Appendix

Outline We provide detailed proofs for all of our theories in Secs. A to F. Sec. G provides multiple additional experiments demonstrating that pseudo-labeling improves transfer learning and that combining pseudo-labeling with adversarial training in the source further improves tranferability. Sec. H provides additional details about our experiments.
Recall that in the main context, in Algorithm 1, we have $\hat{W}_{1} \leftarrow$ top- r SVD of $\left[\hat{\beta}_{1}, \hat{\beta}_{2}, \cdots, \hat{\beta}_{T}\right]$. Specifically, we assign the columns of \hat{W}_{1} as the collection of the top-r left singular vectors of $\left[\hat{\beta}_{1}, \hat{\beta}_{2}, \cdots, \hat{\beta}_{T}\right]$.
The rest of proofs are based on the above methodology.

A Proof of Lemma 1

Let us define $\hat{\mu_{t}}=\sum_{i=1}^{n_{t}} x_{i}^{(t)} y^{(t)} / n_{t}$ and $\mu_{t}=B a_{t}$ for all $t \in[T+1]$.
Notice that

$$
\hat{J}=\left(\hat{\mu}_{1} /\left\|\hat{\mu}_{1}\right\|, \cdots, \hat{\mu}_{T} /\left\|\hat{\mu}_{T}\right\|\right)=\left(\hat{\mu}_{1}, \cdots, \hat{\mu}_{T}\right) \operatorname{diag}\left(\left\|\hat{\mu}_{1}\right\|^{-1}, \cdots,\left\|\hat{\mu}_{T}\right\|^{-1}\right)
$$

As a result, doing SVD for \hat{J} to obtain left singular vectors is equivalent to doing SVD for $\hat{\Phi}=$ ($\hat{\mu}_{1}, \cdots, \hat{\mu}_{T}$) to obtain left singular vectors (up to an orthogonal matrix, meaning rotation of the space spanned by the singular vectors) since multiplying a diagonal matrix on the right does not affect the collection of left singular vectors. It further means doing SVD for \hat{J} to obtain left singular vectors is equivalent to obtaining left singular vectors for $\hat{\Phi}=\left(\hat{\mu}_{1}, \cdots, \hat{\mu}_{T}\right) \operatorname{diag}\left(\left\|\mu_{1}\right\|^{-1}, \cdots,\left\|\mu_{T}\right\|^{-1}\right)$ (up to an orthogonal matrix).

We mainly adopt the Davis-Kahan Theorem in [60]. We further denote $\Phi=$ $\left(\mu_{1}, \cdots, \mu_{T}\right) \operatorname{diag}\left(\left\|\mu_{1}\right\|^{-1}, \cdots,\left\|\mu_{T}\right\|^{-1}\right)$.
Lemma 2 (A variant of Davis-Kahan Theorem). Assume $\min \{T, p\}>r$. For simplicity, we denote $\hat{\sigma}_{1} \geq \hat{\sigma}_{2} \geq \cdots \geq \hat{\sigma}_{r}$ as the top largest r singular value of $\hat{\Phi}$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}$ as the top largest r singular value of Φ. Let $V=\left(v_{1}, \cdots, v_{r}\right)$ be the orthonormal matrix consists of left singular vectors corresponding to $\left\{\sigma_{i}\right\}_{i=1}^{r}$ and $\hat{V}=\left(\hat{v}_{1}, \cdots, \hat{v}_{r}\right)$ be the orthonormal matrix consists of left singular vectors corresponding to $\left\{\hat{\sigma}_{i}\right\}_{i=1}^{r}$. Then,

$$
\|\sin \Theta(\hat{V}, V)\|_{F} \lesssim \frac{\left(2 \sigma_{1}+\left\|\hat{\Phi}-\Phi^{*}\right\|_{o p}\right) \min \left\{r^{0.5}\left\|\hat{\Phi}-\Phi^{*}\right\|_{o p},\left\|\hat{\Phi}-\Phi^{*}\right\|_{F}\right\}}{\sigma_{r}^{2}}
$$

Moreover, there exists an orthogonal matrix $\hat{O} \in \mathbb{R}^{r \times r}$, such that $\|\hat{V} \hat{O}-V\|_{F} \leq$ $\sqrt{2}\|\sin \Theta(\hat{V}, V)\|_{F}$, and

$$
\|\hat{V} \hat{O}-V\|_{F} \lesssim \frac{\left(2 \sigma_{1}+\left\|\hat{\Phi}-\Phi^{*}\right\|_{o p}\right) \min \left\{r^{0.5}\left\|\hat{\Phi}-\Phi^{*}\right\|_{o p},\left\|\hat{\Phi}-\Phi^{*}\right\|_{F}\right\}}{\sigma_{r}^{2}}
$$

It is worth noticing that actually B plays the exact same role as V. Since B has orthonormal columns, for ϕ we have

$$
\begin{aligned}
\Phi & =B\left(a_{1}, \cdots, a_{T}\right) \operatorname{diag}\left(\left\|\mu_{1}\right\|^{-1}, \cdots,\left\|\mu_{T}\right\|^{-1}\right) \\
& =B\left(a_{1}, \cdots, a_{T}\right) \operatorname{diag}\left(\left\|a_{1}\right\|^{-1}, \cdots,\left\|a_{T}\right\|^{-1}\right) .
\end{aligned}
$$

Thus, B is a solution of the SVD step in Algorithm 1.
Lemma 3 (Restatement of Lemma 1). Under Assumption 1 , if $n>$ $c_{1} \max \left\{p r^{2} / T, r^{2} \log (1 / \delta) / T, r^{2}\right\}$ for some universal constant $c_{1}>0$ and $2 r \leq \min \{p, T\}$, for all $t \in[T]$. For \hat{W}_{1} obtained in Algorithm 1, with probability at least $1-O\left(n^{-100}\right)$,

$$
\left\|\sin \Theta\left(\hat{W}_{1}, B\right)\right\|_{F} \lesssim r\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{p}{n T}}+\sqrt{\frac{\log n}{n T}}\right)
$$

Proof. By a direct application of Lemma 2, we can obtain

$$
\left\|\sin \Theta\left(\hat{W}_{1}, B\right)\right\|_{F} \lesssim \frac{\left(2 \sigma_{1}+\|\hat{\Phi}-\Phi\|_{o p}\right) \min \left\{r^{0.5}\|\hat{\Phi}-\Phi\|_{o p},\|\hat{\Phi}-\Phi\|_{F}\right\}}{\sigma_{r}^{2}}
$$

Besides, we know that the left singular vectors of Φ are the same as the ones of $M=\left[a_{1}, \cdots, a_{T}\right]$ since $\Phi=B M \operatorname{diag}\left(\left\|a_{1}\right\|^{-1}, \cdots,\left\|a_{T}\right\|^{-1}\right)$.
To estimate $\|\hat{\Phi}-\Phi\|_{o p}=\sup _{v \in \mathbb{S}^{p-1}}\left\|v^{\top}(\hat{\Phi}-\Phi)\right\|$, for any fixed $v \in \mathbb{S}^{p-1}$, by standard chaining argument in Chapter 6 in [57], we know that

$$
\mathbb{P}\left(\left\|v^{\top}(\hat{\Phi}-\Phi)\right\| \gtrsim \sqrt{\frac{T}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right) \leq \delta
$$

Then, we use chaining again for the ψ_{2}-process $\left\{v:\left\|v^{\top}(\hat{\Phi}-\Phi)\right\|\right\}$, we obtain

$$
\mathbb{P}\left(\sup _{v \in \mathbb{S}^{p-1}}\left\|v^{\top}(\hat{\Phi}-\Phi)\right\| \gtrsim \sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right) \leq \delta
$$

Besides, we know $\sigma_{r}(M)=\sqrt{T / r}$ by assumption 1, and we also have $\sum_{i=1}^{r} \sigma^{2}(M)=T$, thus, we know that $\sigma_{1}(M)$ and $\sigma_{r}(M)$ are both of order $\Theta(\sqrt{T / r})$

$$
\left\|\sin \Theta\left(\hat{W}_{1}, B\right)\right\|_{F} \lesssim \frac{\left(\sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}+\sqrt{T / r}\right) \sqrt{r}\left(\sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right)}{T / r}
$$

by simple calculation, we further have

$$
\left\|\sin \Theta\left(\hat{W}_{1}, B\right)\right\|_{F} \lesssim r \sqrt{r}\left(\frac{1}{n}+\frac{p}{n T}+\frac{\log (1 / \delta)}{n T}\right)+r\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{p}{n T}}+\sqrt{\frac{\log (1 / \delta)}{n T}}\right)
$$

If we further have $n>r \max \{p / T, \log (1 / \delta) / T, 1\}$, we further have

$$
\left\|\sin \Theta\left(\hat{W}_{1}, B\right)\right\|_{F} \lesssim r\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{p}{n T}}+\sqrt{\frac{\log (1 / \delta)}{n T}}\right)
$$

Plugging into $\delta=n^{-100}$, the proof is complete.

B Proof of Corollary 1

Corollary 2 (Restatement of Corollary 1). Under Assumption 1 , if $n \quad>$ $c_{1} \max \left\{p r^{2} / T, r^{2} \log (1 / \delta) / T, r^{2}, r n_{T+1}\right\}$ for some universal constant $c_{1}>0,2 r \leq \min \{p, T\}$, then for \hat{W}_{1} obtained in Algorithm 1, with probability at least $1-O\left(n^{-100}\right)$,

$$
\mathcal{R}\left(\hat{W}_{1}, \hat{w}_{2}^{(T+1)}\right) \lesssim \sqrt{\frac{r+\log n}{n_{T+1}}}+\sqrt{\frac{r^{2} p}{n T}} .
$$

Proof. By DK-lemma, we know there exists a W_{1}^{*} such that $W_{1}^{*} \in \operatorname{argmin}_{W \in \mathbb{O}_{p \times r}}\left\|W^{\top} \mu_{T+1}\right\|$ (the minimizer is not unique, so we use \in instead of $=$ to indicate W_{1}^{*} belongs to the set consists of minimizers) and $\left\|W_{1}^{*}-\hat{W}_{1}\right\|$ is small.

$$
\begin{aligned}
\mathcal{R}\left(\hat{W}_{1}, \hat{w}_{2}^{(T+1)}\right) & =L\left(\mathcal{P}_{x, y}^{(T+1)}, \hat{w}_{2}^{(T+1)}, \hat{W}_{1}\right)-\min _{\left\|w_{2}\right\| \leq 1, W_{1} \in \mathbb{O}_{p \times r}} L\left(\mathcal{P}_{x, y}^{(T+1)}, w_{2}, W_{1}\right) \\
& =-\left\langle\frac{\hat{W}_{1}^{\top} \hat{\mu}_{T+1}}{\left\|\hat{W}_{1}^{\top} \hat{\mu}_{T+1}\right\|}, \hat{W}_{1}^{\top} \mu_{T+1}\right\rangle+\left\|W_{1}^{* \top} \mu_{T+1}\right\| \\
& =-\left\langle\frac{\hat{W}_{1}^{\top} \hat{\mu}_{T+1}}{\left\|\hat{W}_{1}^{\top} \hat{\mu}_{T+1}\right\|}, \hat{W}_{1}^{\top} \mu_{T+1}\right\rangle+\left\langle\frac{W_{1}^{* \top} \hat{\mu}_{T+1}}{\left\|W_{1}^{* \top} \hat{\mu}_{T+1}\right\|}, W_{1}^{* \top} \mu_{T+1}\right\rangle \\
& -\left\langle\frac{W_{1}^{* \top} \hat{\mu}_{T+1}}{\left\|W_{1}^{* \top} \hat{\mu}_{T+1}\right\|}, W_{1}^{* \top} \mu_{T+1}\right\rangle+\left\|W_{1}^{* \top} \mu_{T+1}\right\| \\
& \lesssim\left\|\hat{W}_{1}-W_{1}^{*}\right\|\left\|\mu_{T+1}\right\|+\left\|W_{1}^{* \top} \mu_{T+1}-W_{1}^{* \top} \hat{\mu}_{T+1}\right\| \\
& \lesssim\left\|\hat{W}_{1}-W_{1}^{*}\right\|\left\|\mu_{T+1}\right\|+\left\|B^{\top} \mu_{T+1}-B^{\top} \hat{\mu}_{T+1}\right\|
\end{aligned}
$$

if $n>r^{2} \max \{p / T, \log (1 / \delta) / T, 1\}$. The last formula is due to the fact that W_{1}^{*} and B are different only up to an orthogonal matrix.

By standard chaining techniques, we have with probability $1-\delta$

$$
\left\|B_{1}^{\top} \mu_{T+1}-B_{1}^{\top} \hat{\mu}_{T+1}\right\| \lesssim \sqrt{\frac{r}{n_{T+1}}}+\sqrt{\frac{\log (1 / \delta)}{n_{T+1}}}
$$

Thus, we can further bound $\left\|\hat{W}_{1}-W_{1}^{*}\right\|$ by $\sqrt{2}\left\|\sin \Theta\left(\hat{W}_{1}, B\right)\right\|_{F}$, thus, by Lemma 1 , we have

$$
\mathcal{R}\left(\hat{W}_{1}, \hat{w}_{2}^{(T+1)}\right) \lesssim \sqrt{\frac{r+\log (1 / \delta)}{n_{T+1}}}+r\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{p}{n T}}+\sqrt{\frac{\log (1 / \delta)}{n T}}\right)
$$

Now, if we further have $n>r n_{T+1}$, we have

$$
\mathcal{R}\left(\hat{W}_{1}, \hat{w}_{2}^{(T+1)}\right) \lesssim \sqrt{\frac{r+\log (1 / \delta)}{n_{T+1}}}+\sqrt{\frac{r^{2} p}{n T}}
$$

Plugging into $\delta=n^{-100}$, the proof is complete.

C Proof of Theorem 1

Theorem 5 (Restatement of Theorem 1). Under Assumption 2 and 3, for $\left\|a_{T+1}\right\|=\alpha=\Omega(1)$, if $n>c_{1} \max \left\{r^{2}, r / \alpha_{T}\right\} \cdot \max \{p \log T, \log n / T, 1\}$ and $n>c_{2}\left(\alpha \alpha_{T}\right)^{2} r n_{T+1}$ for universal constants $c_{1}, c_{2}, 2 r \leq \min \{p, T\}$. There exists a universal constant c_{3}, such that if we choose $\varepsilon \in\left[\max _{t \in S_{1}}\left\|a_{t}\right\|+c_{3} \sqrt{p \log T / n}, \min _{t \in S_{2}}\left\|a_{t}\right\|-c_{3} \sqrt{p \log T / n}\right]$ (this set will not be empty if T, n are large enough), for $\hat{W}_{1}^{a d v}, \hat{w}_{2}^{\text {adv, }(T+1)}$ obtained in Algorithm 2 with $q=2$, with probability at least $1-O\left(n^{-100}\right)$,

$$
\left\|\sin \Theta\left(\hat{W}_{1}^{a d v}, B\right)\right\|_{F} \lesssim\left(\alpha_{T}\right)^{-1}\left(\sqrt{\frac{r^{2}}{n}}+\sqrt{\frac{p r^{2}}{n T}}+\sqrt{\frac{r^{2} \log n}{n T}}\right)
$$

and the excess risk

$$
\mathcal{R}\left(\hat{W}_{1}^{a d v}, \hat{w}_{2}^{a d v,(T+1)}\right) \lesssim \alpha \sqrt{\frac{r+\log n}{n_{T+1}}}+\left(\alpha_{T}\right)^{-1}\left(\sqrt{\frac{r^{2} p}{n T}}\right)
$$

Proof. For ℓ_{2}-adversarial training, we have

$$
\begin{aligned}
\hat{\beta}_{t}^{a d v} & =\operatorname{argmin}_{\left\|\beta_{t}\right\| \leq 1} \max _{\left\|\delta_{i}\right\|_{p} \leq \varepsilon} \frac{1}{n_{t}} \sum_{i=1}^{n_{t}}-y_{i}^{(t)}\left\langle\beta_{t}, x_{i}^{(t)}+\delta_{i}\right\rangle \\
& =\operatorname{argmin}_{\left\|\beta_{t}\right\| \leq 1} \max _{\left\|\delta_{i}\right\|_{p} \leq \varepsilon} \frac{1}{n_{t}} \sum_{i=1}^{n_{t}}-y_{i}^{(t)}\left\langle\beta_{t}, x_{i}^{(t)}\right\rangle+\varepsilon\left\|\beta_{t}\right\|
\end{aligned}
$$

Recall $\hat{\mu}_{t}=\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} y_{i}^{(t)} x_{i}^{(t)}$, if we have $\left\|\hat{\mu}_{t}\right\| \geq \varepsilon$, then $\hat{\beta}_{t}^{a d v}=\hat{\mu}_{t} /\left\|\hat{\mu}_{t}\right\|$, otherwise, $\hat{\beta}_{t}^{\text {adv }}=0$.
We denote

$$
\hat{G}=\left[\hat{\beta}_{1}^{a d v}, \cdots, \hat{\beta}_{T}^{a d v}\right] .
$$

Since $\left|S_{1}\right|=\Theta(T)$, there exists a universal constant c_{3} such that with probability $1-\delta$, we have for all $i \in S_{1}, \hat{\mu}_{i} \leq\left\|a_{i}\right\|+c_{3} \sqrt{p \log T / n}$. Thus, if T is large enough, the set $\left[\max _{t \in S_{1}}\left\|a_{t}\right\|+\right.$ $\left.c_{3} \sqrt{p \log T / n}, \min _{t \in S_{2}}\left\|a_{t}\right\|-c_{3} \sqrt{p \log T / n}\right]$ is non-empty. If we choose $\varepsilon \in\left[\max _{t \in S_{1}}\left\|a_{t}\right\|+\right.$ $\left.c_{3} \sqrt{p \log T / n}, \min _{t \in S_{2}}\left\|a_{t}\right\|-c_{3} \sqrt{p \log T / n}\right]$, for all $t \in S_{2}, \hat{\beta}_{t}^{a d v}=\hat{\mu_{t}} /\left\|\hat{\mu_{t}}\right\|$. Meanwhile, $\hat{G}_{S_{1}}$ is a zero matrix.
Notice that the left singular vectors obtained by applying SVD to \hat{G} for left singular vectors is equivalent to applying SVD for left singular vectors to $\hat{G}_{S_{2}}$, which is further equivalent to applying SVD for left singular vectors to $\hat{\Phi}_{S_{2}}$, given that \hat{G}_{2} is equal to $\hat{\Phi}_{S_{2}}$ times a diagonal matrix on the right. Thus, we have

$$
\left\|\sin \Theta\left(\hat{W}_{1}^{a d v}, B\right)\right\|_{F} \lesssim \frac{\left(2 \sigma_{1}\left(\Phi_{S_{2}}\right)+\left\|\hat{\Phi}_{S_{2}}-\Phi_{S_{2}}\right\|_{o p}\right) \min \left\{r^{0.5}\left\|\hat{\Phi}_{S_{2}}-\Phi_{S_{2}}\right\|_{o p},\left\|\hat{\Phi}_{S_{2}}-\Phi_{S_{2}}\right\|_{F}\right\}}{\sigma_{r}^{2}\left(\Phi_{S_{2}}\right)} .
$$

By our assumptions, we know that

$$
\mathbb{P}\left(\sup _{v \in \mathbb{S}^{p-1}}\left\|v^{\top}\left(\hat{\Phi}_{S_{2}}-\Phi_{S_{2}}\right)\right\| \gtrsim \alpha_{T}^{-1}\left(\sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right)\right) \leq \delta
$$

As a result,

$$
\left\|\sin \Theta\left(\hat{W}_{1}, B\right)\right\|_{F} \lesssim \alpha_{T}^{-2} r \sqrt{r}\left(\frac{1}{n}+\frac{p}{n T}+\frac{\log (1 / \delta)}{n T}\right)+\alpha_{T}^{-1} r\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{p}{n T}}+\sqrt{\frac{\log (1 / \delta)}{n T}}\right)
$$

If we further have $n>\frac{r}{\alpha_{T}} \max \{p / T, \log (1 / \delta) / T, 1\}$, we further have

$$
\left\|\sin \Theta\left(\hat{W}_{1}, B\right)\right\|_{F} \lesssim\left(\alpha_{T}\right)^{-1} r\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{p}{n T}}+\sqrt{\frac{\log (1 / \delta)}{n T}}\right)
$$

Now, if we further have $n>\left(\alpha \alpha_{T}\right)^{2} r n_{T+1}$, we have

$$
\mathcal{R}\left(\hat{W}_{1}, \hat{w}_{2}^{(T+1)}\right) \lesssim \alpha \sqrt{\frac{r+\log (1 / \delta)}{n_{T+1}}}+\left(\alpha_{T}\right)^{-1} \sqrt{\frac{r^{2} p}{n T}}
$$

Plugging into $\delta=n^{-100}$, the proof is complete.

Remark 6 (ℓ_{2}-adversarial training v.s. standard training). The proof of the counterpart of Lemma 1 under the setting of Theorem 1 basically folllows similar methods in the proof of Lemma 1. The only modification is that we need an extra step:

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{v \in \mathbb{S}^{p-1}}\left\|v^{\top}(\hat{\Phi}-\Phi)\right\| \gtrsim \sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right) \leq \mathbb{P}\left(\sup _{v \in \mathbb{S}^{p-1}}\left\|v^{\top}\left(\hat{\Phi}_{S_{1}}-\Phi_{S_{1}}\right)\right\| \gtrsim \sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right) \\
&+\mathbb{P}\left(\sup _{v \in \mathbb{S}^{p-1}}\left\|v^{\top}\left(\hat{\Phi}_{S_{2}}-\Phi_{S_{2}}\right)\right\| \gtrsim \sqrt{\frac{p}{n}}+\sqrt{\frac{T}{n}}+\sqrt{\frac{\log (1 / \delta)}{n}}\right)
\end{aligned}
$$

and recall that both $\left|S_{1}\right|$ and $\left|S_{2}\right|$ are of order $\Theta(T)$.

D Proof of Theorem 2

Theorem 6 (Restatement of Theorem 2). Under Assumptions 1 and 4, if $n>c_{1}$. $r^{2} \max \left\{s^{2} \log ^{2} T / T, r n_{T+1}, 1\right\}$ for some universal constants $c_{1}>0,2 r \leq \min \{p, T\}$. There exists a universal constant c_{2}, such that if we choose $\varepsilon>c_{2} \sqrt{\log p / n}$, for and $\hat{W}_{1}^{\text {adv }}, \hat{w}_{2}^{\text {adv,(T+1) }}$ obtained in Algorithm 2 with $q=\infty$, with probability at least $1-O\left(n^{-100}\right)-O\left(T^{-100}\right)$,

$$
\left\|\sin \Theta\left(\hat{W}_{1}^{a d v}, B\right)\right\|_{F} \lesssim r\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{s^{2}}{n T}}\right) \cdot \log (T+p)
$$

and the excess risk

$$
\begin{equation*}
\mathcal{R}\left(\hat{W}_{1}^{a d v}, \hat{w}_{2}^{a d v,(T+1)}\right) \lesssim\left(\sqrt{\frac{r+\log n}{n_{T+1}}}+r \sqrt{\frac{s^{2}}{n T}}\right) \cdot \log (T+p) \tag{7}
\end{equation*}
$$

Proof. For ℓ_{∞}-adversarial training, we have

$$
\begin{aligned}
\hat{\beta}_{t}^{a d v} & =\operatorname{argmin}_{\left\|\beta_{t}\right\| \leq 1} \max _{\left\|\delta_{i}\right\|_{\infty} \leq \varepsilon} \frac{1}{n_{t}} \sum_{i=1}^{n_{t}}-y_{i}^{(t)}\left\langle\beta_{t}, x_{i}^{(t)}+\delta_{i}\right\rangle \\
& =\operatorname{argmin}_{\left\|\beta_{t}\right\| \leq 1} \frac{1}{n_{t}} \sum_{i=1}^{n_{t}}-y_{i}^{(t)}\left\langle\beta_{t}, x_{i}^{(t)}\right\rangle+\varepsilon\left\|\beta_{t}\right\|_{1} \\
& =\operatorname{argmin}_{\left\|\beta_{t}\right\| \leq 1}\left\langle\beta_{t}, \frac{1}{n_{t}} \sum_{i=1}^{n_{t}}-y_{i}^{(t)} x_{i}^{(t)}\right\rangle+\varepsilon\left\|\beta_{t}\right\|_{1}
\end{aligned}
$$

Recall $\hat{\mu}_{t}=\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} y_{i}^{(t)} x_{i}^{(t)}$. By observation, when reaching minimum, we have to have $\operatorname{sgn}\left(\beta_{t j}\right)=\operatorname{sgn}\left(\hat{\mu}_{t j}\right)$, therefore

$$
\begin{aligned}
& \operatorname{argmax}_{\left\|\beta_{t}\right\|=1} \sum_{j=1}^{d} \hat{\mu}_{t j} \beta_{t j}-\varepsilon\left|\beta_{t j}\right| \\
= & \operatorname{argmax}_{\left\|\beta_{t}\right\|=1} \sum_{j=1}^{d}\left(\hat{\mu}_{t j}-\varepsilon \cdot \operatorname{sgn}\left(\hat{\mu}_{t j}\right)\right) \beta_{t j} \\
= & \frac{T_{\varepsilon}(\hat{\mu})}{\left\|T_{\varepsilon}(\hat{\mu})\right\|}
\end{aligned}
$$

where $T_{\varepsilon}(\hat{\mu})$ is the hard-thresholding operator with $\left(T_{\varepsilon}(\hat{\mu})\right)_{j}=\operatorname{sgn}\left(\hat{\mu}_{j}\right) \cdot \max \left\{\left|\hat{\mu}_{j}\right|-\varepsilon, 0\right\}$.
We denote

$$
\hat{G}=\left[\hat{\beta}_{1}^{a d v}, \cdots, \hat{\beta}_{T}^{a d v}\right]
$$

By the choice of $\varepsilon, \varepsilon \gtrsim C \sqrt{\frac{\log p}{n}}$ for sufficiently large C, we have that the column sparsities of \hat{G} is no larger than $s \log T$. As a result, the total number of non-zero elements in \hat{G} is less than $O(T s \log T)$ with probability at least $1-T^{-100}$.
Now we divide the rows of \hat{G} by two parts: $[p]=A_{1} \cup A_{2}$, where A_{1} consists of indices of rows whose sparsity smaller than or equal to s, and A_{2} consists of indices of rows whose sparsity larger than s.
Since the number of non-zero elements in \hat{G} is less than $T s \log T$, we have $\left|A_{2}\right| \leq T \log T$. Using the similar analysis as in the proof of Lemma 1, we have

$$
\left\|\hat{\Phi}_{A_{2}}-\Phi_{A_{2}}\right\| \leq \sqrt{\frac{T \log T}{n}}
$$

For the rows in A_{1}, all of them has sparsity $\lesssim s$, so the maximum ℓ_{1} norm of these rows

$$
\left\|\hat{\Phi}_{A_{1}}-\Phi_{A_{1}}\right\|_{\infty}=O_{P}\left(s \sqrt{\frac{\log T}{n}}\right)
$$

Similarly, the maximum ℓ_{1} norm of the columns in $\hat{G}_{A_{1}}$ satisfies

$$
\left\|\hat{\Phi}_{A_{1}}-\Phi_{A_{1}}\right\|_{1}=O_{P}\left(s \sqrt{\frac{\log p}{n}}\right)
$$

Therefore, we have

$$
\left\|\hat{\Phi}_{A_{1}}-\Phi_{A_{1}}\right\| \leq \sqrt{\left\|\hat{\Phi}_{A_{1}}-\Phi_{A_{1}}^{*}\right\|_{\infty}\left\|\hat{\Phi}_{A_{1}}-\Phi_{A_{1}}\right\|_{1}}=O_{P}\left(s \sqrt{\frac{\log p+\log T}{n}}\right)
$$

Consequently,

$$
\|\hat{\Phi}-\Phi\| \leq\left\|\hat{\Phi}_{A_{1}}-\Phi_{A_{1}}\right\|+\left\|\hat{\Phi}_{A_{2}}-\Phi_{A_{2}}\right\|=O_{P}\left(s \sqrt{\frac{\log p+\log T}{n}}\right)
$$

As a result, when $s \sqrt{\frac{\log p+\log T}{n}} \lesssim T / r$, applying Lemma 2, we obtain

$$
\left\|\sin \Theta\left(\hat{W}_{1}, B\right)\right\|_{F} \lesssim \sin \theta\left(\hat{W}_{1}^{a d v}, B\right) \lesssim\left(\sqrt{\frac{r}{n}}+\sqrt{\frac{r s^{2}}{n T}}\right) \cdot \log (T+p)
$$

Now, if we further have $n>\left(\alpha \alpha_{T}\right)^{2} n_{T+1} / \nu$, we have

$$
\mathcal{R}\left(\hat{W}_{1}, \hat{w}_{2}^{(T+1)}\right) \lesssim \sqrt{\frac{r+\log (1 / \delta)}{n_{T+1}}}+\sqrt{\frac{r s^{2}}{n T}} \cdot \log (T+p)
$$

Remark 7 (ℓ_{∞}-adversarial training v.s. standard training). The proof of the counterpart of Lemma 1 under the setting of Theorem 2 follows exact the same method in the proof of Lemma 1 .

E Proof of the case with pseudo-labeling

Theorem 7 (Restatement of Theorem 3). Denote $\tilde{n}=\min _{t \in[T]} n_{t}^{u}$ and assume $\tilde{n}>$ $c_{1} \max \left\{p r^{2} / T, r^{2} \log (1 / \delta) / T, r^{2}, n\right\}$ for some constant $c_{1}>0$. Assume $\sigma_{r}\left(M^{\top} M / T\right)=\Omega(1 / r)$ and $n^{c_{2}} \gtrsim \tilde{n} \gtrsim n$ for some $c_{2}>1$, if $n \gtrsim(T+d)$ and $\min _{t \in[T]}\left\|a_{t}\right\|=\Theta\left(\log ^{2} n\right)$ and $\eta_{i}^{(t)} \sim \mathcal{N}_{p}\left(0, \rho_{t}^{2} I^{2}\right)$ for $\rho_{t}=\Theta(1)$. Let $\hat{W}_{1, \text { aug }}$ obtained in Algorithm 3, with probability $1-O\left(n^{-100}\right)$,

$$
\left\|\sin \Theta\left(\hat{W}_{1, a u g}, B\right)\right\|_{F} \lesssim r\left(\sqrt{\frac{1}{\tilde{n}}}+\sqrt{\frac{p}{\tilde{n} T}}+\sqrt{\frac{\log n}{\tilde{n} T}}\right)
$$

Proof. Let us first analyze the performance of pseudo-labeling algorithm in each individual task. In the following, we analyze the properties of $y_{i}^{u,(t)}$ and $\hat{\mu}_{\text {final }}^{(t)}=\frac{1}{n_{t}^{u}+n_{t}} \sum_{i=1}^{n_{t}^{u}+n_{t}}\left(\sum_{i=1}^{n_{u}^{t}} x_{i}^{u} y_{i}^{u}+\right.$ $\sum_{i=1}^{n_{t}} x_{i}^{u} y_{i}^{u}$. Since $\tilde{n} \gtrsim n$ and we only care about the rate in the result. In the following, we derive the results for $\hat{\mu}_{\text {final }}^{(t)}=\frac{1}{n_{t}^{u}} \sum_{i=1}^{n_{t}^{u}+n_{t}}\left(\sum_{i=1}^{n_{u}^{t}} x_{i}^{u} y_{i}^{u}\right)$. Also, for the notational simplicity, we omit the index t in the following analysis.
We follow the similar analysis of Carmon et al. [11] to study the property of y_{i}^{u}. Let b_{i} be the indicator that the i-th pseudo-label is incorrect, so that $x_{i}^{u} \sim N\left(\left(1-2 b_{i}\right) y_{i}^{u} \mu, I\right):=\left(1-2 b_{i}\right) y_{i}^{u} \mu+\varepsilon_{i}^{u}$. Then we can write

$$
\hat{\mu}_{\text {final }}=\gamma \mu+\tilde{\delta}
$$

where $\gamma=\frac{1}{n_{u}} \sum_{i=1}^{n_{u}}\left(1-2 b_{i}\right)$ and $\tilde{\delta}=\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i}^{u} y_{i}^{u}$.
Let's write $y_{i}^{u}=\operatorname{sign}\left(x_{i}^{\top} \hat{\mu}\right)$. Using the rotational invariance of Gaussian, without loss of generality, we choose the coordinate system where the first coordinate is in the direction of $\hat{\mu}$. Then $y_{i}^{u}=$ $\operatorname{sign}\left(x_{i}^{\top} \hat{\mu}\right)=\operatorname{sign}\left(x_{i 1}\right)=\operatorname{sign}\left(y_{i}^{*} \frac{\mu^{\top} \hat{\mu}}{\|\hat{\mu}\|}+\varepsilon_{i 1}^{u}\right)$ and are independent with $\varepsilon_{i j}^{u}(j \geq 2)$.

As a result,

$$
\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i j}^{u} \cdot y_{i}^{u} \stackrel{d}{=} \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i j}^{u}, \quad \text { for } j \geq 2
$$

Now let's focus on $\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i 1}^{u} \cdot y_{i}^{u}$. Let $y_{i}^{*}=\left(1-2 b_{i}\right) y_{i}^{u}$, we have

$$
\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i 1}^{u} \cdot y_{i}^{u}=\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i 1}^{u} \cdot y_{i}^{*}+2 \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i 1}^{u} \cdot b_{i} \stackrel{d}{=} \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i 1}^{u}+2 \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i 1}^{u} \cdot b_{i} .
$$

Since
$\left(\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i 1}^{u} \cdot b_{i}\right)^{2} \leq\left(\frac{1}{n_{u}} \sum_{i=1}^{n_{u}}\left(\varepsilon_{i 1}^{u}\right)^{2}\right)\left(\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} b_{i}^{2}\right) \lesssim \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} b_{i}^{2}=\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} b_{i} \lesssim \mathbb{E}\left[b_{i}\right]+\frac{1}{\sqrt{n_{u}}} \lesssim+\frac{1}{n}+\frac{1}{\sqrt{n_{u}}}$,
where the last inequality is due to the fact that

$$
\begin{aligned}
\mathbb{E}\left[b_{i}\right] & =\mathbb{P}\left(y_{i}^{u} \neq y_{i}^{*}\right)=\mathbb{P}\left(\operatorname{sign}\left(y_{i}^{*} \frac{\mu^{\top} \hat{\mu}}{\|\hat{\mu}\|}+\varepsilon_{i 1}^{u}\right) \neq y_{i}^{*}\right) \\
& \leq \mathbb{P}\left(\left.\operatorname{sign}\left(y_{i}^{*} \frac{\mu^{\top} \hat{\mu}}{\|\hat{\mu}\|}+\varepsilon_{i 1}^{u}\right) \neq y_{i}^{*} \right\rvert\, \frac{\mu^{\top} \hat{\mu}}{\|\hat{\mu}\|}>\frac{1}{2}\|\mu\|\right)+\mathbb{P}\left(\frac{\mu^{\top} \hat{\mu}}{\|\hat{\mu}\|}>\frac{1}{2}\|\mu\|\right) \\
& \lesssim \exp ^{-\|\mu\| / 2}+\frac{1}{n^{C}}
\end{aligned}
$$

As a result, we have

$$
\tilde{\delta} \stackrel{d}{=} \frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i}^{u}+e
$$

where $\|e\|_{2} \lesssim \frac{1}{\sqrt{n_{u}}}+\frac{1}{n^{C}}$.
Additionally, we have $\gamma=\frac{1}{n_{u}} \sum_{i=1}^{n_{u}}\left(1-2 b_{i}\right)=1-\frac{2}{n_{u}} \sum_{i=1}^{n_{u}} b_{i}=1-O\left(\frac{1}{\sqrt{n_{u}}}+\frac{1}{n^{C}}\right)$.
As a result, for each $t \in[T]$, we have

$$
\hat{\mu}_{t}=\mu_{t}+\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i}^{u}+e^{\prime}
$$

with $\left\|e^{\prime}\right\|_{2} \lesssim \frac{1}{\sqrt{n_{u}}}+\frac{1}{n^{C^{\prime}}}$ being a negligible term.
Since e^{\prime} is negligible, we can then follow the same proof as those in Section A by considering $\tilde{\mu}_{t}=\mu_{t}+\frac{1}{n_{u}} \sum_{i=1}^{n_{u}} \varepsilon_{i}^{u}$ and obtain the desired results.
Similarly, due to the negligibility of e^{\prime}, we can prove Theorem 4 by following the exact same techniques in Sections C and D.

F Lower bound proof

Proposition 2 (Restatement of Proposition 1). Let us consider the parameter space $\Xi=\{A \in$ $\left.\mathbb{R}^{p \times r}, B \in \mathbb{R}^{p \times r}: \sigma_{r}\left(A^{\top} A / T\right) \gtrsim 1, B^{\top} B=I_{r}\right\}$. If $n T \gtrsim r p$, we then have

$$
\inf _{\hat{W}_{1}} \sup _{\Xi} \mathbb{E}\left\|\sin \Theta\left(B, \hat{W}_{1}\right)\right\|_{F} \gtrsim \sqrt{\frac{r p}{n T}} .
$$

We first invoke the Fano's lemma.
Lemma 4 ([54]). Let $M \geq 0$ and $\mu_{0}, \mu_{1}, \ldots, \mu_{M} \in \Theta$. For some constants $\alpha \in(0,1 / 8), \gamma>0$, and any classifier \hat{G}, if $\operatorname{KL}\left(\mathbb{P}_{\mu_{i}}, \mathbb{P}_{\mu_{0}}\right) \leq \alpha \log M$ for all $1 \leq i \leq M$, and $L\left(\mu_{i}, \mu_{j}\right)$ for all $0 \leq i \neq j \leq M$, then

$$
\inf _{\hat{\mu}} \sup _{i \in[M]} \mathbb{E}_{\mu_{i}}\left[L\left(\mu_{i}, \hat{\mu}\right)\right] \gtrsim \gamma
$$

Now we take $B_{0}, B_{1}, \ldots, B_{M}$ as the η-packing number of $O^{p \times r}$ with the $\sin \theta$ distance.
Then according to [41, 52], we have

$$
\log M \asymp r d \log \left(\frac{1}{\eta}\right)
$$

For any $i \in[M]$, we have

$$
\mathrm{KL}\left(\mathbb{P}_{B_{i}}, \mathbb{P}_{B_{0}}\right)=\sum_{t=1}^{T} n\left\|\left(B_{i}-B_{0}\right) a_{t}\right\|^{2} \leq n T \eta^{2}
$$

Let $\eta=\sqrt{\frac{r d}{n T}}$, we complete the proof.

G Additional Empirical Results

We provide additional results on transfer performance with varied amounts of pseudo-labels in Table 2. Here, we train models with both adversarial (allowed maximum perturbations of $\varepsilon=1$ with respect to the ℓ_{2} norm) and non-adversarial (standard) training on ImageNet. The observed trend is the same as on the CIFAR-10 and CIFAR-100 tasks from Table 1 - both using robust training and additional pseudo-labeled data improve performance.

Table 2: Additional results extending Table 1. Effect of amount of pseudo-labels on transfer task performance (measured with accuracy). At 0%, we just use 10% of data from the source task; at 900%, we use all remaining 90% of data with pseudo-labels (this is 9 times the train set size). Adversarial training corresponds to using ℓ_{2}-adversarial training with $\varepsilon=1$ on the source task. As per Section 7 of [46], images in all datasetsare down-scaled to 32×32 before scaling back to 224×224.

Source Task	Target Task	+0\% Pseudo-labels	$+200 \%$ Pseudo-labels	$+500 \%$ Pseudo-labels	$+900 \%$ Pseudo-labels
ImageNet	Aircraft [35]	17.3%	17.6%	17.9%	19.9%
ImageNet (w/adv.training)	Aircraft	21.2%	20.9%	24.0%	24.5%
ImageNet	Flowers [40]	60.7%	64.9%	65.4%	66.5%
ImageNet (w/adv.training)	Flowers	66.9%	68.1%	70.0%	70.1%
ImageNet	Food [8]	33.7%	36.0%	36.7%	37.2%
ImageNet (w/adv.training)	Food	35.8%	37.5%	39.4%	40.8%
ImageNet	Pets [42]	43.2%	44.9%	48.4%	49.0%
ImageNet (w/adv.training)	Pets	47.9%	53.1%	58.9%	59.6%

H Experiment Details

H. 1 Training Hyperparameters

All of our experiments use the ResNet-18 architecture. When transferring to the target task, we only update the final layer of the model. Our hyperparameter choices are identical to those used in [46]:

1. ImageNet (source task) models are trained with SGD for 90 epochs with a momentum of 0.9 , weight decay of $1 e-4$, and a batch size of 512 . The initial learning rate is set to 0.1 and is updated every 30 epochs by a factor of 0.1 . The adversarial examples for adversarial training are generated using 3 steps with step size $\frac{2 \varepsilon}{3}$.
2. Target task models are trained for 150 epochs with SGD with a momentum of 0.9 , weight decay of $5 e-4$, and a batch size of 64 . The initial learning rate is set to 0.01 and is updated every 50 epochs by a factor of 0.1 .

Data augmentation is also identical to the methods used in [46]. As per Section 7 of [46], we scale all our target task images down to size 32×32 before rescaling back to size 224×224.

Experiments were run on a GPU cluster. A variety of NVIDIA GPUs were used, as allocated by the cluster. Training time for each source task model was around 2 days (less when using subsampled data) using 4 GPUs. Training time for each target task model was typically between 1-5 hours (depending on the dataset) using 1 GPU.

H. 2 Pseudo-label Generation

When subsampling ImageNet (our source task), the sampled 10% with ground truth labels preserves the class label distribution. This sample is fixed for all our experiments. All ImageNet pseudo-labels are generated by a model trained on this 10% without any adversarial training. This model has a source task test accuracy (top-1) of 44.0%.

When training models with pseudo-labels, we preserve the class label distribution of the original training set (i.e., we add less pseudo-labels for those classes that have fewer examples in the entire training set).

