
Dynamics-Regulated Kinematic Policy for
Egocentric Pose Estimation

Zhengyi Luo1 Ryo Hachiuma 2 ⇤ Ye Yuan1 Kris Kitani1
1 Carnegie Mellon University 2 Keio University

https://zhengyiluo.github.io/projects/kin_poly/

Figure 1: From egocentric videos, we infer physically-plausible 3D human pose and human-object interaction.

Abstract

We propose a method for object-aware 3D egocentric pose estimation that tightly
integrates kinematics modeling, dynamics modeling, and scene object information.
Unlike prior kinematics or dynamics-based approaches where the two components
are used disjointly, we synergize the two approaches via dynamics-regulated train-

ing. At each timestep, a kinematic model is used to provide a target pose using
video evidence and simulation state. Then, a prelearned dynamics model attempts
to mimic the kinematic pose in a physics simulator. By comparing the pose in-
structed by the kinematic model against the pose generated by the dynamics model,
we can use their misalignment to further improve the kinematic model. By factor-
ing in the 6DoF pose of objects (e.g., chairs, boxes) in the scene, we demonstrate
for the first time, the ability to estimate physically-plausible 3D human-object
interactions using a single wearable camera. We evaluate our egocentric pose
estimation method in both controlled laboratory settings and real-world scenarios.

1 Introduction
From a video captured by a single head-mounted wearable camera (e.g., smartglasses, action camera,
body camera), we aim to infer the wearer’s global 3D full-body pose and interaction with objects in
the scene, as illustrated in Fig. 1. This is important for applications like virtual and augmented reality,
sports analysis, and wearable medical monitoring, where third-person views are often unavailable and
proprioception algorithms are needed for understanding the actions of the camera wearer. However,
this task is challenging since the wearer’s body is often unseen from a first-person view and the

⇤Work done at Carnegie Mellon University.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), virtual.

https://zhengyiluo.github.io/projects/kin_poly/

body motion needs to be inferred solely based on the videos captured by the front-facing camera.
Furthermore, egocentric videos usually capture the camera wearer interacting with objects in the
scene, which adds additional complexity in recovering a pose sequence that agrees with the scene
context. Despite these challenges, we show that it is possible to infer accurate human motion and
human-object interaction from a single head-worn front-facing camera.

Egocentric pose estimation can be solved using two different paradigms: (1) a kinematics perspective
and (2) a dynamics perspective. Kinematics-based approaches study motion without regard to the
underlying forces (e.g., gravity, joint torque) and cannot faithfully emulate human-object interaction
without modeling proper contact and forces. They can achieve accurate pose estimates by directly
outputting joint angles but can also produce results that violate physical constraints (e.g. foot skating
and ground penetration). Dynamics-based approaches, or physics-based approaches, study motions
that result from forces. They map directly from visual input to control signals of a human proxy
(humanoid) inside a physics simulator and recover 3D poses through simulation. These approaches
have the crucial advantage that they output physically-plausible human motion and human-object
interaction (i.e., pushing an object will move it according to the rules of physics). However, since no
joint torque is captured in human motion datasets, physics-based humanoid controllers are hard to
learn, generalize poorly, and are actively being researched [36, 57, 51, 52].

In this work, we argue that a hybrid approach merging the kinematics and dynamics perspectives is
needed. Leveraging a large human motion database [29], we learn a task-agnostic dynamics-based
humanoid controller to mimic broad human behaviors, ranging from every day motion to dancing and
kickboxing. The controller is general-purpose and can be viewed as providing low-level motor skills
of a human. After the controller is learned, we train an object-aware kinematic policy to specify the
target poses for the controller to mimic. One approach is to let the kinematic model produce target
motion only based on the visual input [58, 51, 56]. This approach uses the physics simulation as a
post-processing step: the kinematic model computes the target motion separately from the simulation
and may output unreasonable target poses. We propose to synchronize the two aspects by designing
a kinematic policy that guides the controller and receives timely feedback through comparing its
target pose and the resulting simulation state. Our model thus serves as a high-level motion planning
module that adapts intelligently based on the current simulation state. In addition, since our kinematic
policy only outputs poses and does not model joint torque, it can receive direct supervision from
motion capture (MoCap) data. While poses from MoCap can provide an initial-guess of target motion,
our model can search for better solutions through trial and error. This learning process, dubbed
dynamics-regulated training, jointly optimizes our model via supervised learning and reinforcement
learning, and significantly improves its robustness to real-world use cases.

In summary, our contributions are as follows: (1) we are the first to tackle the challenging task of
estimating physically-plausible 3D poses and human-object interactions from a single front-facing
camera; (2) we learn a general-purpose humanoid controller from a large MoCap dataset and can
perform a broad range of motions inside a physics simulation; (3) we propose a dynamics-regulated
training procedure that synergizes kinematics, dynamics, and scene context for egocentric vision;
(4) experiments on a controlled motion capture laboratory dataset and a real-world dataset demonstrate
that our model outperforms other state-of-the-art methods on pose-based and physics-based metrics,
while generalizing to videos taken in real-world scenarios.

2 Related Work
Third-person human pose estimation. The task of estimating the 3D human pose (and sometimes
shape) from third-person video is a popular research area in the vision community [2, 21, 24, 14,
40, 59, 10, 34, 12, 31, 23, 28, 11, 54, 58], with methods aiming to recover 3D joint positions
[25, 46, 14, 34], 3D joint angles with respect to a parametric human model [2, 21, 23, 28], and
dense body parts [11]. Notice that all these methods are purely kinematic and disregard physical
reasoning. They also do not recover the global 3D root position and are evaluated by zeroing out the
body center (root-relative). A smaller number of works factor in human dynamics [42, 43, 38, 49, 4]
through postprocessing, physics-based trajectory optimization, or using a differentiable physics
model. These approaches can produce physically-plausible human motion, but since they do not
utilize a physics simulator and does not model contact, they can not faithfully model human-object
interaction. SimPoE [58], a recent work on third-person pose estimation using simulated character
control, is most related to ours, but 1) trains a single and dataset-specific humanoid controller per
dataset; 2) designs the kinematic model to be independent from simulation states.

2

Output: Physically-plausible poses

Input: Video sequence

Universal Humanoid
Controller

Agent-centric
Transformation

Simulation State:

Per-step
Kinematic Policy

Input: Video sequence:

Intialization
Kinematic Policy

Finite
Integration

Physics
Simulation

Agent-centric input:

Simulated states

Computation
Module

Learnable
 Module

......

Camera
Poses

Image
Features

Initialization
Pose

Object
State

Estimated
kinematic pose

Output: Physically-plausible poses:

Initialize at t = 1

......

Initialization

Per-Step update

Per-step input:

Data
Block

Action

Input: Video sequence:

Intialization
Kinematic Policy

Camera
Poses

Image
Features

Initialization
Pose

Object
State

Initialization

Per-step input:

Figure 2: Overview of our dynamics-regulated kinematic policy. Given an egocentirc video I1:T , our
initialization module ⇡init

KIN (I1:T) computes the first-frame object state eo1, human pose eq1, camera
poses eh1:T , and image features �1:T . The object state eo1 and human pose eq1 are used to initialize the
phsycis simulation. At each time step, we roll out our per-step kinematic policy ⇡step

KIN together with
the Universal Humanoid Controller to output physically-plausible pose q

t
inside a physics simulator.

Egocentric human pose estimation. Compared to third-person human pose estimation, there are
only a handful of attempts at estimating 3D full body poses from egocentric videos due to the ill-posed
nature of this task. Most existing methods still assume partial visibility of body parts in the image
[48, 39, 53], often through a downward-facing camera. Among works where the human body is
mostly not observable [20, 55, 56, 33], Jiang et al. [20] use a kinematics-based approach where they
construct a motion graph from the training data and recover the pose sequence by solving the optimal
pose path. Ng et al. [33] focus on modeling person-to-person interactions from egocentric videos
and inferring the wearer’s pose conditioning on the other person’s pose. The works most related to
ours are [55, 56, 19] which use dynamics-based approaches and map visual inputs to control signals
to perform physically-plausible human motion inside a physics simulation. They show impressive
results on a set of noninteractive locomotion tasks, but also observe large errors in absolute 3D
position tracking–mapping directly from the visual inputs to control signals is a noisy process and
prone to error accumulation. In comparison, our work jointly models kinematics and dynamics, and
estimates a wider range of human motion and human-object interactions while improving absolute
3D position tracking. To the best of our knowledge, we are the first approach to estimate the 3D
human poses from egocentric video while factoring in human-object interactions.

Humanoid control inside physics simulation. Our work is also connected to controlling humanoids
to mimic reference motion [36, 37, 5, 57, 52, 15, 6] and interact with objects [5, 30] inside a physics
simulator. The core motivation of these works is to learn the necessary dynamics to imitate or
generate human motion in a physics simulation. Deep RL has been the predominant approach in
this line of work since physics simulators are typically not end-to-end differetiable. Goal-oriented
methods [5, 30, 1] does not involve motion imitation and are evaluated on task completion (moving
an object, sitting on a chair, moving based on user-input etc.). Consequently, these frameworks only
need to master a subset of possible motions for task completion. People, on the other hand, have a
variety of ways to perform actions, and our agent has to follow the trajectory predefined by egocentric
videos. Motion imitation methods [36, 37, 52, 57, 52] aim to control characters to mimic a sequence
of reference motion, but have been limited to performing a single clip [36, 37, 52, 57] or high-quality
MoCap [52] motion (and requires fine-tuning to generalize to other motion generators). In contrast,
our dynamics controller is general and can be used to perform everyday motion and human-object
interactions estimated by a kinematic motion estimator without task-specific fine-tuning.

3 Method
The problem of egocentric pose estimation can be formulated as follows: from a wearable camera
footage I1:T , we want to recover the wearer’s ground truth global 3D poses bq1:T . Each pose
bq
t
, (brpos

t
, brrot

t
,bj

rot
t
) consists of the root position brpos

t
, root orientation brrot

t
, and body joint angles

bj
rot
t

of the human model. Here we adopt the popular SMPL [27] human model and the humanoid we

3

use in physics simulation is created from the kinematic structure and mean body shape defined by
SMPL. Our framework first learns a Universal Humanoid Controller (UHC) from a large MoCap
dataset (Sec. 3.1). The learned UHC can be viewed as providing the lower level muscle skills of a
real human, trained by mimicking thousands of human motion sequences. Using the trained UHC,
we learn our kinematic policy (Sec. 3.2) through dynamics-regulated training (Sec. 3.3). At the test
time, the kinematic policy provides per-step target motion to the UHC, forming a closed-loop system
that operates inside the physics simulation to control a humanoid. The result of the UHC and physics
simulation is then used as input to the kinematic policy to produce the next-frame target motion,
as depicted in Fig. 2. As a notation convention, we usee· to denote kinematic quantities (obtained
without using physics simulation),b· to denote ground truth quantities, and normal symbols without
accents to denote quantities from the physics simulation.

3.1 Dynamics Model - Universal Humanoid Controller (UHC)
To learn a task-agnostic dynamics model that can be tightly integrated with a kinematic model, we
design our controller’s state space to only rely on the current simulated pose q

t
and target posed bq

t+1
and remove all phase or sequence-level information found in prior arts [57, 36, 37]. This design allows
us to train on an order of magnitude larger dataset of human motion [29] with only pose information
and significantly improve our models’ ability to mimic diverse and unseen motions. Formally, we
model controlling a humanoid to follow a reference motion bq1:T as a Markov Decision Process
(MDP) defined as a tuple M = hS,A, Pphysics, R, �i of states, actions, transition dynamics, reward
function, and a discount factor. The state S, reward R, and transition dynamics Pphysics are provided
by the physics simulator, while action A is computed by the policy ⇡UHC. At each timestep t, the
agent in state st takes an action sampled from the policy ⇡UHC(at|st, bqt+1) while the environment
generates the next state st+1 and reward rt. We employ Proximal Policy Optimization (PPO) [41] to
find the optimal policy ⇡⇤UHC that maximizes the expected discounted return E[

P
T

t=1 �
t�1

rt].

State. The state st , (q
t
, q̇

t
) of the humanoid contains the character’s current pose q

t
and joint

velocity q̇
t
. Here, the state st encapsulates the humanoid’s full physical state at time step t. It only

includes information about the current frame (q
t
, q̇

t
) and does not include any extra information,

enabling our learned controller to be guided by a target pose only.

Action. The action at specifies the target joint angles for the proportional derivative (PD) controller
[45] at each degree of freedom (DoF) of the humanoid joints except for the root (pelvis). We use
the residual action representation [15]: qd

t
= bq

t+1 + at, where qd

t
is the final PD target, at is the

output of the control policy ⇡UHC, and bq
t+1 is the target pose. The torque to be applied at joint

i is: ⌧ i = kp � (qd

t
� q

t
) � kd � q̇

t
where kp and kd are manually specified gains and � is the

element-wise multiplication. As observed in prior work [57, 58], allowing the policy to apply external
residual forces ⌘

t
to the root helps stabilizing the humanoid, so our final action is at , (�eqd

t
,⌘

t
).

Policy. The policy ⇡UHC(at|st, bqt+1) is represented by a Gaussian distribution with a fixed diagonal
covariance matrix ⌃. We first use a feature extraction layer Ddiff(bqt+1, qt

) to compute the root
and joint offset between the simulated pose and target pose. All features are then translated to a
root-relative coordinate system using an agent-centic transform T AC to make our policy orientation-
invariant. We use a Multi-layer Perceptron (MLP) as our policy network to map the augmented state
T AC

�
q
t
, q̇

t
, bq

t+1, Ddiff(bqt+1, qt
)
�

to the predicted action at.

Reward function. For UHC, the reward function is designed to encourage the simulated pose q
t

to better match the target pose bq
t+1. Since we share a similar objective (mimic target motion), our

reward is similar to Residual Force Control [57].

Training procedure. We train our controller on the AMASS [29] dataset, which contains 11505
high-quality MoCap sequences with 4000k frame of poses (after removing sequences involving
human-object interaction like running on a treadmill). At the beginning of each episode, a random
fixed length sequence (300 frames) is sampled from the dataset for training. While prior works
[52, 51] uses more complex motion clustering techniques to sample motions, we devise a simple
yet empirically effective sampling technique by inducing a probability distribution based on the
value function. For each pose frame bq

j
in the dataset, we first compute an initialization state sj1:

sj1 ,
�
bq
j
,0

�
, and then score it using the value function to access how well the policy can mimic

the sequence bq
j:T starting from this pose: V (sj1, bqj+1) = vj . Intuitively, the higher vj is, the more

confident our policy is in mimicing this sequence, and the less often we should pick this frame. The

4

probability of choosing frame j, comparing against all frames J in the AMASS dataset, is then
P (bq

j
) = exp(�vj/⌧)PJ

i exp(�vi/⌧)
where ⌧ is the sampling temperature. More implementation details about

the reward, training and evaluation of UHC can be found in Appendix C.

3.2 Kinematic Model – Object-aware Kinematic Policy

To leverage the power of our learned UHC, we design an auto-regressive and object-aware kinematic
policy to generate per-frame target motion from egocentric inputs. We synchronize the state space of
our kinematic policy and UHC such that the policy can be learned with or without physics simulation.
When trained without physics simulation, the model is purely kinematic and can be optimized via
supervised learning; when trained with a physics simulation, the model can be optimized through
a combination of supervised learning and reinforcement learning. The latter procedure, coined
dynamics-regulated training, enables our model to distill human dynamics information learned from
large-scale MoCap data into the kinematic model and learns a policy more robust to convariate
shifts. In this section, we will describe the architecture of the policy itself and the training through
supervised learning (without physics simulation).

Scene context modelling and initialization. To serve as a high-level target motion estimator for
egocentric videos with potential human-object interaction, our kinematic policy needs to be object-
aware and grounded with visual input. To this end, given an input image sequence I1:T , we compute
the initial object states eo1, image features �1:T , and camera trajectory eh1:T as inputs to our system.
The object states, eot , (eocls

t
, eopos

t
, eorot

t
), is modeled as a vector concatenation of the main object-

of-interest’s class eocls

t
, 3D position eopos

t
, and rotation eorot

t
. eot is computed using an off-the-shelf

object detector and pose estimator [17]. When there are no objects in the current scene (for walking
and running etc.), the object states vector is set to zero. The image features �1:T contains crucial
information about the wearer’s movement and is computed using an optical flow extractor [44] and
ResNet [13]. Since visual input can be noisy and modern smartglasses and bodycams are often
equipped with built-in SLAM or Visual Inertial Odometry (VIO) [50, 9] capabilities, we utilize
this additional data modalitiy and compute the 6DoF camera pose from input Images. Using an
off-the-shelf VIO method [16], we extracts camera trajectory as: eht , (eh

pos
t

, eh
rot
t
) (position eh

pos
t

and orientation eh
rot
t

) . Notice that the camera trajectory eht information is crucial and significantly
improve the performance of our framework as shown in our ablation studies (Sec. 4.2).

To provide our UHC with a plausible initial state for simulation, we estimate eq1 from the scene context
features �1:T , eo1:T ,and eh1:T . We use an Gated Recurrent Unit (GRU) [7] based network to regress
the initial agent pose eq1. Combining the above procedures, we obtain the context modelling and
initialization model ⇡init

KIN: [eq1,�1:T , eo1,
eh1:T] = ⇡init

KIN(I1:T). Notice that to constrain the ill-posed
problem of egocentric pose estimation, we assume known object category, rough size, and potential
mode of interaction. We use these knowledge as a prior for our per-step model for pose estimation.

Training kinematic policy via supervised learning. After initialization, we use the estimated
first-frame object pose eot and human pose eq

t
to initialize the physics simulation. All subsequent

object movements are a result of human-object interation and simulation. At each time step, we
use a per-step model ⇡step

KIN to compute the next frame pose based on the next frame observations:
we obtain an egocentric input vector ect through the agent-centric transformation function ect =

T AC(eqt
,�

t+1, got+1,
eht+1) where c̃t , (er0rot

t
,ej

rot
t
,�

t+1,
eo0t+1,

eh
0
t+1) contains the current agent-

centric root orientation er0rot
t

, joint angles ej
rot
t

, image feature for next frame �
t+1, object state eo0

t+1,
and camera pose eh

0
t+1. From ect, the kinematic policy ⇡step

KIN computes the root angular velocity ewt,
linear velocity evt, and next frame joint rotation ej

rot
t+1. The next frame pose is computed through a

finite integration module T finite with time difference �t = 1/30s:

e!t, evt,ej
rot
t+1 = ⇡step

KIN(ect), eqt+1 = T finite(e!t, evt,ej
rot
t+1, eqt). (1)

When trained without physics simulation, we auto-regressively apply the kinematic policy and use
the computed eq

t+1 as the input for the next timestep. This procedure is outlined at Alg. 1. Since all
mentioned calculations are end-to-end differentiable, we can directly optimize our ⇡init

KIN and ⇡step
KIN

5

Algorithm 1 Learning kinematic policy via supervised learning.

1: Input: Egocentric videos I and paired ground truth motion dataset bQ
2: while not converged do
3: M SL ; . initialize sampling memory
4: while M not full do
5: I1:t random sequence of images I1:T from the dataset I
6: eq1,�1:T , eo1, eh1:T = ⇡init

KIN(I1:T) . compute scene context and initial pose
7: for i 1...T do
8: ect T AC(eqt,�t+1, eot+1, eht+1) . compute agent-centric input features
9: eqt+1 T finite(⇡

step
KIN(ect), eqt)

10: store (eqt, bqt) into memory M SL
11: end for
12: end while
13: ⇡step

KIN,⇡
init
KIN supervised learning update using data collected in M SL for 10 epoches.

14: end while

through supervised learning. Specifically, given ground truth bq1:T and estimated eq1:T pose sequence,
our loss is computed as the difference between the desired and ground truth values of the following
quantities: agent root position (brpos

t
vs erpos

t
) and orientation (brrot

t
vs errot

t
), agent-centric object position

(bo0pos
t

vs eo0pos
t

) and orientation (bo0rot
t

vs eo0rot
t

), and agent joint orientation (bj
rot
t

vs ej
rot
t

) and position
(bj

pos
t

vs ej
pos
t

, computed using forward kinematics):

LSL =
TX

i=1

kerrot
t brrot

t k2+kerpos
t �br

pos
t k

2+keo0rot
t bo0rot

t k2+keo0pos
t �bo0pos

t k2+kej
rot
t bj

rot
t k

2+kej
pos
t �bj

pos
t k

2. (2)

3.3 Dynamics-Regulated Training
To tightly integrate our kinematic and dynamics models, we design a dynamics-regulated training

procedure, where the kinematic policy learns from explicit physics simulation. In the procedure
described in the previous section, the next-frame pose fed into the network is computed through finite
integration and is not checked by physical laws: whether a real human can perform the computed pose
is never verified. Intuitively, this amounts to mentally think about moving in a physical space without

actually moving. Combining our UHC and our kinematic policy, we can leverage the prelearned
motor skills from UHC and let the kinematic policy act directly in a simulated physical space to
obtain feedback about physical plausibility. The procedure for dynamics-regulated training is outlined
in Alg. 2. In each episode, we use ⇡init

KIN and ⇡step
KIN as in Alg. 1, with the key distinction being: at the

next timestep t+ 1, the input to the kinematic policy is the result of UHC and physics simulation
q
t+1 instead of eq

t+1. q
t+1 explicitly verify that the eq

t+1 produced by the kinematic policy can
be successfully followed by a motion controller. Using q

t+1 also informs our ⇡step
KIN of the current

humanoid state and encourages the policy to adjust its predictions to improve humanoid stability.

Dynamics-regulated optimization. Since the physics simulation is not differentiable, we cannot
directly optimize the simulated pose q

t
; however, we can optimize q

t
through reinforcement learning

and eq
t

through supervised learning. Since we know that bq
t

is a good guess reference motion for UHC,
we can directly optimize eq

t
via supervised learning as done in Sec. 3.2 using the loss defined in Eq. 2.

Since the data samples are collected through physics simulation, the input q
t

is physically-plausible
and more diverse than those collected purely through auto-regressively applying ⇡step

KIN in Alg. 1.
This way, our dynamics-regulated training procedure performs a powerful data augmentation step,
exposing ⇡step

KIN with diverse states collected from simulation.

However, MoCap pose bq
t

is imperfect and can contain physical violations itself (foot-skating,
penetration etc.), so asking the policy ⇡step

KIN to produce bq
t

as reference motion regardless of the

current humanoid state can lead to instability and cause the humanoid to fall. The kinematic policy
should adapt to the current simulation state and provide reference motion eq

t
that can lead to poses

similar to bq
t

yet still physically-plausible. Such behavior will not emerge through supervised learning
and require trial and error. Thus, we optimize ⇡step

KIN through reinforcement learning and reward
maximization. We design our RL reward to have two components: motion imitation and dynamics
self-supervision. The motion imitation reward encourages the policy to match the computed camera

6

Algorithm 2 Learning kinematic policy via dynamics-regulated training.

1: Input: Pre-trained controller ⇡UHC, egocentric videos I , and paired ground truth motion dataset bQ
2: Train ⇡init

KIN, ⇡step
KIN using Alg. 1 for 20 epoches (optional).

3: while not converged do
4: M dyna ; . initialize sampling memory
5: while M dyna not full do
6: I1:t random sequence of images I1:T

7: q1 eq1,�1:T , eo1, eh1:T ⇡init
KIN(I1:T) . compute scene context and initial pose

8: s1 (q1, q̇1) . compute intial state for simulation
9: for i 1...T do

10: ct T AC(qt,�t+1, eot+1, eht+1) . compute agent-centric features using simulated pose qt

11: eqt+1 ⇠ T finite(⇡
step
KIN(ct), qt) . sample from ⇡step

KIN as a guassian policy
12: st (qt, q̇t)
13: st+1 Pphysics(st+1|st,at), at ⇡UHC(at|st, eqt+1) . phyics simulation using ⇡UHC

14: qt+1 st+1, rKIN
t reward from Eq. 3 . extract reward and qt+1 from simulation

15: store (st,at, rt, st+1, bqt, eqt+1) into memory M dyna
16: end for
17: end while
18: ⇡step

KIN Reinforcement learning updates using experiences collected in M dyna for 10 epoches.
19: ⇡init

KIN, ⇡step
KIN Supervised learning update using experiences collected in M dyna for 10 epoches.

20: end while

trajectory eht and MoCap pose bq
t
, and serves as a regularization on motion imitation quality. The

dynamics self-supervision reward is based on the insight that the disagreement between eq
t

and q
t

contains important information about the quality and physical plausibility of eq
t
: the better eq

t
is, the

easier it should be for UHC to mimic it. Formally, we define the reward for ⇡step
KIN as:

rt = whpe
�45.0(khpos

t�ehpos
t k

2) + whqe
�45.0(khrot

t ehrot
t k

2) + w
gt
jve
�0.005(kj̇rot

t
ċ
j

rot
t k

2)+

w
gt
jr e
�50.0(kjrot

t bjrot
t k

2) + w
dyna
jr e

�50.0(kjrot ejrot
t k

2) + w
dyna
jp e

�50.0(kjpos
t �ejpos

t k
2)
,

(3)

whp, whq are weights for matching the extracted camera position eh
pos
t

and orientation eh
rot
t

; wgt
jr
, w

gt
jv

are for matching ground truth joint angles bj
rot

and angular velocities
ċ
j

rot
t

. wdyna
jr , wdyna

jp are weights
for the dynamics self-supervision rewards, encouraging the policy to match the target kinematic joint
angles ej

rot
t

and positions ej
pos
t

to the simulated joint angles jrot
t

and positions jpos
t

. As demonstrated in
Sec. 4.2, the RL loss is particularly helpful in adapting to challenging real-world sequences, which
requires the model to adjust to domain shifts and unseen motion.

Test-time. At the test time, we follow the same procedure outlined in Alg 2 and Fig.2 to roll out our
policy to obtain simulated pose q1:T given a sequence of images I1:T . The difference being instead
of sampling from ⇡step

KIN(ct) as a Guassian policy, we use the mean action directly.

4 Experiments
Datasets. As no public dataset contains synchronized ground-truth full-body pose, object pose, and
egocentric videos with human-object interactions, we record two egocentric datasets: one inside a
MoCap studio, another in the real-world. The MoCap dataset contains 266 sequences (148k frames)
of paired egocentric videos and annotated poses. It features one of the five actions: sitting down on a
chair, avoiding obstacles, stepping on a box, pushing a box, and generic locomotion [55] (walking,
running, crouching) recorded using a head-mounted GoPro. Each action has around 50 sequences
with different starting position and facing, gait, speed etc. We use an 80–20 train test data split on
this MoCap dataset. The real-world dataset is only for testing purpose and contains 183 sequences
(50k frames) of an additional subject performing similar actions in an everyday setting wearing a
head-mounted iPhone. For both datasets, we use different objects and varies the object 6DoF pose for
each capture take. Additional details (diversity, setup etc.) can be found in Appendix D.

Evaluation metrics. We use both pose-based and physics-based metrics for evaluation. To evaluate
the 3D global pose accuracy, we report the root pose error (Eroot) and root-relative mean per joint
position error [23] (Empjpe). When ground-truth root/pose information is unavailable (for real-world

7

MoCap

Ours

EgoPose

PoseReg

MoCap

Ours

EgoPose

PoseReg

Sitting

Avoiding

Pushing

Stepping

Missing
the

Object

Missing
the

Object
Falls
down

Walks
into the
object

Walks
into the
object

Large
Drift

Large
Drift

Walks
into the
object

Failed
Interaction

Figure 3: Results of egocentric pose and human-object interaction estimation from the MoCap datset.

dataset), we substitute Eroot with Ecam to report camera pose tracking error. We also employ four
physics based pose metrics: acceleration error (Eacc), foot skating (FS), penetration (PT), and
interaction success rate (Sinter). Eacc (mm/frame2) compares the ground truth and estimated average
joint acceleration; FS (mm) is defined the same as in Ling et al. [26]; PT (mm) measures the average
penetration distance between our humanoid and the scene (ground floor and objects). Notice that our
MoCap dataset has an penetration of 7.182 mm and foot sliding of 2.035 mm per frame, demonstrating
that the MoCap data is imperfect and may not serve as the best target motion. Sinter is defined as
whether the objects of interest has been moved enough (pushing and avoiding) or if desired motion
is completed (stepping and sitting). If the humanoid falls down at any point, Sinter = 0. For a full
definition of our evaluation metrics, please refer to Appendix B.

Baseline methods. To show the effectiveness of our framework, we compare with the previous
state-of-the-art egocentric pose estimation methods: (1) the best dynamics-based approach EgoPose

[56] and (2) the best kinematics-based approach PoseReg, also proposed in [56]. We use the official
implementation and augment their input with additional information (eot and eht) for a fair comparison.
In addition, we incorporate the fail-safe mechanism [56] to reset the simulation when the humanoid
loses balance to ensure the completion of each sequence (details in Appendix B).

Implementation details. We use the free physics simulator MuJoCo [47] and run the simulation at
450 Hz. Our learned policy is run every 15 timesteps and assumes all visual inputs are at 30 Hz. The
humanoid follows the kinematic and mesh definition of the SMPL model and has 25 bones and 76
DoF. We train our method and baselines on the training split (202 sequences) of our MoCap dataset.
The training process takes about 1 day on a RTX 2080-Ti with 35 CPU threads. After training and
the initialization step, our network is causal and runs at 50 FPS on an Intel desktop CPU. For more
implementation details and network architecture, please refer to Appendix B and C.

4.1 Results
MoCap dataset results. Table 1 shows the quantitative comparison of our method with the baselines.
All results are averaged across five actions and all models have access to the same inputs. We observe
that our method, trained either with supervised learning or dynamics-regulated, outperform the two
state-of-the-art methods across all metrics. Not surprisingly, our purely kinematic model performs the
best on pose-based metrics, while our dynamics-regulated trained policy excels at the physics-based
metrics. Comparing the kinematics-only models we can see that our method has a much lower
(79.4% error reduction) root and joint position error (62.1% error reduction) than PoseReg, which
shows that our object-aware and autoregressive design of the kinematic model can better utilize the
provided visual and scene context and avoid compounding errors. Comparing with the dynamics-
based methods, we find that the humanoid controlled by EgoPose has a much larger root drift, often
falls down to the ground, and has a much lower success rate in human-object interaction (48.4 % vs
96.9%). Upon visual inspection in Fig. 3, we can see that our kinematic policy can faithfully produce
human-object interaction on almost every test sequence from our MoCap dataset, while PoseReg

8

Table 1: Quantitative results on pose and physics based metrics on the MoCap and real-world Dataset.
MoCap dataset

Method Physics Sinter " Eroot # Empjpe # Eacc # FS # PT #
PoseReg 7 - 0.857 87.680 12.981 8.566 42.153
Kin_poly: supervised learning (ours) 7 - 0.176 33.149 6.257 5.579 10.076

EgoPose 3 48.4% 1.957 139.312 9.933 2.566 7.102
Kin_poly: dynamics-regulated (ours) 3 96.9% 0.205 40.443 7.064 2.474 0.686

Real-world dataset

Method Physics Sinter " Ecam # FS # PT # Per class success rate Sinter "
PoseReg 7 - 1.260 6.181 50.414 Sit Push Avoid StepKin_poly: supervised learning (ours) 7 - 0.491 5.051 34.930

EgoPose 3 9.3% 1.896 2.700 1.922 7.93% 6.81% 4.87% 0.2%
Kin_poly: dynamics-regulated (ours) 3 92.3% 0.476 2.742 1.229 98.4% 90.9% 100% 74.2%

and EgoPose often miss the object-of-interest (as can be reflected by the large root tracking error).
Both of the dynamics-based methods has smaller acceleration error, foot skating, and penetration;
some even smaller than MoCap (which has 2 mm FS and 7mm PT). Notice that our joint position
error is relatively low compared to state-of-the-art third-person pose estimation methods [23, 24, 28]
due to our strong assumption about known object of interest, its class, and potential human-object
interactions, which constrains the ill-posed problem pose estimation from just front-facing cameras.

Real-world dataset results. The real-world dataset is far more challenging, having similar number
of sequences (183 clips) as our training set (202 clips) and recorded using different equipment,
environments, and motion patterns. Since no ground-truth 3D poses are available, we report our
results on camera tracking and physics-based metrics. As shown in Table 1, our method outperforms
the baseline methods by a large margin in almost all metrics: although EgoPose has less foot-skating
(as it also utilizes a physics simulator), its human-object interaction success rate is extremely low.
This can be also be reflected by the large camera trajectory error, indicating that the humanoid is
drifting far away from the objects. The large drift can be attributed to the domain shift and challenging
locomotion from the real-world dataset, causing EgoPose’s humanoid controller to accumulate error
and lose balance easily. On the other hand, our method is able to generalize and perform successful
human-object interactions, benefiting from our pretrained UHC and kinematic policy’s ability to
adapt to new domains and motion. Table 1 also shows a success rate breakdown by action. Here we
can see that “stepping on a box" is the most challenging action as it requires the humanoid lifting its
feet at a precise moment and pushing itself up. Note that our UHC has never been trained on any
stepping or human-object interaction actions (as AMASS has no annotated object pose) but is able to
perform these action. As motion is best seen in videos, we refer readers to our supplementary video.

4.2 Ablation Study

Table 2: Ablation study of different components of
our framework.

Component Metric

SL Dyna_reg RL VIO Sinter " Ecam # FS # PT #
3 7 7 3 73.2% 0.611 4.234 1.986
3 3 7 3 80.9% 0.566 3.667 4.490
3 3 3 7 54.1% 1.129 7.070 5.346
3 3 3 3 92.3% 0.476 2.742 1.229

To evaluate the importance of our components,
we train our kinematic policy under different
configurations and study its effects on the real-

world dataset, which is much harder than the
MoCap dataset. The results are summarized in
Table 2. Row 1 (R1) corresponds to training the
kinematic policy only with Alg. 1 only and use
UHC to mimic the target kinematic motion as a
post-processing step. Row 2 (R2) are the results
of using dynamics-regulated training but only performs the supervised learning part. R3 show a
variant trained without the estimated camera pose from VIO. Comparing R1 and R2, the lower
interaction success rate (73.2% vs 80.9%) indicates that exposing the kinematic policy to states from
the physics simulation serves as a powerful data augmentation step and leads to a model more robust
to real-world scenarios. R2 and R4 show the benefit of the RL loss in dynamics-regulated training:
allowing the kinematic policy to deviate from the MoCap poses makes the model more adaptive and
achieves higher success rate. R3 and R4 demonstrate the importance of intelligently incorporating
extracted camera pose as input: visual features �

t
can be noisy and suffer from domain shifts, and

using techniques such as SLAM and VIO to extract camera poses as an additional input modality

9

https://zhengyiluo.github.io/projects/kin_poly/

can largely reduce the root drift. Intuitively, the image features computed from optical flow and
the camera pose extracted using VIO provides similar set of information, while VIO provides a
cleaner information extraction process. Note that our kinematic policy without using extracted camera
trajectory outperforms EgoPose that uses camera pose in both success rate and camera trajectory
tracking. Upon visual inspection, the humanoid in R3 largely does not fall down (compared to in
EgoPose) and mainly attributes the failure cases to drifting too far from the object.

5 Discussions

5.1 Failure Cases and Limitations

Although our method can produce realistic human pose and human-object interaction estimation from
egocentric videos, we are still at the early stage of this challenging task. Our method performs well
in the MoCap studio setting and generalizes to real-world settings, but is limited to a predefined set

of interactions where we have data to learn from. Object class and pose information is computed by
off-the-shelf methods such as Apple’s ARkit [17], and is provided as a strong prior to our kinematic
policy to infer pose. We also only factor in the 6DoF object pose in our state representation and
discard all other object geometric information. The lower success rate on the real-world dataset
also indicates that our method still suffers from covariate shifts and can become unstable when the
shift becomes too extreme. Our Universal Humanoid Controller can imitate everyday motion with
high accuracy, but can still fail at extreme motion. Due to the challenging nature of this task, in
this work, we focus on developing a general framework to ground pose estimation with physics by
merging the kinematics and dynamics aspects of human motion. To enable pose and human-object
interaction estimation for arbitrary actions and objects, better scene understanding and kinematic
motion planning techniques need to be developed.

5.2 Conclusion and Future Work

In this paper, we tackle, for the first time, estimating physically-plausible 3D poses from an egocentric
video while the person is interacting with objects. We collect a motion capture dataset and real-world
dataset to develop and evaluate our method, and extensive experiments have shown that our method
outperforms all prior arts. We design a dynamics-regulated kinematic policy that can be directly
trained and deployed inside a physics simulation, and we purpose a general-purpose humanoid
controller that can be used in physics-based vision tasks easily. Through our real-world experiments,
we show that it is possible to estimate 3D human poses and human-object interactions from just an
egocentric view captured by consumer hardware (iPhone). In the future, we would like to support
more action classes and further improve the robustness of our method by techniques such as using a
learned motion prior. Applying our dynamics-regulated training procedure to other vision tasks such
as visual navigation and third-person pose estimation can also be of interest.

Acknowledgements: This project was sponsored in part by IARPA (D17PC00340), and JST AIP
Acceleration Research Grant (JPMJCR20U1).

References
[1] Kevin Bergamin, Simon Clavet, Daniel Holden, and J. Forbes. Drecon. ACM Transactions on Graphics

(TOG), 38:1 – 11, 2019.

[2] Federica Bogo, A. Kanazawa, Christoph Lassner, P. Gehler, J. Romero, and Michael J. Black. Keep it smpl:
Automatic estimation of 3d human pose and shape from a single image. In The European Conference on

Computer Vision (ECCV), 2016.

[3] Nicolò Bonettini, Edoardo Daniele Cannas, Sara Mandelli, Luca Bondi, Paolo Bestagini, and Stefano
Tubaro. Video face manipulation detection through ensemble of cnns. In 2020 25th International

Conference on Pattern Recognition (ICPR), pages 5012–5019, 2021.

[4] M. Brubaker, L. Sigal, and David J. Fleet. Estimating contact dynamics. 2009 IEEE 12th International

Conference on Computer Vision, pages 2389–2396, 2009.

[5] Yu-Wei Chao, Jimei Yang, Weifeng Chen, and Jia Deng. Learning to sit: Synthesizing human-chair
interactions via hierarchical control. ArXiv, abs/1908.07423, 2019.

10

[6] N. Chentanez, M. Müller, M. Macklin, Viktor Makoviychuk, and S. Jeschke. Physics-based motion capture
imitation with deep reinforcement learning. Proceedings of the 11th Annual International Conference on

Motion, Interaction, and Games, 2018.

[7] Kyunghyun Cho, B. V. Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk,
and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine
translation. ArXiv, abs/1406.1078, 2014.

[8] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016.

[9] J. Engel, J. Sturm, and D. Cremers. Semi-dense visual odometry for a monocular camera. In IEEE

International Conference on Computer Vision (ICCV), pages 1449–1456, Los Alamitos, CA, USA, Dec.
2013. IEEE Computer Society.

[10] Georgios V. Georgakis, Ren Li, Srikrishna Karanam, Terrence Chen, Jana Kosecka, and Ziyan Wu.
Hierarchical kinematic human mesh recovery. ArXiv, abs/2003.04232, 2020.

[11] Riza Alp Güler, N. Neverova, and I. Kokkinos. Densepose: Dense human pose estimation in the wild.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7297–7306, 2018.

[12] I. Habibie, W. Xu, D. Mehta, G. Pons-Moll, and C. Theobalt. In the wild human pose estimation using
explicit 2d features and intermediate 3d representations. In IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 10897–10906, Jun. 2019.

[13] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[14] Mir Rayat Imtiaz Hossain and J. Little. Exploiting temporal information for 3d human pose estimation. In
The European Conference on Computer Vision (ECCV), 2018.

[15] Soo hwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and J. Lee. Learning predict-and-simulate
policies from unorganized human motion data. ACM Transactions on Graphics (TOG), 38:1 – 11, 2019.

[16] Apple Inc. Estimating camera pose with arkit. https://developer.apple.com/documentation/
arkit/arcamera, 2021. Accessed: 2021-03-16.

[17] Apple Inc. Scanning and detecting 3d objects with arkit. https://developer.apple.com/
documentation/arkit/content_anchors/scanning_and_detecting_3d_objects, 2021. Ac-
cessed: 2021-03-16.

[18] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3.6m: Large scale datasets
and predictive methods for 3d human sensing in natural environments. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 36(7):1325–1339, jul 2014.

[19] Mariko Isogawa, Ye Yuan, Matthew O’Toole, and Kris M Kitani. Optical non-line-of-sight physics-based
3d human pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 7013–7022, 2020.

[20] Hao Jiang and Kristen Grauman. Seeing invisible poses: Estimating 3d body pose from egocentric video.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3501–3509, Jun. 2016.

[21] A. Kanazawa, Michael J. Black, D. Jacobs, and Jitendra Malik. End-to-end recovery of human shape and
pose. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7122–7131, 2018.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[23] Muhammed Kocabas, Nikos Athanasiou, and Michael J. Black. Vibe: Video inference for human body
pose and shape estimation. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5252–5262, 2020.

[24] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and Kostas Daniilidis. Learning to reconstruct
3d human pose and shape via model-fitting in the loop. 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), pages 2252–2261, 2019.

[25] Sijin Li and Antoni B. Chan. 3d human pose estimation from monocular images with deep convolutional
neural network. In ACCV, 2014.

[26] Hung Yu Ling, Fabio Zinno, George H. Cheng, and M. V. D. Panne. Character controllers using motion
vaes. ACM Transactions on Graphics (TOG), 39:40:1 – 40:12, 2020.

11

http://pybullet.org
https://developer.apple.com/documentation/arkit/arcamera
https://developer.apple.com/documentation/arkit/arcamera
https://developer.apple.com/documentation/arkit/content_anchors/scanning_and_detecting_3d_objects
https://developer.apple.com/documentation/arkit/content_anchors/scanning_and_detecting_3d_objects

[27] M. Loper, Naureen Mahmood, J. Romero, Gerard Pons-Moll, and Michael J. Black. Smpl: a skinned
multi-person linear model. ACM Trans. Graph., 34:248:1–248:16, 2015.

[28] Zhengyi Luo, S. Alireza Golestaneh, and Kris M. Kitani. 3d human motion estimation via motion
compression and refinement. In Proceedings of the Asian Conference on Computer Vision (ACCV),
November 2020.

[29] Naureen Mahmood, N. Ghorbani, N. Troje, Gerard Pons-Moll, and Michael J. Black. Amass: Archive of
motion capture as surface shapes. 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 5441–5450, 2019.

[30] J. Merel, S. Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham, T. Erez, Greg
Wayne, and N. Heess. Reusable neural skill embeddings for vision-guided whole body movement and
object manipulation. ArXiv, abs/1911.06636, 2019.

[31] Gyeongsik Moon, Juyong Chang, and Kyoung Mu Lee. Camera distance-aware top-down approach for 3d
multi-person pose estimation from a single rgb image. In IEEE Conference on International Conference

on Computer Vision (ICCV), pages 10113–10142, Oct. 2019.

[32] Gyeongsik Moon and Kyoung Mu Lee. I2l-meshnet: Image-to-lixel prediction network for accurate 3d
human pose and mesh estimation from a single rgb image. ArXiv, abs/2008.03713, 2020.

[33] Evonne Ng, Donglai Xiang, Hanbyul Joo, and Kristen Grauman. You2me: Inferring body pose in
egocentric video via first and second person interactions. CoRR, abs/1904.09882, 2019.

[34] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3d human pose estimation in
video with temporal convolutions and semi-supervised training. In Conference on Computer Vision and

Pattern Recognition (CVPR), Jun. 2019.

[35] X. Peng, M. Chang, Grace Zhang, P. Abbeel, and Sergey Levine. Mcp: Learning composable hierarchical
control with multiplicative compositional policies. In NeurIPS, 2019.

[36] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deepmimic: Example-guided
deep reinforcement learning of physics-based character skills. ACM Trans. Graph., 37(4):143:1–143:14, 7
2018.

[37] Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine. Sfv: Reinforcement
learning of physical skills from videos. ACM Trans. Graph., 37(6), November 2018.

[38] Davis Rempe, L. Guibas, Aaron Hertzmann, Bryan C. Russell, R. Villegas, and Jimei Yang. Contact and
human dynamics from monocular video. In SCA, 2020.

[39] Helge Rhodin, Christian Richardt, Dan Casas, Eldar Insafutdinov, Mohammad Shafiei, Hans-Peter Seidel,
Bernt Schiele, and Christian Theobalt. Egocap: Egocentric marker-less motion capture with two fisheye
cameras. ACM Trans. Graph., 35(6), November 2016.

[40] Grégory Rogez, Philippe Weinzaepfel, and Cordelia Schmid. LCR-Net++: Multi-person 2D and 3D Pose
Detection in Natural Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

[41] John Schulman, F. Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. ArXiv, abs/1707.06347, 2017.

[42] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, Patrick Pérez, and Christian Theobalt. Neural monocular
3d human motion capture. ACM Transactions on Graphics, 40(4), aug 2021.

[43] Soshi Shimada, Vladislav Golyanik, Weipeng Xu, and C. Theobalt. Physcap: Physically plausible
monocular 3d motion capture in real time. ACM Trans. Graph., 39:235:1–235:16, 2020.

[44] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. PWC-Net: CNNs for optical flow using
pyramid, warping, and cost volume. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), Jun. 2018.

[45] J. Tan, K. Liu, and G. Turk. Stable proportional-derivative controllers. IEEE Computer Graphics and

Applications, 31(4):34–44, Jul. 2011.

[46] Bugra Tekin, Isinsu Katircioglu, M. Salzmann, Vincent Lepetit, and P. Fua. Structured prediction of 3d
human pose with deep neural networks. ArXiv, abs/1605.05180, 2016.

[47] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 5026–5033, Oct. 2012.

12

[48] Denis Tome, Patrick Peluse, Lourdes Agapito, and Hernan Badino. xr-egopose: Egocentric 3d human pose
from an hmd camera. In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 7728–7738, Oct. 2019.

[49] M. Vondrak, L. Sigal, J. Hodgins, and O. C. Jenkins. Video-based 3d motion capture through biped control.
ACM Transactions on Graphics (TOG), 31:1 – 12, 2012.

[50] S. Wang, R. Clark, H. Wen, and N. Trigoni. Deepvo: Towards end-to-end visual odometry with deep
recurrent convolutional neural networks. In IEEE International Conference on Robotics and Automation

(ICRA), pages 2043–2050, May 2017.

[51] Tingwu Wang, Yunrong Guo, Maria Shugrina, and S. Fidler. Unicon: Universal neural controller for
physics-based character motion. ArXiv, abs/2011.15119, 2020.

[52] Jungdam Won, Deepak Gopinath, and Jessica Hodgins. A scalable approach to control diverse behaviors
for physically simulated characters. ACM Trans. Graph., 39(4), 2020.

[53] Weipeng Xu, Avishek Chatterjee, Michael Zollhoefer, Helge Rhodin, Pascal Fua, Hans-Peter Seidel, and
Christian Theobalt. Mo2Cap2 : Real-time mobile 3d motion capture with a cap-mounted fisheye camera.
IEEE Transactions on Visualization and Computer Graphics, pages 1–1, 2019.

[54] Yuanlu Xu, S. Zhu, and Tony Tung. Denserac: Joint 3d pose and shape estimation by dense render-
and-compare. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 7759–7769,
2019.

[55] Ye Yuan and Kris Kitani. 3d ego-pose estimation via imitation learning. In The European Conference on

Computer Vision (ECCV), Sep. 2018.

[56] Ye Yuan and Kris Kitani. Ego-pose estimation and forecasting as real-time pd control. In IEEE International

Conference on Computer Vision (ICCV), pages 10082–10092, Oct. 2019.

[57] Ye Yuan and Kris Kitani. Residual force control for agile human behavior imitation and extended motion
synthesis. In Advances in Neural Information Processing Systems, 2020.

[58] Ye Yuan, Shih-En Wei, Tomas Simon, Kris Kitani, and Jason Saragih. Simpoe: Simulated character control
for 3d human pose estimation. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2021.

[59] Hongwen Zhang, Jie Cao, Guo Lu, Wanli Ouyang, and Z. Sun. Learning 3d human shape and pose from
dense body parts. ArXiv, abs/1912.13344, 2019.

13

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Due to space constraints, lim-
itation is briefly discussed in the conclusion section of the main paper and is more
rigorously discussed in the supplement.

(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] Provided in the supplemantry materials.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] We train our methods multiple times using different seeds
to verify its effectiveness and the results are consistent across multiple runs. Analysis
about the stochasticity of our method is included in the supplement.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [Yes]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [Yes]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14

	Introduction
	Related Work
	Method
	Dynamics Model - Universal Humanoid Controller (UHC)
	Kinematic Model – Object-aware Kinematic Policy
	Dynamics-Regulated Training

	Experiments
	Results
	Ablation Study

	Discussions
	Failure Cases and Limitations
	Conclusion and Future Work

	Qualitative Results (Supplemantry Video)
	Dynamics-regulated Kinematic Policy
	Evaluation Metrics Definition
	Fail-safe during evaluation
	Implementation Details
	Additional Experiments about Stochasticity
	Additional Analysis into low Per Joint Error

	Universal Humanoid Controller
	Implementation Details
	Evaluation on AMASS
	Evaluation on H36M

	Additional Dataset Details
	MoCap dataset.
	Real-world dataset.
	Dataset Diversity

	Broader social impact.

