1.31 +0.04% 0.04240.002 1.20 4+ 0.06%
MF-VI LRT [38] 0.094 +0.002 2.424+0.28%  0.099 +0.001  2.58 £ 0.07%
MF-VI BD 0.092 +£0.002 2.434+0.06% 0.099 +0.004 2.56 + 0.22%
MEF-VI FV 0.052 £0.001 1.674+0.13% 0.053 £0.004 1.58 +0.26%
BBB ADAM [7] 0.095 4+ 0.008 2.48 £0.45%  0.097 +£0.007 2.49 £+ 0.33%
ELRG-VI K =5 [66] 0.053 £0.006 1.544+0.18% 0.058 +0.005 1.68+0.17%
K-TIED K = 10 [63] 0.105+0.004 2.67£0.16% 0.108 £0.004 2.61£0.17%

MEF-VI SGD [7] - 1.82% — 1.99%
SLANG K=32 [53]] — 1.72% — —

Table 1: Test NLL and error rate for vectorized MNIST classification with two hidden layer BNN.
CM-MEF-VI outperforms other algorithms and collapsed bounds improve upon standard MF-VI.
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Figure 4: Learning prior parameters in BNN fixes under-fitting caused by over-pruning. In (c.),(d.),(e.)
and (f.) we show the distribution of statistics of variational posterior over weights in the first layer.
The top row plots (c.) and (e.) the posterior means, where red is the means of the bias parameters,
and black is the means of the weight parameters into a hidden unit. The bottom row plots (d.) and
(f.) show posterior log variances instead of posterior means. Most weights have been pruned. In
CM-MF-VI, shown in (a.), units where posterior weights converge to prior have posterior biases set
to low value, which saturates the activation stopping them from influencing the predictions. We see
this in (c.), where the pruned units all have biases with negative posterior means. This saturation is
made possible by weaker mean regularization in Eq. @[) governed by aey. In CMV-MF-VI, shown
in (b.), pruned units converge to spiked Gaussians. We see this in the (f.), where the posterior log
variances of pruned units are all very small.

UCI regression. We first consider 20 train-test splits for 8 UCI regression data sets [[14]. We
learn 2 hidden layer BNNs (results for 1 hidden layer in Appendix [D) with 50 units and ReLU
activations [27) 211 [67], but we use a heteroscedastic observation model p(y| fi (@), fa ()

N (y|fiv (@), exp( fW( x))), where f (x), f& (z) are two heads of the network. We optimize
the objectives for 200K steps with the ADAM optimizer [37] with default settings. We report a
comparison of test log-likelihood in Figure 2] (top). We observe that (i) the collapsed bounds CM-MF-
VI, CV-MF-VI, CMV-MF-VI outperform MF-VI on all data (only CMV-MF-VI is worse on wine),
(ii) bounds learning prior means CM-MF-VI, CMV-MF-VI outperform or match the bound learning
only prior variances CV-MF-VI on all data sets, (iii) CM-MF-VI outperforms or matches MC-dropout
on all data sets except for boston and wine (the performance of dropout is unstable unless p is tuned
per data set, e.g. it is poor on kin8nm and not shown). In addition, CM-MF-VI OPT matches the
performance of CM-MF-VI, showing that the ELBO can be used to learn hyperparameter a.g.
Next we report a comparison between CM-MF-VI and standard MF-VI as the depth of the network
increases in Figure 2] (bottom). We see standard MF-VI starts to rapidly under-perform on most data
sets (for larger data sets standard MF-VI performs well as it converges to MAP). Learning prior
means/variances by optimizing bounds in Eq. (9) or Eq. (I0) allows to mitigate rapid degradation of



predictions. We now explain why standard MF-VI performs badly, finding this is due to over-pruning
in BNNs. We investigate this effect and find that learning prior means and variances mitigates the
effect of pruned units on the predictive distribution.

Test NLL Predictive entropy Entropy in-distribution Entropy out-of-distribution
12

[ CM-MF-VI
[ MF-VI

10°
3 MCdropout 08

—e— CM-MF-VI

ME-VI
—— MC dropout 2
—— CMV-MF-VI

0.0 02 04 06 08 10 00 02 04 06 08 1.0 00 01 02 03 04 05 00 05 1.0 15 20

Figure 5: Comparison of standard MF-VI and collapsed bounds (CM-MF-VI, CV-MF-VI) for in-
distribution and out-of-distribution data. Left: replacing p% of MNIST image with random bits.
Right: learning BNN on MNIST (in-distribution) and testing on fashionMNIST (out-of-distribution).

Over-pruning in BNNs. Applying mean-field VI to BNN prunes most of the posterior weights,
i.e. approximate posteriors converge to prior [7 16823} 162]]. While this is beneficial for compressing
the model, pruned weights contribute noise to predictions and make modeling data difficult. With 1
hidden layer networks and the regular ELBO, output layer weights are set as close to 0 as possible
[68], thereby reducing the noise from pruned weights in earlier layers. However, some noise
still leaks through, as output layer weights are not quite delta-functions. This noise is one of
the reasons for increasing under-confidence in output space as the size of the network increases
16811161631 166|231 145]]. In Figure [3§]we highlight this problem for 1 hidden layer MF-VI BNN with 50
hidden units, ReLU activations, zero-mean Gaussian prior over weights and heteroscedastic Gaussian
likelihood learned with 200 random boston regression data points. In Figure[3 (right) we plot test
NLL as pruned hidden layer’s units are removed in ascending order of average KL penalties of
incoming weights (only last 4 units are modeling data). Removing pruned weights lowers test NLL,
meaning that pruned weights contribute only noise to predictions. This is schematically explained
in Figure[3| (a), which shows pruned posterior weights injecting noise. See Appendix [E for further
description of over-pruning.

Fixing under-fitting caused by over-pruning in BNNs. We now explain why learning the hyperpa-
rameters of the Gaussian prior in the BNN mitigates problems arising from over-pruning. In short,
learning the means and variances of Gaussian priors mitigates the influence of network units that have
been pruned. These units otherwise cause under-fitting by contributing only to predictive variance. In
Figure [ we plot the distribution of learned mean-field Gaussian posterior means and log variances
(middle and right) for units feeding into the output layer. We use a 1 hidden layer heteroscedastic
BNN with 50 hidden units and ReLLU activations learned on 200 data points from boston regression
data set. We see that CM-MF-VI sets means of posterior biases to lower values (= —2) to saturate
the activations for units where incoming weights converge to the prior. Saturated activations stop
the pruned weights from contributing variance into the predictions and result in better modeling of
data, as we schematically show in Figure 4] (a). For CMV-MF-VI, posterior weights corresponding to
inactive units converge to delta spikes with very slightly negative means, in line with observations
made in Figure[I] hence they do not influence predictions, shown in Figure ] (b).

MNIST classification with MLP. Classifying vectorized MNIST images using two hidden layer
network with ReLU activation is a standard benchmark for BNNs [7]. We demonstrate that collapsed
bounds give large improvements in test NLL compared to using standard MF-VI and provides the
best predictions across tested algorithms. We report test NLLs and test error rates (ER) averaged
over 5 random seeds in Table[1} For 400 hidden units, CM-MF-VI/CMV-MF-VI achieve test NLL of
0.047, compared to 0.094 for standard MF-VI. CM-MF-VI (4000 batch) uses batches of 4000 images
for an optimization step and achieves the best performance across the tested models, showing the
developed algorithms can leverage low variance updates.

Perturbed MNIST images. We now investigate if the in-domain improvements of CM-MF-
VI/CMV-MF-VI come at the cost of out-of-distribution (OOD) performance. We find this is not the
case: OOD performance is as good as before. To show this, we learn a 2 hidden layer BNN with
ReLU activations on vectorized MNIST images as previously, but test it on the fashionMNIST data



test NLL | /ER | MNIST K-MNIST F-MNIST SVHN CIFAR10

CMV-MF-VI  0.021 +£0.001 0.152+0.006 0.253 £0.006 0.313 +0.006 0.807 &£ 0.005
CM-MF-VI ~ 0.021 £0.001 0.141 +0.006 0.254 + 0.005 0.315 £ 0.004 0.809 £ 0.009
CV-MF-VI 0.038 £0.003 0.239£0.005 0.317+£0.006 0.321+0.006 0.821 £ 0.005
CM-MF-VIOPT 0.024 +£0.001 0.158 £0.004 0.258 £0.003 0.314 £+ 0.004 0.789 + 0.005
MF-VI 0.061 £0.001 0.319£0.006 0.371+0.003 0.340£0.001 0.848 £ 0.009
MAP 0.048 £0.007 0.402+£0.027 0.336 £0.001 0.775£0.012 1.134 +£0.065

MC dropout 0.027+£0.001 0.222£0.011 0.326 £0.007 0.400 £0.009 1.018 £0.017
MF-VI EB 0.060 £ 0.001  0.319+£0.003 0.372+£0.003 0.340 £0.005 0.843 +£0.010
CMV-MF-VI 0.73+0.02% 4.00+0.06% 8.90+0.22% 8.49+0.20% 27.76+0.37%
CM-MF-VI 0.67+0.04% 3.75+0.30% 9.05+0.31% 8.21+0.20% 27.63+ 0.48%
CV-MF-VI 1.24+0.12% 6.85£0.10% 11.47+0.13% 8.96 +0.20% 28.39 + 0.14%
CM-MF-VIOPT 0.72+0.05% 4.23+0.06% 9.33+0.07% 8.47+0.03% 26.80+0.41%
MF-VI 1.51 £ 0.05% 9.17+£0.25% 12.96 +£0.28% 9.20+0.15% 28.71 + 0.16%
MAP 1.16 £0.11% 7.92+£0.36% 11.944+0.22% 12.78 +0.12% 34.63 + 1.48%

MC dropout 0.81+0.056% 6.07+0.49% 12.01£0.17% 9.78 £0.22% 33.86 &+ 0.42%
MF-VI EB 1.53+0.07% 9.18 £0.19% 12.96 +£0.08% 9.31 +0.28% 28.56 + 0.45%

Table 2: Image classification with LeNet CNN. Collapsed bounds visibly outperform standard MF-VI.
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Figure 6: Top: performance of CM-MF-VI for different settings of hyperparameter « and different
network architectures (o = 1 is standard MF-VI). Setting o« = 0.01 visibly improves predictions
compared to standard MF-VI (fixed Gaussian prior). Bottom: ELBO L, correlates with test NLL.

set [73] and randomly perturbed MNIST images where every pixel is flipped with probability p. We
report test NLL, predictive entropy for perturbed MNIST experiment in Figure [5] (left). We see that
CM-MF-VI gives lower test NLL than MF-VI for any p, but it also maintains growing entropy when
p — 1i.e. when we transition to OOD data. In Figure[5 (right) we plot histograms of predictive
entropy for MNIST in-distribution data and OOD data fashionMNIST. CM-MF-VI significantly
improves upon MF-VTI’s under-confidence without excessive reduction in uncertainty.

Limitations of the algorithm: adjusting hyperparameters. The bounds in Eq. (9) and Eq. (10)
have hyperparameters, corresponding to the choice of hyper-prior. These additional parameters are
the main limitation of the derived algorithms. For example, CM-MF-VI has one hyperparameter o4
which allows us to control the strength of regularization of the model. We analyze the test predictive
performance for different settings of ..y for CM-MF-VI in Figure |§| (top) averaged over 5 random
seeds. We found the setting av,ey = 0.075 works well across many different problems and is robust
to the choice of size/depth of the network. Increasing a4 to 0.2 provides strong regularization and



model test NLL| /ER | CMV-MF-VI CM-MF-VI CV-MF-VI MF-VI MC dropout MAP

RESNET18 STL10 1.04 +:0.00 1.10 £0.02 1.57 £0.01 1.61 £0.01 1.17£0.05 1.64 £0.03
SVHN 0.15 4 0.00 0.14 £ 0.00 0.20 £0.01 0.22 4 0.00 0.18 £ 0.00 0.35+0.01

CIFAR100 1.43+0.01 1.53 £0.00 2.00 +£0.01 2.23+£0.03 1.75 £ 0.00 4.25+0.05

CIFAR10 0.41+0.00 0.39 £0.00 0.59 £ 0.00 0.68 +0.02 0.49+0.00 0.93+£0.02
SHUFFLENET STL10 0.96 +£0.01 0.99 +0.02 1.22 £0.05 1.70 £ 0.08 1.28 £0.01 1.78 £0.08
SVHN 0.27 £0.01 0.26 £0.01 0.31£0.01 0.314+0.01 1.11£0.01 0.32 £ 0.00

CIFAR100 2.03+£0.01 1.99 £+ 0.02 2.21 4+ 0.06 2.28 +£0.02 3.08+£0.01 4.48 +£0.03

CIFAR10 0.65 £ 0.00 0.65 £ 0.00 0.71£0.01 0.724+0.01 1.24 £+ 0.00 1.10 £0.02

ALEXNET STL10 1.50 £0.07 1.48 £0.04 1.80 £0.07 1.86 +0.03 1.07+0.06 1.80 £0.32
SVHN 0.30 £ 0.00 0.28 £ 0.00 0.42 £0.01 0.561+0.01 0.38 £ 0.01 0.72 £ 0.06

CIFAR100 2.24+0.02 2.16 £ 0.06 2.62 £ 0.02 2.95 4 0.04 2.19+0.01 7.03+0.14

CIFAR10 0.72+0.01 0.69 £0.01 0.99 £0.01 1.19£0.01 0.74+0.01 1.79 £ 0.06

RESNET18 STL10 37.694+0.25% 39.75+0.53% 64.88 +0.54% 66.58 £0.63% 29.98 +1.17% 29.30 +0.56%
SVHN 3.76 £0.02% 3.75+0.02% 5.26+0.21% 5.73+£0.09% 4.11+0.15% 4.94+0.07%

CIFAR100 39.41+0.39% 40.39£0.37% 53.78 £0.54% 59.46 + 0.72% 45.51 £0.36% 47.92 £ 0.34%

CIFAR10 13.75 4+ 0.06% 13.34 +0.24% 20.22 +0.30% 22.92 +£1.14% 16.36 £ 0.28% 15.31 £ 0.35%
SHUFFLENET STL10 34.48 +£0.18% 34.79+0.78% 46.43 +£2.83% 73.74 £5.67% 47.72+1.12% 41.41+1.13%
SVHN 7.85+0.32% 7.31+£0.27% 890+0.15% 8.87+£0.21% 26.19+0.69% 8.28 +0.19%

CIFAR100  54.04+0.07% 52.66 &+ 0.36% 58.95+1.08% 60.84 + 0.54% 73.96 £0.19% 63.52 £ 0.22%

CIFARIO  22.71+0.61% 22.68 +0.14% 24.66 £+ 0.53% 25.01 £0.47% 42.54 4+ 0.08% 28.19 & 0.59%

ALEXNET STL10 56.59 £4.82% 55.97 £2.99% 74.38 £5.70% 78.28 +1.32% 37.33+£0.99% 35.74+0.67%
SVHN 7.924+0.20% 7.41+0.13% 11.61+0.13% 13.17+0.20% 8.87+0.19% 10.35+0.71%

CIFAR100  58.14+0.83% 54.91+1.07% 66.82+0.64% 73.17 +1.39% 55.39 +0.23% 60.14 £+ 0.19%

CIFAR10 24.35+0.30% 23.40 +0.20% 34.73 +0.34% 41.63 +0.31% 24.74 £0.43% 26.04 £ 0.66%

Table 3: Test NLL and error rates (ER) for the collapsed bounds on large scale CNN experiments.
CMV-ME-VI, CM-MF-VI bounds provide visibly better predictions than MF-VI, which under-fits.

works well for data sets very prone to over-fitting. For models/data prone to under-fitting, setting
Qg < 0.025 can give even better predictive performance. In Figure @ (bottom) we show normalized
values of ELBO to log p(D, ai.¢q) With prior ey ~ Exp(5D), where D is the number of network
parameters, and test NLL for different values c..,. This has an important practical implication:
approximately tuning oo, can be guided by the ELBO. Figure E (bottom) can be compared with
Fig 6 in [35] showing the same property using approximation of log p(D), as opposed to using ELBO.

Image classification LeNet. We now consider image classification with the LeNet architecture [44]
on 6 data sets: MNIST, fashionMNIST, K-MNIST [10], CIFAR10, CIFAR100 [41] and SVHN
[56]. We optimize the objectives for 800 epochs (except MAP for 50 epochs and MC dropout for 100
epochs as they tend to overfit) using batch size 512 and ADAM optimizer with default parameters. We
report test NLL and test error rates (ER) averaged over 3 random seeds and standard deviation error
bars in Table 2] We again observe the introduced bounds CM-MF-VI, CV-MF-VI and CMV-MF-VI
outperform standard MF-VI in both test NLL and test error rate. CM-MF-VI performs slightly
better than CMV-MF-VI, but the differences are not statistically significant. Both CM-MF-VI and
CMV-MEF-VI outperform MAP, CV-MF-VI and MC dropout in test NLL and test ER.

Image classification large CNNs. We follow by experimenting with larger CNNs: ResNet18 [25]],
ShuffleNet[48] and AlexNet[42]. We use CIFAR10, CIFAR100, STL10 [11] and SVHN. We again
compare CMV-MF-VI, CV-MF-VI and CM-MF-VI to MF-VI, MC dropout and MAP. We optimize
the objectives for 800 epochs (MAP and MC dropout early stopped at 200) with the default ADAM
optimizer and the same data augmentation as in [57]], and average results over 3 random seeds. We
gather the results in Table [3. Experiments with large CNNs confirm our findings from previous
experiments: (i) CM-MF-VI/CMV-MF-VI always outperform standard MF-VI by a visible margin
and result in good predictive performance (e.g. outperforming SOTA VOGN [57]), (ii) learning prior
means CM-MF-VI/CMV-MF-VI outperforms learning just prior variances (CV-MF-VI).

5 Conclusions

We developed a family of algorithms optimizing variational posteriors in BNNs based on collapsed
variational bounds. We demonstrated that learning the prior parameters of BNN weights fixes their
predictive under-confidence resulting in good empirical performance and robustness to over-fitting.
The developed algorithms allowed us to demonstrate that the ELBO can be a suitable optimization
target for learning hyperparameters of BNNs. Importantly, the introduced algorithms do not incur
additional computational cost compared to applying MF-VI to BNNs and can be readily applied to
improve the predictive performance of existing implementations. We hope that our approach will
enable the practical use of VI based approximate inference in large network architectures.
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