Appendix

Outline We provide detailed proofs for all of our theories in Secs. A to F. Sec. G provides multiple additional experiments demonstrating that pseudo-labeling improves transfer learning and that combining pseudo-labeling with adversarial training in the source further improves transferability. Sec. H provides additional details about our experiments.

Recall that in the main context, in Algorithm 1, we have $\hat{W}_1 \leftarrow \text{top-}r \text{ SVD of } [\hat{\beta}_1, \hat{\beta}_2, \cdots, \hat{\beta}_T]$. Specifically, we assign the columns of \hat{W}_1 as the collection of the top-r left singular vectors of $[\hat{\beta}_1, \hat{\beta}_2, \cdots, \hat{\beta}_T]$.

The rest of proofs are based on the above methodology.

A Proof of Lemma 1

Let us define $\hat{\mu}_t = \sum_{i=1}^{n_t} x_i^{(t)} y^{(t)} / n_t$ and $\mu_t = Ba_t$ for all $t \in [T+1]$. Notice that

$$\hat{J} = (\hat{\mu}_1 / \|\hat{\mu}_1\|, \cdots, \hat{\mu}_T / \|\hat{\mu}_T\|) = (\hat{\mu}_1, \cdots, \hat{\mu}_T) \operatorname{diag}(\|\hat{\mu}_1\|^{-1}, \cdots, \|\hat{\mu}_T\|^{-1})$$

As a result, doing SVD for \hat{J} to obtain left singular vectors is equivalent to doing SVD for $\hat{\Phi} = (\hat{\mu}_1, \dots, \hat{\mu}_T)$ to obtain left singular vectors (up to an orthogonal matrix, meaning rotation of the space spanned by the singular vectors) since multiplying a diagonal matrix on the right does not affect the collection of left singular vectors. It further means doing SVD for \hat{J} to obtain left singular vectors is equivalent to obtaining left singular vectors for $\hat{\Phi} = (\hat{\mu}_1, \dots, \hat{\mu}_T) \text{diag}(\|\mu_1\|^{-1}, \dots, \|\mu_T\|^{-1})$ (up to an orthogonal matrix).

We mainly adopt the Davis-Kahan Theorem in [60]. We further denote $\Phi = (\mu_1, \dots, \mu_T) \operatorname{diag}(\|\mu_1\|^{-1}, \dots, \|\mu_T\|^{-1}).$

Lemma 2 (A variant of Davis–Kahan Theorem). Assume $\min\{T, p\} > r$. For simplicity, we denote $\hat{\sigma}_1 \geq \hat{\sigma}_2 \geq \cdots \geq \hat{\sigma}_r$ as the top largest r singular value of $\hat{\Phi}$ and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$ as the top largest r singular value of Φ . Let $V = (v_1, \cdots, v_r)$ be the orthonormal matrix consists of left singular vectors corresponding to $\{\sigma_i\}_{i=1}^r$ and $\hat{V} = (\hat{v}_1, \cdots, \hat{v}_r)$ be the orthonormal matrix consists of left singular vectors corresponding to $\{\hat{\sigma}_i\}_{i=1}^r$. Then,

$$\|\sin\Theta(\hat{V},V)\|_F \lesssim \frac{(2\sigma_1 + \|\hat{\Phi} - \Phi^*\|_{op})\min\{r^{0.5}\|\hat{\Phi} - \Phi^*\|_{op}, \|\hat{\Phi} - \Phi^*\|_F\}}{\sigma_r^2}.$$

Moreover, there exists an orthogonal matrix $\hat{O} \in \mathbb{R}^{r \times r}$, such that $\|\hat{V}\hat{O} - V\|_F \leq \sqrt{2}\|\sin\Theta(\hat{V},V)\|_F$, and

$$\|\hat{V}\hat{O} - V\|_F \lesssim \frac{(2\sigma_1 + \|\hat{\Phi} - \Phi^*\|_{op})\min\{r^{0.5}\|\hat{\Phi} - \Phi^*\|_{op}, \|\hat{\Phi} - \Phi^*\|_F\}}{\sigma_r^2}.$$

It is worth noticing that actually B plays the exact same role as V. Since B has orthonormal columns, for ϕ we have

$$\Phi = B(a_1, \cdots, a_T) \operatorname{diag}(\|\mu_1\|^{-1}, \cdots, \|\mu_T\|^{-1})$$

= $B(a_1, \cdots, a_T) \operatorname{diag}(\|a_1\|^{-1}, \cdots, \|a_T\|^{-1}).$

Thus, B is a solution of the SVD step in Algorithm 1.

Lemma 3 (Restatement of Lemma 1). Under Assumption 1, if $n > c_1 \max\{pr^2/T, r^2 \log(1/\delta)/T, r^2\}$ for some universal constant $c_1 > 0$ and $2r \le \min\{p, T\}$, for all $t \in [T]$. For \hat{W}_1 obtained in Algorithm 1, with probability at least $1 - O(n^{-100})$,

$$\|\sin \Theta(\hat{W}_1, B)\|_F \lesssim r\left(\sqrt{\frac{1}{n}} + \sqrt{\frac{p}{nT}} + \sqrt{\frac{\log n}{nT}}\right).$$

Proof. By a direct application of Lemma 2, we can obtain

$$\|\sin\Theta(\hat{W}_1, B)\|_F \lesssim \frac{(2\sigma_1 + \|\hat{\Phi} - \Phi\|_{op})\min\{r^{0.5}\|\hat{\Phi} - \Phi\|_{op}, \|\hat{\Phi} - \Phi\|_F\}}{\sigma_r^2}$$

Besides, we know that the left singular vectors of Φ are the same as the ones of $M = [a_1, \dots, a_T]$ since $\Phi = BM \operatorname{diag}(||a_1||^{-1}, \dots, ||a_T||^{-1})$.

To estimate $\|\hat{\Phi} - \Phi\|_{op} = \sup_{v \in \mathbb{S}^{p-1}} \|v^{\top}(\hat{\Phi} - \Phi)\|$, for any fixed $v \in \mathbb{S}^{p-1}$, by standard chaining argument in Chapter 6 in [57], we know that

$$\mathbb{P}\left(\|v^{\top}(\hat{\Phi} - \Phi)\| \gtrsim \sqrt{\frac{T}{n}} + \sqrt{\frac{\log(1/\delta)}{n}}\right) \le \delta$$

Then, we use chaining again for the ψ_2 -process $\{v : \|v^{\top}(\hat{\Phi} - \Phi)\|\}$, we obtain

$$\mathbb{P}\left(\sup_{v\in\mathbb{S}^{p-1}}\|v^{\top}(\hat{\Phi}-\Phi)\|\gtrsim\sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log(1/\delta)}{n}}\right)\leq\delta.$$

Besides, we know $\sigma_r(M) = \sqrt{T/r}$ by assumption 1, and we also have $\sum_{i=1}^r \sigma^2(M) = T$, thus, we know that $\sigma_1(M)$ and $\sigma_r(M)$ are both of order $\Theta(\sqrt{T/r})$

$$\|\sin\Theta(\hat{W}_1, B)\|_F \lesssim \frac{(\sqrt{\frac{p}{n}} + \sqrt{\frac{T}{n}} + \sqrt{\frac{\log(1/\delta)}{n}} + \sqrt{T/r})\sqrt{r}(\sqrt{\frac{p}{n}} + \sqrt{\frac{T}{n}} + \sqrt{\frac{\log(1/\delta)}{n}})}{T/r}$$

by simple calculation, we further have

$$\|\sin\Theta(\hat{W}_1, B)\|_F \lesssim r\sqrt{r}(\frac{1}{n} + \frac{p}{nT} + \frac{\log(1/\delta)}{nT}) + r(\sqrt{\frac{1}{n}} + \sqrt{\frac{p}{nT}} + \sqrt{\frac{\log(1/\delta)}{nT}}).$$

If we further have $n > r \max\{p/T, \log(1/\delta)/T, 1\}$, we further have

$$\|\sin\Theta(\hat{W}_1, B)\|_F \lesssim r(\sqrt{\frac{1}{n}} + \sqrt{\frac{p}{nT}} + \sqrt{\frac{\log(1/\delta)}{nT}}).$$

Plugging into $\delta = n^{-100}$, the proof is complete.

г		
_		

B Proof of Corollary 1

Corollary 2 (Restatement of Corollary 1). Under Assumption 1, if $n > c_1 \max\{pr^2/T, r^2 \log(1/\delta)/T, r^2, rn_{T+1}\}$ for some universal constant $c_1 > 0$, $2r \le \min\{p, T\}$, then for \hat{W}_1 obtained in Algorithm 1, with probability at least $1 - O(n^{-100})$,

$$\mathcal{R}(\hat{W}_1, \hat{w}_2^{(T+1)}) \lesssim \sqrt{\frac{r + \log n}{n_{T+1}}} + \sqrt{\frac{r^2 p}{nT}}.$$

Proof. By DK-lemma, we know there exists a W_1^* such that $W_1^* \in \operatorname{argmin}_{W \in \mathbb{O}_{p \times r}} \|W^\top \mu_{T+1}\|$ (the minimizer is not unique, so we use \in instead of = to indicate W_1^* belongs to the set consists of minimizers) and $\|W_1^* - \hat{W}_1\|$ is small.

$$\begin{aligned} \mathcal{R}(\hat{W}_{1}, \hat{w}_{2}^{(T+1)}) &= L(\mathcal{P}_{x,y}^{(T+1)}, \hat{w}_{2}^{(T+1)}, \hat{W}_{1}) - \min_{\|w_{2}\| \leq 1, W_{1} \in \mathbb{O}_{p \times r}} L(\mathcal{P}_{x,y}^{(T+1)}, w_{2}, W_{1}) \\ &= -\langle \frac{\hat{W}_{1}^{\top} \hat{\mu}_{T+1}}{\|\hat{W}_{1}^{\top} \hat{\mu}_{T+1}\|}, \hat{W}_{1}^{\top} \mu_{T+1} \rangle + \|W_{1}^{*\top} \mu_{T+1}\| \\ &= -\langle \frac{\hat{W}_{1}^{\top} \hat{\mu}_{T+1}}{\|\hat{W}_{1}^{\top} \hat{\mu}_{T+1}\|}, \hat{W}_{1}^{\top} \mu_{T+1} \rangle + \langle \frac{W_{1}^{*\top} \hat{\mu}_{T+1}}{\|W_{1}^{*\top} \hat{\mu}_{T+1}\|}, W_{1}^{*\top} \mu_{T+1} \rangle \\ &- \langle \frac{W_{1}^{*\top} \hat{\mu}_{T+1}}{\|W_{1}^{*\top} \hat{\mu}_{T+1}\|}, W_{1}^{*\top} \mu_{T+1} \rangle + \|W_{1}^{*\top} \mu_{T+1}\| \\ &\lesssim \|\hat{W}_{1} - W_{1}^{*}\|\|\mu_{T+1}\| + \|W_{1}^{*\top} \mu_{T+1} - W_{1}^{*\top} \hat{\mu}_{T+1}\| \\ &\lesssim \|\hat{W}_{1} - W_{1}^{*}\|\|\mu_{T+1}\| + \|B^{\top} \mu_{T+1} - B^{\top} \hat{\mu}_{T+1}\| \end{aligned}$$

if $n > r^2 \max\{p/T, \log(1/\delta)/T, 1\}$. The last formula is due to the fact that W_1^* and B are different only up to an orthogonal matrix.

By standard chaining techniques, we have with probability $1 - \delta$

$$\|B_1^{\top}\mu_{T+1} - B_1^{\top}\hat{\mu}_{T+1}\| \lesssim \sqrt{\frac{r}{n_{T+1}}} + \sqrt{\frac{\log(1/\delta)}{n_{T+1}}}.$$

Thus, we can further bound $\|\hat{W}_1 - W_1^*\|$ by $\sqrt{2}\|\sin\Theta(\hat{W}_1, B)\|_F$, thus, by Lemma 1, we have

$$\mathcal{R}(\hat{W}_1, \hat{w}_2^{(T+1)}) \lesssim \sqrt{\frac{r + \log(1/\delta)}{n_{T+1}}} + r(\sqrt{\frac{1}{n}} + \sqrt{\frac{p}{nT}} + \sqrt{\frac{\log(1/\delta)}{nT}}).$$

Now, if we further have $n > rn_{T+1}$, we have

$$\mathcal{R}(\hat{W}_1, \hat{w}_2^{(T+1)}) \lesssim \sqrt{\frac{r + \log(1/\delta)}{n_{T+1}}} + \sqrt{\frac{r^2 p}{nT}}.$$

Plugging into $\delta = n^{-100}$, the proof is complete.

C Proof of Theorem 1

Theorem 5 (Restatement of Theorem 1). Under Assumption 2 and 3, for $||a_{T+1}|| = \alpha = \Omega(1)$, if $n > c_1 \max\{r^2, r/\alpha_T\} \cdot \max\{p \log T, \log n/T, 1\}$ and $n > c_2(\alpha \alpha_T)^2 rn_{T+1}$ for universal constants $c_1, c_2, 2r \le \min\{p, T\}$. There exists a universal constant c_3 , such that if we choose $\varepsilon \in [\max_{t \in S_1} ||a_t|| + c_3 \sqrt{p \log T/n}, \min_{t \in S_2} ||a_t|| - c_3 \sqrt{p \log T/n}]$ (this set will not be empty if T, n are large enough), for \hat{W}_1^{adv} , $\hat{w}_2^{adv,(T+1)}$ obtained in Algorithm 2 with q = 2, with probability at least $1 - O(n^{-100})$,

$$\|\sin\Theta(\hat{W}_1^{adv}, B)\|_F \lesssim (\alpha_T)^{-1} \left(\sqrt{\frac{r^2}{n}} + \sqrt{\frac{pr^2}{nT}} + \sqrt{\frac{r^2\log n}{nT}}\right),$$

and the excess risk

$$\mathcal{R}(\hat{W}_1^{adv}, \hat{w}_2^{adv, (T+1)}) \lesssim \alpha \sqrt{\frac{r + \log n}{n_{T+1}}} + (\alpha_T)^{-1} \left(\sqrt{\frac{r^2 p}{nT}}\right).$$

Proof. For ℓ_2 -adversarial training, we have

$$\begin{split} \hat{\beta}_t^{adv} &= \operatorname{argmin}_{\|\beta_t\| \le 1} \max_{\|\delta_i\|_p \le \varepsilon} \frac{1}{n_t} \sum_{i=1}^{n_t} -y_i^{(t)} \langle \beta_t, x_i^{(t)} + \delta_i \rangle \\ &= \operatorname{argmin}_{\|\beta_t\| \le 1} \max_{\|\delta_i\|_p \le \varepsilon} \frac{1}{n_t} \sum_{i=1}^{n_t} -y_i^{(t)} \langle \beta_t, x_i^{(t)} \rangle + \varepsilon \|\beta_t\| \end{split}$$

Recall $\hat{\mu}_t = \frac{1}{n_t} \sum_{i=1}^{n_t} y_i^{(t)} x_i^{(t)}$, if we have $\|\hat{\mu}_t\| \ge \varepsilon$, then $\hat{\beta}_t^{adv} = \hat{\mu}_t / \|\hat{\mu}_t\|$, otherwise, $\hat{\beta}_t^{adv} = 0$. We denote

$$\hat{G} = [\hat{\beta}_1^{adv}, \cdots, \hat{\beta}_T^{adv}].$$

Since $|S_1| = \Theta(T)$, there exists a universal constant c_3 such that with probability $1 - \delta$, we have for all $i \in S_1$, $\hat{\mu}_i \leq ||a_i|| + c_3\sqrt{p\log T/n}$. Thus, if T is large enough, the set $[\max_{t \in S_1} ||a_t|| + c_3\sqrt{p\log T/n}, \min_{t \in S_2} ||a_t|| - c_3\sqrt{p\log T/n}]$ is non-empty. If we choose $\varepsilon \in [\max_{t \in S_1} ||a_t|| + c_3\sqrt{p\log T/n}, \min_{t \in S_2} ||a_t|| - c_3\sqrt{p\log T/n}]$, for all $t \in S_2$, $\hat{\beta}_t^{adv} = \hat{\mu}_t/||\hat{\mu}_t||$. Meanwhile, \hat{G}_{S_1} is a zero matrix.

Notice that the left singular vectors obtained by applying SVD to \hat{G} for left singular vectors is equivalent to applying SVD for left singular vectors to \hat{G}_{S_2} , which is further equivalent to applying SVD for left singular vectors to $\hat{\Phi}_{S_2}$, given that \hat{G}_2 is equal to $\hat{\Phi}_{S_2}$ times a diagonal matrix on the right. Thus, we have

$$\|\sin\Theta(\hat{W}_1^{adv}, B)\|_F \lesssim \frac{(2\sigma_1(\Phi_{S_2}) + \|\hat{\Phi}_{S_2} - \Phi_{S_2}\|_{op})\min\{r^{0.5}\|\hat{\Phi}_{S_2} - \Phi_{S_2}\|_{op}, \|\hat{\Phi}_{S_2} - \Phi_{S_2}\|_F\}}{\sigma_r^2(\Phi_{S_2})}.$$

By our assumptions, we know that

$$\mathbb{P}\left(\sup_{v\in\mathbb{S}^{p-1}}\|v^{\top}(\hat{\Phi}_{S_2}-\Phi_{S_2})\|\gtrsim \alpha_T^{-1}(\sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log(1/\delta)}{n}})\right)\leq \delta.$$

As a result,

$$\|\sin\Theta(\hat{W}_1, B)\|_F \lesssim \alpha_T^{-2} r \sqrt{r} (\frac{1}{n} + \frac{p}{nT} + \frac{\log(1/\delta)}{nT}) + \alpha_T^{-1} r (\sqrt{\frac{1}{n}} + \sqrt{\frac{p}{nT}} + \sqrt{\frac{\log(1/\delta)}{nT}}).$$

If we further have $n > \frac{r}{\alpha_T} \max\{p/T, \log(1/\delta)/T, 1\}$, we further have

$$\|\sin\Theta(\hat{W}_1, B)\|_F \lesssim (\alpha_T)^{-1} r(\sqrt{\frac{1}{n}} + \sqrt{\frac{p}{nT}} + \sqrt{\frac{\log(1/\delta)}{nT}}).$$

Now, if we further have $n > (\alpha \alpha_T)^2 r n_{T+1}$, we have

$$\mathcal{R}(\hat{W}_1, \hat{w}_2^{(T+1)}) \lesssim \alpha \sqrt{\frac{r + \log(1/\delta)}{n_{T+1}}} + (\alpha_T)^{-1} \sqrt{\frac{r^2 p}{nT}}$$

Plugging into $\delta = n^{-100}$, the proof is complete.

_	

Remark 6 (ℓ_2 -adversarial training v.s. standard training). The proof of the counterpart of Lemma 1 under the setting of Theorem 1 basically follows similar methods in the proof of Lemma 1. The only modification is that we need an extra step:

$$\mathbb{P}\left(\sup_{v\in\mathbb{S}^{p-1}}\|v^{\top}(\hat{\Phi}-\Phi)\|\gtrsim\sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log(1/\delta)}{n}}\right)\leq\mathbb{P}\left(\sup_{v\in\mathbb{S}^{p-1}}\|v^{\top}(\hat{\Phi}_{S_{1}}-\Phi_{S_{1}})\|\gtrsim\sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log(1/\delta)}{n}}\right)\\
+\mathbb{P}\left(\sup_{v\in\mathbb{S}^{p-1}}\|v^{\top}(\hat{\Phi}_{S_{2}}-\Phi_{S_{2}})\|\gtrsim\sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log(1/\delta)}{n}}\right)$$

and recall that both $|S_1|$ and $|S_2|$ are of order $\Theta(T)$.

D Proof of Theorem 2

Theorem 6 (Restatement of Theorem 2). Under Assumptions 1 and 4, if $n > c_1 \cdot r^2 \max\{s^2 \log^2 T/T, rn_{T+1}, 1\}$ for some universal constants $c_1 > 0$, $2r \le \min\{p, T\}$. There exists a universal constant c_2 , such that if we choose $\varepsilon > c_2 \sqrt{\log p/n}$, for and \hat{W}_1^{adv} , $\hat{w}_2^{adv,(T+1)}$ obtained in Algorithm 2 with $q = \infty$, with probability at least $1 - O(n^{-100}) - O(T^{-100})$,

$$\|\sin\Theta(\hat{W}_1^{adv}, B)\|_F \lesssim r\left(\sqrt{\frac{1}{n}} + \sqrt{\frac{s^2}{nT}}\right) \cdot \log(T+p)$$

and the excess risk

$$\mathcal{R}(\hat{W}_1^{adv}, \hat{w}_2^{adv, (T+1)}) \lesssim \left(\sqrt{\frac{r+\log n}{n_{T+1}}} + r\sqrt{\frac{s^2}{nT}}\right) \cdot \log(T+p).$$
(7)

Proof. For ℓ_{∞} -adversarial training, we have

$$\begin{split} \hat{\beta}_t^{adv} &= \operatorname{argmin}_{\|\beta_t\| \le 1} \max_{\|\delta_i\|_{\infty} \le \varepsilon} \frac{1}{n_t} \sum_{i=1}^{n_t} -y_i^{(t)} \langle \beta_t, x_i^{(t)} + \delta_i \rangle \\ &= \operatorname{argmin}_{\|\beta_t\| \le 1} \frac{1}{n_t} \sum_{i=1}^{n_t} -y_i^{(t)} \langle \beta_t, x_i^{(t)} \rangle + \varepsilon \|\beta_t\|_1 \\ &= \operatorname{argmin}_{\|\beta_t\| \le 1} \langle \beta_t, \frac{1}{n_t} \sum_{i=1}^{n_t} -y_i^{(t)} x_i^{(t)} \rangle + \varepsilon \|\beta_t\|_1 \end{split}$$

Recall $\hat{\mu}_t = \frac{1}{n_t} \sum_{i=1}^{n_t} y_i^{(t)} x_i^{(t)}$. By observation, when reaching minimum, we have to have $sgn(\beta_{tj}) = sgn(\hat{\mu}_{tj})$, therefore

$$\begin{aligned} \operatorname*{argmax}_{\|\beta_t\|=1} &\sum_{j=1}^d \hat{\mu}_{tj} \beta_{tj} - \varepsilon |\beta_{tj}| \\ = \operatorname*{argmax}_{\|\beta_t\|=1} &\sum_{j=1}^d (\hat{\mu}_{tj} - \varepsilon \cdot sgn(\hat{\mu}_{tj})) \beta_{tj} \\ = &\frac{T_{\varepsilon}(\hat{\mu})}{\|T_{\varepsilon}(\hat{\mu})\|}, \end{aligned}$$

where $T_{\varepsilon}(\hat{\mu})$ is the hard-thresholding operator with $(T_{\varepsilon}(\hat{\mu}))_j = sgn(\hat{\mu}_j) \cdot \max\{|\hat{\mu}_j| - \varepsilon, 0\}$. We denote

$$\hat{G} = [\hat{\beta}_1^{adv}, \cdots, \hat{\beta}_T^{adv}].$$

By the choice of ε , $\varepsilon \gtrsim C\sqrt{\frac{\log p}{n}}$ for sufficiently large C, we have that the column sparsities of \hat{G} is no larger than $s \log T$. As a result, the total number of non-zero elements in \hat{G} is less than $O(Ts \log T)$ with probability at least $1 - T^{-100}$.

Now we divide the rows of \hat{G} by two parts: $[p] = A_1 \cup A_2$, where A_1 consists of indices of rows whose sparsity smaller than or equal to s, and A_2 consists of indices of rows whose sparsity larger than s.

Since the number of non-zero elements in \hat{G} is less than $Ts \log T$, we have $|A_2| \leq T \log T$. Using the similar analysis as in the proof of Lemma 1, we have

$$\|\hat{\Phi}_{A_2} - \Phi_{A_2}\| \le \sqrt{\frac{T\log T}{n}}$$

For the rows in A_1 , all of them has sparsity $\leq s$, so the maximum ℓ_1 norm of these rows

$$\|\hat{\Phi}_{A_1} - \Phi_{A_1}\|_{\infty} = O_P(s\sqrt{\frac{\log T}{n}}).$$

Similarly, the maximum ℓ_1 norm of the columns in \hat{G}_{A_1} satisfies

$$\|\hat{\Phi}_{A_1} - \Phi_{A_1}\|_1 = O_P(s\sqrt{\frac{\log p}{n}}).$$

Therefore, we have

$$\|\hat{\Phi}_{A_1} - \Phi_{A_1}\| \le \sqrt{\|\hat{\Phi}_{A_1} - \Phi^*_{A_1}\|_{\infty}} \|\hat{\Phi}_{A_1} - \Phi_{A_1}\|_1 = O_P(s\sqrt{\frac{\log p + \log T}{n}}).$$

Consequently,

$$\|\hat{\Phi} - \Phi\| \le \|\hat{\Phi}_{A_1} - \Phi_{A_1}\| + \|\hat{\Phi}_{A_2} - \Phi_{A_2}\| = O_P(s\sqrt{\frac{\log p + \log T}{n}})$$

As a result, when $s\sqrt{\frac{\log p + \log T}{n}} \lesssim T/r$, applying Lemma 2, we obtain

$$\|\sin\Theta(\hat{W}_1, B)\|_F \lesssim \sin\theta(\hat{W}_1^{adv}, B) \lesssim (\sqrt{\frac{r}{n}} + \sqrt{\frac{rs^2}{nT}}) \cdot \log(T+p).$$

Now, if we further have $n > (\alpha \alpha_T)^2 n_{T+1} / \nu$, we have

$$\mathcal{R}(\hat{W}_1, \hat{w}_2^{(T+1)}) \lesssim \sqrt{\frac{r + \log(1/\delta)}{n_{T+1}}} + \sqrt{\frac{rs^2}{nT}} \cdot \log(T+p).$$

Remark 7 (ℓ_{∞} -adversarial training v.s. standard training). The proof of the counterpart of Lemma 1 under the setting of Theorem 2 follows exact the same method in the proof of Lemma 1.

E Proof of the case with pseudo-labeling

Theorem 7 (Restatement of Theorem 3). Denote $\tilde{n} = \min_{t \in [T]} n_t^u$ and assume $\tilde{n} > c_1 \max\{pr^2/T, r^2 \log(1/\delta)/T, r^2, n\}$ for some constant $c_1 > 0$. Assume $\sigma_r(M^\top M/T) = \Omega(1/r)$ and $n^{c_2} \gtrsim \tilde{n} \gtrsim n$ for some $c_2 > 1$, if $n \gtrsim (T+d)$ and $\min_{t \in [T]} ||a_t|| = \Theta(\log^2 n)$ and $\eta_i^{(t)} \sim \mathcal{N}_p(0, \rho_t^2 I^2)$ for $\rho_t = \Theta(1)$. Let $\hat{W}_{1,aug}$ obtained in Algorithm 3, with probability $1 - O(n^{-100})$,

$$\|\sin\Theta(\hat{W}_{1,aug},B)\|_F \lesssim r\left(\sqrt{\frac{1}{\tilde{n}}} + \sqrt{\frac{p}{\tilde{n}T}} + \sqrt{\frac{\log n}{\tilde{n}T}}\right)$$

Proof. Let us first analyze the performance of pseudo-labeling algorithm in each individual task. In the following, we analyze the properties of $y_i^{u,(t)}$ and $\hat{\mu}_{final}^{(t)} = \frac{1}{n_t^u + n_t} \sum_{i=1}^{n_t^u + n_t} (\sum_{i=1}^{n_u^t} x_i^u y_i^u + \sum_{i=1}^{n_t} x_i^u y_i^u)$. Since $\tilde{n} \gtrsim n$ and we only care about the rate in the result. In the following, we derive the results for $\hat{\mu}_{final}^{(t)} = \frac{1}{n_t^u} \sum_{i=1}^{n_t^u + n_t} (\sum_{i=1}^{n_u^t} x_i^u y_i^u)$. Also, for the notational simplicity, we omit the index t in the following analysis.

We follow the similar analysis of Carmon et al. [11] to study the property of y_i^u . Let b_i be the indicator that the *i*-th pseudo-label is incorrect, so that $x_i^u \sim N((1-2b_i)y_i^u\mu, I) := (1-2b_i)y_i^u\mu + \varepsilon_i^u$. Then we can write

 $\hat{\mu}_{final} = \gamma \mu + \tilde{\delta},$

where $\gamma = \frac{1}{n_u} \sum_{i=1}^{n_u} (1 - 2b_i)$ and $\tilde{\delta} = \frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_i^u y_i^u$.

Let's write $y_i^u = sign(x_i^\top \hat{\mu})$. Using the rotational invariance of Gaussian, without loss of generality, we choose the coordinate system where the first coordinate is in the direction of $\hat{\mu}$. Then $y_i^u = sign(x_i^\top \hat{\mu}) = sign(x_{i1}) = sign(y_i^* \frac{\mu^\top \hat{\mu}}{\|\hat{\mu}\|} + \varepsilon_{i1}^u)$ and are independent with ε_{ij}^u $(j \ge 2)$.

As a result,

$$\frac{1}{n_u}\sum_{i=1}^{n_u}\varepsilon_{ij}^u\cdot y_i^u\stackrel{d}{=}\frac{1}{n_u}\sum_{i=1}^{n_u}\varepsilon_{ij}^u,\quad \text{for }j\geq 2.$$

Now let's focus on $\frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_{i1}^u \cdot y_i^u$. Let $y_i^* = (1 - 2b_i)y_i^u$, we have

$$\frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_{i1}^u \cdot y_i^u = \frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_{i1}^u \cdot y_i^* + 2\frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_{i1}^u \cdot b_i \stackrel{d}{=} \frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_{i1}^u + 2\frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_{i1}^u \cdot b_i.$$

Since

$$\left(\frac{1}{n_u}\sum_{i=1}^{n_u}\varepsilon_{i1}^u\cdot b_i\right)^2 \le \left(\frac{1}{n_u}\sum_{i=1}^{n_u}(\varepsilon_{i1}^u)^2\right)\left(\frac{1}{n_u}\sum_{i=1}^{n_u}b_i^2\right) \lesssim \frac{1}{n_u}\sum_{i=1}^{n_u}b_i^2 = \frac{1}{n_u}\sum_{i=1}^{n_u}b_i \lesssim \mathbb{E}[b_i] + \frac{1}{\sqrt{n_u}} \lesssim +\frac{1}{n} + \frac{1}{\sqrt{n_u}},$$

where the last inequality is due to the fact that

$$\begin{split} \mathbb{E}[b_i] = \mathbb{P}(y_i^u \neq y_i^*) &= \mathbb{P}(sign(y_i^* \frac{\mu^\top \hat{\mu}}{\|\hat{\mu}\|} + \varepsilon_{i1}^u) \neq y_i^*) \\ \leq \mathbb{P}(sign(y_i^* \frac{\mu^\top \hat{\mu}}{\|\hat{\mu}\|} + \varepsilon_{i1}^u) \neq y_i^* \mid \frac{\mu^\top \hat{\mu}}{\|\hat{\mu}\|} > \frac{1}{2} \|\mu\|) + \mathbb{P}(\frac{\mu^\top \hat{\mu}}{\|\hat{\mu}\|} > \frac{1}{2} \|\mu\|) \\ \lesssim \exp^{-\|\mu\|/2} + \frac{1}{n^C} \end{split}$$

As a result, we have

$$\tilde{\delta} \stackrel{d}{=} \frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_i^u + e,$$

where $||e||_2 \lesssim \frac{1}{\sqrt{n_u}} + \frac{1}{n^C}$.

Additionally, we have $\gamma = \frac{1}{n_u} \sum_{i=1}^{n_u} (1-2b_i) = 1 - \frac{2}{n_u} \sum_{i=1}^{n_u} b_i = 1 - O(\frac{1}{\sqrt{n_u}} + \frac{1}{n^c}).$ As a result, for each $t \in [T]$, we have

$$\hat{\mu}_t = \mu_t + \frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_i^u + e',$$

with $||e'||_2 \lesssim \frac{1}{\sqrt{n_u}} + \frac{1}{n^{C'}}$ being a negligible term.

Since e' is negligible, we can then follow the same proof as those in Section A by considering $\tilde{\mu}_t = \mu_t + \frac{1}{n_u} \sum_{i=1}^{n_u} \varepsilon_i^u$ and obtain the desired results.

Similarly, due to the negligibility of e', we can prove Theorem 4 by following the exact same techniques in Sections C and D.

F Lower bound proof

Proposition 2 (Restatement of Proposition 1). Let us consider the parameter space $\Xi = \{A \in \mathbb{R}^{p \times r}, B \in \mathbb{R}^{p \times r} : \sigma_r(A^\top A/T) \gtrsim 1, B^\top B = I_r\}$. If $nT \gtrsim rp$, we then have

$$\inf_{\hat{W}_1} \sup_{\Xi} \mathbb{E} \| \sin \Theta(B, \hat{W}_1) \|_F \gtrsim \sqrt{\frac{rp}{nT}}.$$

We first invoke the Fano's lemma.

Lemma 4 ([54]). Let $M \ge 0$ and $\mu_0, \mu_1, ..., \mu_M \in \Theta$. For some constants $\alpha \in (0, 1/8), \gamma > 0$, and any classifier \hat{G} , if $\operatorname{KL}(\mathbb{P}_{\mu_i}, \mathbb{P}_{\mu_0}) \le \alpha \log M$ for all $1 \le i \le M$, and $L(\mu_i, \mu_j)$ for all $0 \le i \ne j \le M$, then

$$\inf_{\hat{\mu}} \sup_{i \in [M]} \mathbb{E}_{\mu_i}[L(\mu_i, \hat{\mu})] \gtrsim \gamma.$$

Now we take $B_0, B_1, ..., B_M$ as the η -packing number of $O^{p \times r}$ with the $\sin \theta$ distance. Then according to [41, 52], we have

$$\log M \asymp rd\log(\frac{1}{\eta}).$$

For any $i \in [M]$, we have

$$\mathrm{KL}(\mathbb{P}_{B_i}, \mathbb{P}_{B_0}) = \sum_{t=1}^T n \| (B_i - B_0) a_t \|^2 \le nT\eta^2.$$

Let $\eta = \sqrt{\frac{rd}{nT}}$, we complete the proof.

G Additional Empirical Results

We provide additional results on transfer performance with varied amounts of pseudo-labels in Table 2. Here, we train models with both adversarial (allowed maximum perturbations of $\varepsilon = 1$ with respect to the ℓ_2 norm) and non-adversarial (standard) training on ImageNet. The observed trend is the same as on the CIFAR-10 and CIFAR-100 tasks from Table 1 – both using robust training and additional pseudo-labeled data improve performance.

Table 2: Additional results extending Table 1. Effect of amount of pseudo-labels on transfer task performance (measured with accuracy). At 0%, we just use 10% of data from the source task; at 900%, we use all remaining 90% of data with pseudo-labels (this is 9 times the train set size). Adversarial training corresponds to using ℓ_2 -adversarial training with $\varepsilon = 1$ on the source task. As per Section 7 of [46], images in all datasets down-scaled to 32×32 before scaling back to 224×224 .

Source Task	Target Task	+0% Pseudo-labels	+200% Pseudo-labels	+500% Pseudo-labels	+900% Pseudo-labels
ImageNet	Aircraft [35]	17.3%	17.6%	17.9%	19.9%
ImageNet (w/adv.training)	Aircraft	21.2%	20.9%	24.0%	24.5%
ImageNet	Flowers [40]	60.7%	64.9%	65.4%	66.5%
ImageNet (w/adv.training)	Flowers	66.9%	68.1%	70.0%	70.1%
ImageNet	Food [8]	33.7%	36.0%	36.7%	37.2%
ImageNet (w/adv.training)	Food	35.8%	37.5%	39.4%	40.8%
ImageNet	Pets [42]	43.2%	44.9%	48.4%	49.0%
ImageNet (w/adv.training)	Pets	47.9%	53.1%	58.9%	59.6%

H Experiment Details

H.1 Training Hyperparameters

All of our experiments use the ResNet-18 architecture. When transferring to the target task, we only update the final layer of the model. Our hyperparameter choices are identical to those used in [46]:

- 1. ImageNet (source task) models are trained with SGD for 90 epochs with a momentum of 0.9, weight decay of 1e 4, and a batch size of 512. The initial learning rate is set to 0.1 and is updated every 30 epochs by a factor of 0.1. The adversarial examples for adversarial training are generated using 3 steps with step size $\frac{2\varepsilon}{3}$.
- 2. Target task models are trained for 150 epochs with SGD with a momentum of 0.9, weight decay of 5e 4, and a batch size of 64. The initial learning rate is set to 0.01 and is updated every 50 epochs by a factor of 0.1.

Data augmentation is also identical to the methods used in [46]. As per Section 7 of [46], we scale all our target task images down to size 32×32 before rescaling back to size 224×224 .

Experiments were run on a GPU cluster. A variety of NVIDIA GPUs were used, as allocated by the cluster. Training time for each source task model was around 2 days (less when using subsampled data) using 4 GPUs. Training time for each target task model was typically between 1-5 hours (depending on the dataset) using 1 GPU.

H.2 Pseudo-label Generation

When subsampling ImageNet (our source task), the sampled 10% with ground truth labels preserves the class label distribution. This sample is fixed for all our experiments. All ImageNet pseudo-labels are generated by a model trained on this 10% without any adversarial training. This model has a source task test accuracy (top-1) of 44.0%.

When training models with pseudo-labels, we preserve the class label distribution of the original training set (i.e., we add less pseudo-labels for those classes that have fewer examples in the entire training set).