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Abstract

Multilingual models are parameter-efficient and especially effective in improving
low-resource languages by leveraging crosslingual transfer. Despite recent advance
in massive multilingual translation with ever-growing model and data, how to
effectively train multilingual models has not been well understood. In this paper,
we show that a common situation in multilingual training, data imbalance among
languages, poses optimization tension between high resource and low resource
languages where the found multilingual solution is often sub-optimal for low
resources. We show that common training method which upsamples low resources
can not robustly optimize population loss with risks of either underfitting high
resource languages or overfitting low resource ones. Drawing on recent findings
on the geometry of loss landscape and its effect on generalization, we propose a
principled optimization algorithm, Curvature Aware Task Scaling (CATS), which
adaptively rescales gradients from different tasks with a meta objective of guiding
multilingual training to low-curvature neighborhoods with uniformly low loss for
all languages. We ran experiments on common benchmarks (TED, WMT and
OPUS-100) with varying degrees of data imbalance. CATS effectively improved
multilingual optimization and as a result demonstrated consistent gains on low
resources (+0.8 to +2.2 BLEU) without hurting high resources. In addition,
CATS is robust to overparameterization and large batch size training, making it a
promising training method for massive multilingual models that truly improve low
resource languages.

1 Introduction
Multilingual models have received growing interest in natural language processing (NLP) [34, 41,
10, 26, 2, 19, 58]. The task of multilingual machine translation aims to have one model which can
translate between multiple languages pairs, which reduces training and deployment cost by improving
parameter efficiency. It presents several research questions around crosslingual transfer learning and
multi-task learning (MTL) [23, 1, 2, 27, 45, 28].

Recent progress in multilingual sequence modeling, with multilingual translation as a representative
application, been extending the scale of massive multilingual learning, with increasing number of
languages [2, 10, 58] , the amount of data [2, 12], as well as model size [27, 13]. Despite the
power-law scaling of (English-only) language modeling loss with model, data and compute [25],
it has been found that multilingual models do not always benefit from scaling up model and data
size, especially multilingual machine translation to multiple languages even after exploiting language
proximity with external linguistic knowledge [12, 27, 51].

There has been limited understanding of the optimization aspects of multilingual models. Multilingual
training is often implemented as monolithic with data from different languages simply combined.
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Challenges were observed when training with imbalanced data [2, 26], which is common for multilin-
gual NLP as only a few languages are rich in training data (high resource languages) while the rest
of the languages in the world has zero or low training data (low resource languages) [24]. This has
been mostly treated as a “data problem" with a widely used work-around of upsampling low resource
languages’ data to make the data more balanced [2, 26, 10, 34, 58].

In this paper, we fill the gap by systematically study the optimization of multilingual models in the
task of multilingual machine translation with Transformer architecture. Our contribution is twofold.

First, we reveal the optimization tension between high resource and low resource languages where
low resources’ performance often suffer. This had been overlooked in multilingual training but
have important implications for achieving the goal of leveraging crosslingual transfer to improve
low resources. We analyze the training objectives of multilingual models and identify an important
role played by local curvature of the loss landscape, where “sharpness" causes interference among
languages during optimization. This hypothesis is verified empirically, where we found optimization
tension between high and low resource languages. They compete to update the loss landscape during
early stage of training, with high resource ones dominating the optimization trajectory during the rest
of training. Existing approaches such as upsampling low resources implicitly reduce this tension by
augmenting training distribution towards more uniform. We show that this approach is not robust to
different data characteristics, where it suffers from either overfitting low resources or underfitting
high resources.

Second, we propose a principled training algorithm for multilingual models to mitigate such tension
and effectively improve all languages. Our algorithm explicitly learn the weighting of different
languages’ gradients with a meta-objective of guiding the optimization to “flatter" neighborhoods with
uniformly low loss (Curvature-Aware Task Scaling, CATS). Compared to static weighting implied
by sampling probabilities of the data distribution, our method effectively reduced the optimization
tension between high and low resource languages and improves the Pareto front of generalization.
On common benchmarks of multilingual translation, CATS consistently improves low resources in
various data conditions, +0.8 BLEU on TED (8 languages, 700K sentence pairs), +2.2 BLEU on
WMT (10 languages, 30M sentence pairs), and +1.3 BLEU on OPUS-100 (100 languages, 50M
sentence pairs) without sacrificing performance on high resources. Furthermore, CATS can effectively
leverage model capacity, yielding better generalization in overparameterized models. The training
algorithm is conceptually simple and efficient to apply to massive multilingual settings, making it a
suitable approach for achieving equitable progress in NLP for every language.

2 Related Work

Multilingual Learning and Multi-task Learning. Massive multilingual models have been gaining
increasing research interest as a result of recent advancement in model and data scaling [17, 10, 23,
2, 19, 58]. However, multilingual models are often trained using the same monolithic optimization
as is used in training single-language models. To deal with imbalanced training data, upsampling
low resource languages (and downsampling high resource languages) was first proposed in massive
multilingual machine translation in order to improve low resource performance [23, 2]. It was adopted
in recent state-of-the-art multilingual pretraining [10, 34, 58].

Although recent work has looked into maximizing positive transfer across languages by learning
parameter-sharing sub-networks conditional on languages [28, 31], few prior work had looked into
the blackbox of multilingual optimization. Relevant efforts focus on dynamic data selection, such as
adaptive scheduling [22] and MultiDDS (Differentiable Data Selection), which dynamically selects
training examples based on gradient similarity with validation set [53]. Although they share the same
motivation of treating multilingual training as a multi-objective optimization problem, data selection
introduces additional computation and slows down training.

This work also adds to a growing interest in addressing interference in multilingual models, known
as “the curse of multilinguality"[2, 10], which was initially hypothesized as “capacity bottleneck"
in general multi-task learning [5]. Existing work have mainly focused on model architecture,
e.g. via manually engineered or learnt parameter sharing across languages based on language
proximity[61, 47, 46]. Gradient Vaccine is a recent work addressing interference from an optimization
perspective by de-conflicting gradients via projection [54], a general approach MTL [60]. Although
conflicting gradients are also examined in this work, they are used as evaluation metrics, where we
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show that regularizing local curvature can prevent conflicting gradients from happening in the first
place. Overall, we provide new understanding of interference in multilingual tasks by pointing out
the optimization tension between high and low resources, which had not been studied before.

Multilingual training is an instance of multi-task learning (MTL) [9, 36, 11, 50, 44, 35]. Task
balancing has been studied from both architecture and optimization perspectives [33, 6, 48, 60].
Among them, GradNorm [6] and MGDA [48] are closely related, where the GradNorm adjust gradient
norms to be uniform across tasks, and MGDA adapts gradient-based multi-objective optimization to
modern neural networks with efficient training.

Sharpness of the Loss Landscape and Generalization. Our analysis and proposed method are
closely related to recent findings on the generalization of neural networks and optimization behaviors
including geometric properties of loss landscape during training. It was observed that the “sharpness"
of the loss landscape grows rapidly especially during the early phase of training by examining
relevant metrics such as largest eigenvalues of Hessian, spectral norm of empirical Fisher Information
matrix, etc. [8, 20]. Gradient alignment, measured as cosine similarity of gradients computed on
different training examples, indicates the covariance of gradients, which was shown to be related to
generalization performance [15, 21, 32]. Our work applies those insights from optimization literature
to analyze the training dynamics of multilingual learning with the Transformer architecture. A
closely-related concurrent work [14] has verified the effectiveness of regularizing loss sharpness in
improving generalization, but in a single-task setting on computer vision benchmarks.

3 Demystifying Optimization Challenges in Multilingual Training

Notations. In multilingual translation task, we typically train one model with training data from a
set of languagesN := {l1, ..., lN}, and measure its generalization performance on a set of evaluation
languagesM. We use “language" and “task" interchangeably throughout the paper. We introduce the
following notations:

• Dn := {(x(n)
i , y

(n)
i )} refers to the set of labeled examples of language ln. A prominent property of

multilingual translation task is the highly imbalanced data, i.e. the distribution of |Dn|, denoted as
p|Dn|, is usually heavy-tailed, with a few high resource (HiRes) languages, and a large number of
low resource (LoRes) ones [2, 55].

• Let θ ∈ Rd be the parameters of the multilingual model.

• Ln := E(x,y)∼Dn [L(ŷ, y)] as the expected loss as measured on language n, with token-level cross
entropy loss L(ŷ, y) = −

∑
i y
|V|
i log ŷ, where V is the vocabulary the target language(s) which

the model translates to.

• Denote ∇ as gradient,∇2 as Hessian H, tr(.) as trace, and ‖.‖2 as Euclidean (l2) norm.

3.1 Optimization Objective

Our analysis starts by taking a closer look at the training and generalization objective of mul-
tilingual models. Generalization performance is measured on a set of evaluation languages M
weighted by their importance wn, LMulti :=

∑|M|
n=1 wnLn(x, y|θ). For multilingual transla-

tion, wn = 1
|M| , n = 1, ...|M| indicating that all translation directions have equal importance.

This population loss is usually optimized by minimizing empirical risk, i.e. a training loss
L̂Multi := minθ

∑|N |
n=1 αnL̂n(x, y;θ), where αn corresponds to the weight of language n’s loss

during training.

We point out that as an important optimization choice, α := {αn} is either left implicit or chosen
heuristically in existing work of multilingual training. A common choice for α resembles the
sampling probability of language ln in a mini-batch according to training data distribution p

1
T

{|Dn|}
with a temperature hyperparameter T . For example, T = 1 corresponds to sampling proportional
to training data sizes [|D1|, ...|DN |]; T =∞ corresponds to uniformly sampling across languages.
For most multilingual tasks, training data is highly imbalanced with a few high resource languages
accounting for majority of the training data and a long tail of low resource languages. Practitioners
manually tune T to make minimizing training loss L̂Multi a proxy of optimizing the population loss
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LMulti. Massive multilingual translation and pretraining with real-world datasets of 100 languages
usually upsample low resource languages (e.g. T = 5) to improve the averaged generalization
performance [2, 34, 10, 58].

3.2 Local Curvature and Robust Multi-task Optimization
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Figure 1: Left: Change of one language’s
loss L1 after shared parameters being up-
dated to θ2 driven by∇L2 from another lan-
guage is affected by the curvature of the loss
landscape around previous critical point θ∗1.
Right: Illustration of the proposed algorithm,
Curvature Aware Task Scaling (CATS), to
learn task weighting re-scaling αn such that
the combined gradients will guide the opti-
mization trajectory to low curvature region
(pointed by the green arrow).

We analyze how local curvature affects optimization
efficiency of multilingual training. Task interference
has been observed to pose optimization challenges
in general multi-task learning and continual learning,
where improvement in one task hurts performance on
another task [45, 48, 30, 60, 38].

In the context of training multilingual models, we
define interference from the optimization perspective,
as the change of empirical risk L1 as a result of an
update to θ dominated by empirical risk minimiza-
tion for another language’s loss L2. In Figure 1, we
illustrate how curvature of the loss landscape affects
interference similar to the analysis which has been
done in continual learning [38]. After a gradient step
driven by ∇L2, the shared model parameters moved
from θ∗1 to θ2. The corresponding changes in L1, i.e.
L1(θ2)− L1(θ

∗
1) is affected by the curvature.

I(L1,L2)
∆
= L1(θ2)− L1(θ

∗
1) ≈ (θ2 − θ∗1)>∇L1(θ

∗
1) +

1

2
∇2L1(θ

∗
1)‖θ2 − θ∗1‖22 (1)

This relationship is also summarized in Eq. (1). We make an assumption that in a small neighborhood
of θ∗1, the loss surface is almost convex[7, 16]. Then we can apply a second-order Taylor expansion
of L1(θ2) in Eq. (2), and derive the connection between I(L1,L2) and the Hessian H(θ) = ∇2L(θ)
which indicates the local curvature of loss surface.

L1(θ2) ≈ L1(θ
∗
1) + (θ∗2 − θ∗1)>∇L1(θ

∗
1) +

1

2
(θ2 − θ∗1)>∇2L1(θ

∗
1)(θ2 − θ∗1) (2)

Algorithm 1 Curvature Aware Task Scaling
(CATS).
Input: a mini-batch B with K languages;
number of inner loop updates m.
Output: converged multilingual model θ.

1: Initialize θ, α = 1 , λ = 0.
2: while not converged do
3: for i from 1 to m do
4: for n = 1, ...,K do
5: Compute gn = ∇θL̂n(Bn)
6: g̃n = clone(gn)
7: α̃n = clone(αn)
8: end for
9: Update θ with

∑K
n=1 α̃ngn

10: end for
11: Compute ∇αL̂metaα ,∇λL̂metaα ac-

cording to Eq. (4) using g̃n for ∇θL̂n
12: Update α with gradient descent
13: Update λ gradient ascent
14: end while

Since∇L1(θ
∗
1) ≈ 0 at critical point for L1, the major

contributing factor to interference is local curvature,
measured by the spectral norm of H(θ∗1), as well
as the magnitude of parameter update ‖θ2 − θ∗1‖22.
We hypothesize that the optimization tension defined
above affects low resource languages more than high
resource ones, assuming that low-resource tasks have
lower sample complexity, and thus are more likely to
reach local minima during early stage of training.

3.3 Meta-learn α with curvature regularization
Motivated by previous section’s analysis, we pro-
pose a principled optimization procedure for mul-
tilingual translation with a meta objective of reg-
ularizing local curvature of the loss landscape of
shared parameters θ. We explicitly learn the task
weighting parameters α := [αn]n=1,...,N so as to
minimize the trace norm of empirical Fisher informa-
tion tr(F ) = E(x,ŷ)[‖

∑N
n=1 αn∇θL̂n‖2], which is

an approximation of tr(H) as was proposed in opti-
mization literature [20, 52]. To leverage distributed
training in modern deep learning, we estimateα from
a mini-batch B with K languages as is shown in Eq. (3):

min
α1,...,αK

‖
K∑
n=1

αn∇θL̂n(θ)‖2 s.t.
K∑
n=1

αn = 1, αn ≥ 0, ∀n (3)
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We treat solving Eq. (3) along with minimizing empirical risk L̂Multi as a multi-objective optimization
problem, and optimizing the corresponding Lagrangian [4]. The overall training objective is as
follows:

L̂CATS(θ,α,λ) =

K∑
n=1

αnL̂n − λc(ε− ‖
K∑

n=1

αn∇θL̂n‖2) + λs(

K∑
n=1

αn − 1)2 −
K∑

n=1

λn(αn − ε) (4)

We learn both model parameters θ task weighting parameters α simultaneously with bi-level
optimization, where update θ in the inner loop and update α and Lagrangian multipliers λ :=
[λc, λs, λ1, ..., λN ] in the outer loop. We refer to proposed algorithm as CATS (Curvature-Aware
Task Scaling) with the detailed training procedure described in Algorithm 1.

4 Experiments

4.1 Experimental setup

|N | |Dn| H|Dn|
TED [53] 8 0.8 0.71
WMT[34] 10 31 0.21
OPUS-100[62] 92 55 4.2

Table 1: Description of datasets and char-
acteristics of data imbalance in three
representative multilingual translation
benchmarks.

Datasets. We experiment on three public benchmarks of
multilingual machine translation with varying character-
istics of imbalanced data as is shown in Table 1. They are
representative in terms of the number of languages |N |,
total volume of training data |Dn| measured as the number
of sentence pairs in millions (M), and the entropy of data
distribution H|Dn| indicating the degree of data imbalance.
For example, distributions with multiple high resource
languages are covered by experiments on the TED and
OPUS100 datasets, while experiments on WMT dataset cover a unique scenario of extremely skewed
distribution with one high resource language and a long tail of low resource ones, which is not
uncommon in real world applications. Additional details and statistics of the datasets are provided in
Appendix A.

Models. We use the Transformer architecture, and the same model size and configuration as were
used in corresponding baselines. For experiments on TED, the model is a 6-layer encoder-decoder,
512 hidden dimension, 1024 FFN dimension, and 4 attention heads [53]. For experiments on OPUS-
100, the model is the Transformer-base configuration as is used in [62]. We use Transformer-base
for WMT experiments. We use the same preprocessed data by the MultiDDS baseline authors [53],
and followed the same procedure to preprocess OPUS-100 data released by the baseline [62]. All
models are trained with the same compute budget for comparison. We provide detailed training
hyperparameters in Appendix B.

Baselines. We compare to strong baselines used in state-of-the-art multilingual translation and
relevant approaches in generic multi-task learning:

• Proportional sampling. This is a straightforward yet common approach used in practice by training
on combined training data from all languages [62], which corresponds to αn = p

1
T , T = 1.

• Upsampling low resources T = 5. This has been adopted in state-of-the-art multilingual transform-
ers as is discussed in Section 3.1.

• MultiDDS[53]: A recently proposed method to balance training losses in multilingual training.
It learns to select training examples among different languages based on gradient similarity with
validation set. Although it does not address the optimization challenges studied in this work, it
shares the same interest of improving generalization performance and utilizing training examples
in a dynamic and adaptive fashion.

• GradNorm[6]: We also compare to a closely related approach proposed for general multi-task
learning. The key difference is that the objective in GradNorm is to rescale each task’s gradients
to be closer to the average gradients norm (i.e. only based on ∇Li), while the objective in our
approach is to minimize the second-order derivative∇2Li which corresponds to the curvature of
the loss landscape.
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Figure 2: Local curvature measured by top eigenvalue (Top) and gradient direction similarity
(Bottom) of multilingual training with high-resource (HiRes) and low resource (LoRes) languages
measured on TED corpus. To control for other factors such as language proximity, both high resource
(Russian) and low resource (Belarusian) are chosen to be from the same language family. We
compare the proposed optimization method CATS with existing approaches of setting αn based on
empirical distribution of training examples, i.e. αn ∝ p|Dn|, and upsampling with a temperature
hyperparameter T . T =∞ corresponds to equal weighting (uniform sampling). In the beginning of
training (Left), HiRes and LoRes competes to increase the sharpness the loss landscape, with HiRes
dominating the optimization trajectory during the rest of the training (Right) and their gradients are
almost orthogonal. Our proposed method (CATS α) effectively reduced local curvature and improved
gradients alignment.

Evaluation of Optimization. For the analysis of loss landscape, we look into the top eigenvalue
(λmax) of H computed from examples in a mini-batch with the power iteration method described
in [59] for each language. To evaluate optimization efficiency, we analyze gradient similarity using
the same metrics introduced in [60]. At each training step, with g1 = ∇L1, g2 = ∇L2 computed
from training examples of two languages, we measure the following metrics as indicators of gradient
similarity:

• Gradient direction similarity (alignment): cosφ(g1, g2) where φ is the angle between g1 and g2.

• Gradient magnitude (L2 norm) similarity: γ(g1, g2) =
2‖g1‖2‖g2‖2
‖g1‖22+‖g2‖22

.

Evaluation of Generalization. We verify whether improved optimization leads to better general-
ization. We report both token-level loss (negative log-likelihood, NLL↓) and BLEU scores (↑) on
hold-out datasets. we choose the best checkpoint by validation perplexity and only use the single best
model without ensembling.

We conduct most experiments in multilingual one-to-many task as it is a more challenging task
than many-to-one, and represents the core optimization challenges underlying many-to-many task.
Additional experiments with many-to-one are provided in Appendix C.

4.2 Results

4.2.1 Robust Optimization

E.SA E.FC D.SA D.EA D.FC

M2O,HiLo,R
O2M,HiLo,R
O2M,HiLo,D

O2M,HiHi
O2M,LoLo

E.SA E.FC D.SA D.EA D.FC

0.00

0.01

0.02

0.03

0.7

0.8

Figure 3: Gradients similarity of different Transformer
parameters (x-axis) in common multilingual translation
tasks (y-axis), measured as gradients direction similarity
(Left), and gradients norm similarity (Right).

Abrasive Gradients between HiRes and
LoRes. First, we illustrate the optimiza-
tion tension between high resource lan-
guages and low resource languages (HiLo).
We examine abrasive gradients in Figure
3, which shows a fine-grained view of gra-
dients similarity in terms of both direction
(left) and magnitude (right) for different
parameters in the Transformer architecture:
encoder self attention (E.SA), encoder feed-
forward (E.FC), decoder self-attention (D.SA), decoder encoder attention (D.EA), and decoder feed-
forward (D.FC). We can see that gradients are more similar when training with balanced data, i.e.
HiHi and LoLo, compared to HiLo for two fundamental multilingual translation tasks one-to-many
(O2M) and many-to-one (M2O), indicating that the amount of training data is less a cause of the
problem compared to the distribution of training data across languages. Furthermore, contrary to
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(a) Gradient alignment (y-axis) for Transformer param-
eters across common multilingual translation tasks (x-
axis).
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(b) Stable training without LayerNorm parameters and
mitigating LoRes overfitting.

Figure 4: Gradients alignment between HiRes and LoRes have high variance for Layer normalization
parameters (LayerNorm) in both encoder (E.LN) and decoder (D.LN), which exacerbate overfitting
of LoRes. CATS allows stable training without LayerNorm parameters and reduces generalization
gap for LoRes.

common heuristics which use language family information to determine which languages share
parameters [12], language proximity, i.e. related (R) vs. diverse (D), has a smaller effect on gradient
similarity compared to data imbalance.

Next, we look into optimization tension through the lens of curvature. Figure 2 (top) plots the top
eigenvalues λmax when training a multilingual model in the HiLo setting. We can see that with
uniform sampling (equal weighting, T = ∞), LoRes updates the shared parameter space in the
direction towards higher curvature during the early stage of training, while HiRes dominates the
optimization trajectory (with the LoRes having negative top eigenvalue) for the rest of the training.
We found that common heuristics of T = 5 reduces the early-stage sharpness although the loss
landscape is still dominated by HiRes. In contrast, the proposed optimization approach (CATS
αn) mitigated the abrasive optimization and increased gradients alignment as is illustrated Figure 2
(bottom).
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Figure 5: Train and validation loss (token-level nega-
tive log-likelihood, NLL ↓) for low resource (Left)
and high resource (Right) from the same multilin-
gual model. We can see that addressing data imbal-
ance with the temperature hyperparameter T is not
robust to changing data distribution p|Dn|: TED (Top)
and WMT (Bottom). For highly imbalanced WMT
dataset, the common practice of upsampling low re-
source (T = 5) improves LoRes but at the cost of
underfitting HiRes, while it leads to LoRes overfitting
for less imbalanced dataset (TED). Datasets character-
istics are described in Table 1.

Training without layer normalization.
We take a closer look at gradients align-
ment for different types of parameters in
the Transformer architecture. We found
that gradient alignments for layer normal-
ization parameters (LayerNorm, LN) are
much noisier than other parameters as is
shown in Figure 4a. Extensive work has
provided empirical and theoretical results
of LayerNorm be being critical for training
stability of Transformers[3, 57, 56]. Our
work is the first to show that it is a double-
edged sword in multilingual training and
exacerbates the tension between HiRes and
LoRes, which competes to set the gain and
bias parameters in LayerNorm, where the
final weights highly depend on training data
distributions. However, simply removing
the gain and bias parameters causes train-
ing instability[32]. In Figure 4b, we show
that with CATS optimization in place, Layer-
Norm can be removed yet stable training can
still be achieved without further adjusting
other hyperparameters such as decreasing
learning rate, etc. As a result, the general-
ization gap (difference between training and
validation loss) for low resource is greatly
reduced possibly due to that the learnt Layer-
Norm parameters would otherwise be biased
towards HiRes.
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Related Diverse

LoRes HiRes Avg. LoRes HiRes Avg.

aze bel slk glg por rus ces tur All Lo bos mar hin mkd ell bul fra kor All Lo
|Dn| (K) 5.9 4.5 61.5 10.0 185 208 103 182 5.6 9.8 18.8 25.3 134 174 192 205

T =∞ 5.4 9.6 24.6 22.5 39.3 19.9 22.2 15.9 19.9 15.5 12.7 10.8 14.8 22.7 30.3 31.3 37.2 16.9 22.1 15.3
T = 5 5.5 10.4 24.2 22.3 39.0 19.6 22.5 16.0 19.9 15.6 13.4 10.4 14.7 23.8 30.4 32.3 37.8 17.6 22.5 15.6
T = 1 5.4 11.2 23.2 22.6 39.3 20.1 21.6 16.7 20.0 15.6 13.0 11.4 15.0 23.3 32.9 34.0 40.5 18.8 23.5 15.7
GradNorm 5.3 9.8 24.5 22.6 38.9 20.1 21.9 15.4 19.8 15.6 13.7 11.4 14.3 23.1 29.0 30.2 35.1 16.3 21.6 15.6
MultiDDS 6.6 12.4 20.6 21.7 33.5 15.3 17 11.6 17.3 15.3 14.0 4.8 15.7 21.4 25.7 27.8 29.6 7.0 18.2 14.0
CATS α 5.4 11.7 24.7 23.2 40.6 20.6 22.6 17.0 20.7* 16.3* 12.1 11.9 15.6 24.7 33.3 35.7 41.8 19.3 24.3* 16.1*

Table 2: Comparison of CATS with common methods used in multilingual training. We evaluate on
the 8-language TED benchmark with related (top) and diverse (bottom) languages which help verify
performance while controlling optimization difficulty due to language proximity. We compare to
static weighting with manually tuned temperatures T = 1, 5, 100(∞), and dynamic weighting such
as GradNorm [6] and MultiDDS [53]. Results are BLEU scores on test sets per language and the
average BLEU score (↑) across all languages (All) and low resource languages (Lo). Multilingual
training which achieves the best average BLEU is in bold and the strongest baseline approach is
annotated with underscore. * indicates the improvements are statistically significant with p < 0.05.
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Figure 6: CATS is very effective in highly imbal-
anced datasets (WMT), where common sampling
approaches T = 1, 5 sacrifice either low resources
(LoRes) or high resources (HiRes). CATS signif-
icantly improves generalization on LoRes while
demonstrating better sample efficiency.

Robust to different training data distribu-
tions p|Dn|. We show that the improved op-
timization is reflected in generalization perfor-
mance. In Figure 5, we report the training and
validation loss of HiRes and LoRes languages
throughout training on two representative bench-
marks: TED (top) and WMT (bottom) with dif-
ferent degrees of data imbalance. We can see
that the optimal temperature hyperparameters T
vary given the distinct distributions of training
data p|Dn| in these two benchmarks. For exam-
ple, on WMT dataset where the training data
distribution across languages is more skewed,
upsampling LoRes (T = 5,∞) is beneficial, as
was observed in other large-scale multilingual
datasets [2, 10, 34]. However, T = 5 easily leads to overfitting for LoRes on a more balanced dataset
such as the TED dataset. Compared to existing approaches of using a hyperparameter T , CATS is
more robust as a principled way to address varying distributions of training data. It does not need
manual tuning of a hyperparameter T nor suffer from overfitting or underfitting. On both benchmarks,
it consistently improves LoRes without sacrificing HiRes.

4.2.2 Generalization
LoRes MidRes HiRes Avg.

kk vi tr ja nl it ar ro hi de All Lo
|Dn| (M) 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.6 0.8 27.8

T = 1 1.1 27.3 13.5 13.3 28.6 25.2 14.0 29.8 14.1 26.8 19.4 17.6
T = 5 1.2 31.3 15.5 14.9 30.9 30 16.9 31.1 14.7 22.3 20.9 20.1
CATS α 2.0 33.1 19.2 16.7 33.3 32.1 19.6 35.4 18.0 25.9 23.5* 22.3*

Table 3: Detailed performance on the WMT benchmark. Compared to
the strongest baselines (T = 1, 5), CATS drastically improves low and
mid resource languages. Multilingual training which achieves the best
BLEU is in bold and the best baseline is annotated with underscore.

We report translation qual-
ity on three representa-
tive benchmarks whose de-
tailed characteristics are de-
scribed in Table 1.

TED. Table 2 summa-
rizes translation quality im-
provement on the TED cor-
pus. To control for lan-
guage similarity, we eval-
uate on the 8-language
benchmark with both Related (4 LoRes and 4 HiRes from the same language family) and Di-
verse (4 LoRes and 4 HiRes without shared linguistic properties) settings as is used in [53]. We found
simple mixing (T = 1) is a very strong baseline and complex training methods such as GradNorm
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and MultiDDS do not generalize well (TED is a smaller dataset and more prone to overfitting). CATS
achieves +0.4 ∼ 0.7 BLEU on average for LoRes and +0.7 ∼ 0.8 BLEU overall.

WMT. On a larger and more imbalanced 10-language WMT datset with 30.5M sentence pairs, we
found regularizing local curvature with meta learnt α (CATS) is more beneficial. CATS improved
low and mid resource languages across the board as is shown in Table 3. Compared to the strongest
baseline (T = 5), CATS achieved +2.2 average BLEU for low resource languages and +2.6 BLEU
across all languages. Furthermore, CATS is more sample efficient as is shown in Figure 6.

LoRes MidRes HiRes All

|Dn| < 100K ≥ 1M
|N | 18 29 45

T = 1 16.4 22.8 22.1 21.2
T = 5 26.8 24.6 18.9 22.3

CATS α 28.1* 26.0* 19.9 23.4*

CLSR[61] 27.2 26.3 21.7 23.3

Table 4: Performance on OPUS-100.
CATS can easily apply to training at the
scale of ∼ 100 languages and improves
low resources.

OPUS-100. Finally, we test the scalability of CATS
in massive multilingual setting using the OPUS-100
benchmark[62]. Results are summarized in Table 4. Con-
sistent with previous results on OPUS-100 [62, 61] as well
as other massive multilingual model in [2], upsampling
low resource with T = 5 improves BLEU scores for low
resource but at the cost of accuracy for high resource ones.
The trade-off is the opposite for proportional sampling
(T = 1). CATS achieves the the best of both worlds, espe-
cially +1.3 BLEU on low resource, +1.4 BLEU on mid
resource, and +1.0 BLEU on high resource compared to
the strong baseline of T = 5. We also compare to a recent
state-of-the-art model, conditional language-specific rout-
ing (CLSR) [61], which adds additional language specific
parameters (157M parameters in total compared to 110M
parameters in our experiments). By improving optimization without increasing model capacity, CATS
still outperforms CLSR on low resource by +0.9 BLEU.

5 Analysis
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Figure 7: CATS improves generalization
in overparameterized models, while stan-
dard approach suffers from overfitting.
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Figure 8: CATS is robust in large batch
size training (4× batch size from 33K to
131K tokens).

Robust to overparameterization. Scaling up model
size has been of central interest in recent development of
massive multilingual models such as GShard and Switch
Transformer with trillions of parameters [27, 13]. Train-
ing overparameterized models a shorter amount of time
have shown to be more efficient than training a smaller
model for longer time [29, 39, 25]. Therefore, we are
interested in understanding CATS’ performance in train-
ing overparameterized models. Figure 7 plots change in
generalization (measured by BLEU score difference) as
we increase model capacity. CATS can effectively benefit
from larger model capacity, especially in the overaparame-
terized regime (300M parameters for TED dataset) where
performance begins to degradate with standard training.

Performance with large batch size. Large batch size
is an effective way to speed up training without sacrific-
ing performance[18, 49]. However, heterogeneous train-
ing data do not necessarily benefit from large batch size
training[37]. This is a challenge for multilingual training
as is shown in Figure 8, where increasing batch size hurts
generalization for LoRes with a common practice of up-
sampling (T = 5). This is likely due to LoRes is prone to
overfitting (illustrated in Figure 5) and larger batch size
exacerbates it. The same batch size without upsampling
leads to improved generalization (T = 1). In comparison,
CATS can effectively benefit from larger batch size due to
its adaptive rescaling of gradients.
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LoRes HiRes Avg.

bos mar hin mkd ell bul fra kor All Lo

Baseline 24.3 10.7 22.9 33.5 38.0 39.1 40.5 19.1 28.5 22.8
-LN only 24.4 10.6 23.7 33.9 38.4 39.5 40.9 19.5 28.9 23.1
CATS 24.6 11.3 24.2 34.1 39.1 40.1 41.2 19.6 29.3 23.6

Table 5: Ablation study of the effectiveness of
CATS when combined with removing layer nor-
malization parameters (-LN).

Ablation layer normalization. To further un-
derstand the effect from removing layer normal-
ization which mitigates LoRes overfitting as was
shown in Section 4.2.1, we provide an ablation
study on its role when combined with CATS. We
ran experiments on TED Diverse dataset with
the strongest baseline (T = 1). In Table 5, we
can see that CATS brings additional +0.5 BLEU
to low resources on top of the +0.3 BLEU im-
provement from removing layer normalization
parameters (-LN).

6 Conclusion
In this work, we look under the hood of monolithic optimization of multilingual models. We unveil
optimization challenges arising from imbalanced training data, where low resource languages have
been sub-optimally optimized. We proposed a principled optimization algorithm for multilingual
training with adaptive gradient rescaling of different languages where the scaling is learnt with a
meta-objective of guiding the optimization to solutions with low local curvature.

We evaluated the proposed method on three representative benchmarks (TED, WMT and OPUS100)
which cover a wide range of imbalanced data distributions commonly seen in real word multilingual
datasets. Compared to existing methods of simply mixing the data or manually augmenting the
data distribution to be more “balanced” with a temperature hyperparameter, the proposed training
method demonstrates robust optimization and consistently improves generalization for low resource
languages. Further analysis shows that the proposed approach is suitable for the realistic training
settings of large-scale multilingual learning such as overparameterized models, large batch size,
highly imbalanced data, as well as large number of languages etc., paving the way for advancing
massive multilingual models which truly benefit low resource languages.

Broader Impact. Recent progress in NLP enabled by scaling up model size and data is widening
the gap of technology equity between high resource languages (such as English) and low resource
languages. Multilingual model is a promising approach to close this gap. However, current language
agnostic multilingual models does not effectively improve low resources for various reasons to be
understood. Our investigation in optimization is one step towards building truly inclusive multilingual
models.

This work has several limitations which we hope to extend in future work. We did not run experi-
ments on translation between non-English directions including zero-shot. The absolute size of the
overparameterized model in our analysis is relatively small compared to the state-of-the-art of model
scaling of billions of parameters. As an language generation application, machine translation model
could produce unsafe output or hallucination.
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