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A Proof of Theorem 2 & 3

Suppose the loss function L is decomposable over state action pairs, then we can write, Equation (2)
as following:
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By introducing dual variables w for the feature expectation constraints, the Lagrangian function of
Equation (12) is given by:
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The optimization in Equation (13) is over ⇡̂ and ⇡̌. However, the objective function Equation (13),
decomposes over the state-action distribution induced by policies ⇡̂ and ⇡̌. We directly optimize over
the marginals:
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ŝ,â
š,ǎ
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where pt(ŝ, â) = P (Ŝt = ŝ, Ât = â) and qt(š, ǎ) = P (Št = š, Ǎt = ǎ). This optimization needs to
be over valid state-action marginals (marginals induced by a policy). So the following constrained
need to be satisfied:
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Since Equation (14) is convex in all variables pt, qt, and w, the order of optimization can be changed:
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š,ǎ
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where P = (p1, p2, ..., pT ) and Q = (q1, q2, ..., qT ).

The proof for stationary case is similar.
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