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Abstract

Deep Markov models (DMM) are generative models that are scalable and expres-
sive generalization of Markov models for representation, learning, and inference
problems. However, the fundamental stochastic stability guarantees of such models
have not been thoroughly investigated. In this paper, we provide sufficient condi-
tions of DMM’s stochastic stability as defined in the context of dynamical systems
and propose a stability analysis method based on the contraction of probabilistic
maps modeled by deep neural networks. We make connections between the spec-
tral properties of neural network’s weights and different types of used activation
functions on the stability and overall dynamic behavior of DMMs with Gaussian
distributions. Based on the theory, we propose a few practical methods for design-
ing constrained DMMs with guaranteed stability. We empirically substantiate our
theoretical results via intuitive numerical experiments using the proposed stability
constraints.

1 Introduction

Modeling, analysis, and control of dynamical systems are of utmost importance for various physical
and engineered systems such as fluid dynamics, oscillators, power grids, transportation networks,
and autonomous driving, to name just a few. The systems are generally subjected to uncertainties
arising from a plethora of factors such as exogenous noise, plant-model mismatch, and unmodeled
system dynamics, which have led researchers to model the dynamics in stochastic frameworks. One
of the most commonly used probabilistic frameworks to model dynamical system is the Hidden
Markov Models (HMMs) [Rabiner and Juang, 1986, Eddy, 1996] which in their vanilla form have
been extensively investigated for representation, learning, and inference problems [Ghahramani and
Jordan, 1997, Cappé et al., 2006, Beal et al., 2002]. One of its variants, the Gaussian state space
models, have been used in the systems and control community for decades [Beckers and Hirche,
2016, Eleftheriadis et al., 2017].

It has been shown that expressivity of Markov models to emulate complex dynamics and sequential
behaviors is greatly improved by parametrizing such models using deep neural networks, giving
rise to Deep Markov Models (DMMs) [Krishnan et al., 2017]. Main research activities have been
focused on the inference of these models. In particular, works such as Awiszus and Rosenhahn [2018],
Liu et al. [2019], Mustafa et al. [2019], Qu et al. [2019] proposed parametrizing the probability
distributions using deep neural networks for modeling various complex dynamical systems. Despite
the rising popularity of DMMs, many of their theoretical properties such as robustness to perturbations,
and stability of the generated trajectories remain open research questions. Many natural systems
exhibit complex yet stable dynamical behavior that is described by converging trajectories towards an
attractor set [Brayton and Tong, 1979]. Additionally, safety-critical systems such as an autonomous
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driving call for formal verification methods to ensure safe operation. Thus the ability to guarantee
stability in data-driven models could lead to improved generalization or act as a safety certificate in
real-world applications.

In this paper, we propose a new analytical method to assess stochastic stability of DMMs. More
specifically, we utilize spectral analysis of deep neural networks (DNNs) modeling DMM’s distri-
butions. This allows us to make connections between the stability of deterministic DNNs and the
stochastic stability of deep Markov models. As a main theoretical contribution we provide sufficient
conditions for stochastic stability of DMMs. Based on the proposed theory we introduce several
practical methods for design of constrained DMM with stability guarantees. In summary, the main
contributions of this paper include:

1. Stability analysis method for deep Markov models: we base the analysis on the operator
norms of deep neural networks modeling mean and variance of the DMM’s distributions.

2. Sufficient conditions for stochastic stability of deep Markov models: we show the suffi-
ciency of the operator norm-based contraction conditions for DMM’s deep neural networks
by leveraging Banach fixed point theorem.

3. Stability constrained deep Markov models: we introduce a set of methods for the design
of provably stable deep Markov models.

4. Numerical case studies: we analyze connections between the design parameters of neural
networks, stochastic stability, and operator norms of deep Markov models.

2 Related Work

Deep Markov models (DMMs) have been used as a scalable and expressive generalization of Hidden
Markov Models (HMM) for learning probabilistic generative models of complex high-dimensional
dynamical systems from sequential data [Rezende et al., 2014, Krishnan et al., 2017, Fraccaro et al.,
2016]. DMMs have been successfully applied to speech recognition problems [Li et al., 2013,
Prasetio et al.], control problems [Shashua and Mannor, 2017], human pose forecasting [Toyer et al.,
2017], fault detection [Wang et al., 2018], climate data forecasting [Che et al., 2018], molecular
dynamics [Wu et al., 2018], or as internal models in model-based deep RL applied to automatic
trading [Ferreira, 2020]. Several modifications of DMMs have been proposed to handle incomplete
data [Tan et al., 2019], or multi-rate time series [Che et al., 2018] multivariate time series [Montanez
et al., 2015], training DMMs in unsupervised settings [Tran et al., 2016], or architectures inspired by
Kalman Filters [Krishnan et al., 2015, Shashua and Mannor, 2017, Becker et al., 2019]. However,
works focusing on formal analysis to ensure stability guarantees for DMMs are missing.

Stability notions and analysis for stochastic dynamic systems have been studied in the automatic
control literature in various forms, depending on the representation of the system dynamics. Some
classical results on stochastic stability for analysis and control can be found in McLane [1971],
Willems and Willems [1976]. These results are presented mainly for stochastic differential equation
(SDE) models. Khasminskii [2012] discusses different notions of stochastic stability, among them
mean-square based stability notions have gained interest in works such as Lu and Skelton [2002],
Farmer et al. [2009], Elia et al. [2013], Nandanoori et al. [2018], Wu et al. [2019]. We resort to such
mean-square based stability notions when analyzing probabilistic state transition models parametrized
by deep neural networks. We show that when the stochastic transitions are modeled by DNNs, the
probabilistic stability requirements can be translated to deterministic stability notions of nonlinear
discrete-time dynamics [Khalil, 2002].

In recent years, deep neural networks have been extensively studied from the viewpoint of dynamical
systems [Chen et al., 2018, Raissi et al., 2017, Ciccone et al., 2018], allowing for the application
of stability analysis methods to DNNs. For instance, Manek and Kolter [2019] proposed neural
Lyapunov function to stabilize learned neural dynamics of autonomous system. Haber and Ruthotto
[2017] interpret residual connections in neural networks as Euler discretization of ODEs and provide
stability guarantees of ResNet. Goel and Klivans [2017] makes connections between eigenvalue
decay and learnability of neural networks. Engelken et al. [2020], Vogt et al. [2020] studies the
Lyapunov spectrum to of the input-output Jacobian of recurrent neural networks (RNNs) to assess
RNN’s stability. In this work we leverage advances in the spectral analysis of deep neural networks
and apply them to derive stochastic stability guarantees for DMMs.
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Besides analytical methods, many authors introduced provably stable neural architectures [Haber
et al., 2019, Greydanus et al., 2019, Cranmer et al., 2020] or stability constraints [John et al., 2017].
Another popular strategy is to employ stabilizing regularizations. This can be achieved by minimizing
eigenvalues of squared weights [Ludwig et al., 2014], using symplectic weights [Haber and Ruthotto,
2017], orthogonal parametrizations [Mhammedi et al., 2017], Perron-Frobenius theorem [Tuor
et al., 2020], Gershgorin dics theorem [Lechner et al., 2020], or via singular value decomposition
(SVD) [Zhang et al., 2018]. In this paper we leverage different weight factorization to empirically
validate the proposed theoretical guarantees on stochastic stability of DMMs.

3 Methodology

This section presents stochastic stability analysis method for deep Markov models (DMM). First,
we demonstrate the equivalence of DNNs with pointwise affine (PWA) functions. Next, we recall
the definition of DMM with transition probabilities modeled by deep neural networks (DNNs). We
introduce definitions of stochastic stability and show how can we leverage deterministic stability
analysis in the probabilistic context. Finally, we will leverage the equivalence of DNNs with PWA
maps to pose sufficient stability stochastic conditions for DMMs based on contraction of PWA maps.

3.1 Equivalence of Deep Neural Networks with Pointwise Affine Maps

Let us consider deep neural network (DNN) ψ : Rn → Rm parametrized by θψ =

{Aψ
0 , . . .A

ψ
L ,b0, . . . ,bL} with hidden layers 1 ≤ l ≤ L with bias given as follows:

ψθψ (x) = Aψ
LhψL + bL (1a)

hψl = v(Aψ
l−1h

ψ
l−1 + bl−1) (1b)

with hψ0 = x, and v : Rnz → Rnz representing element-wise application of an activation function to
vector elements such that v(z) := [v(z1) . . .v(znz

)]
ᵀ.

Lemma 1. For a multi-layer feedforward neural networkψθψ (3.2) with arbitrary activation function
v, there exists an equivalent pointwise affine map (PWA) parametrized by x which satisfies:

ψθψ (x) = Aψ(x)x + bψ(x). (2)

Where Aψ(x) is a parameter varying matrix given as:

Aψ(x)x = Aψ
LΛψzL−1

Aψ
L−1 . . .Λ

ψ
z0

Aψ
0 x (3)

And bψ(x) is a parameter varying vector, both parametrized by input vector x given by following
recurrent formula:

bψ(x) = bψL (4)

bψl := Aψ
i Λψzl−1

bψl−1 + Aψ
i σl−1(0) + bl, l ∈ NL1 (5)

with bψ0 = b0, and i representing index of the network layer. Here Λψzl
represents parameter varying

diagonal matrix of activation patterns defined as:

σ(z) =


σ(z1)−σ(0)

z1
. . .

σ(zn)−σ(0)
zn

 z +

σ(0)
...

σ(0)

 = Λψz z + σ(0) (6)

Proof. First lets observe the following:

σ(z) =

σ(z1)
...

σ(zn)

 =


z1(σ(z1)−σ(0)+σ(0))

z1
...

zn(σ(zn)−σ(0)+σ(0))
zn

 =


σ(z1)−σ(0)

z1
. . .

σ(zn)−σ(0)
zn

 z +

σ(0)
...

σ(0)

 (7)
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Remember σ(0) − σ(0) = 0, and zi
zi

= 1 are identity elements of addition and multiplication,
respectively. Thus (7) demonstrates the equivalence σ(z) = Λψz z +σ(0) as given in (6). Then if we
let zl = Aψ

l xl + bl, we can represent a neural network layer in a parameter varying affine form:

σl(A
ψ
l xl + bl) = Λψzl

(Aψ
l xl + bl) + σ(0) = Λψzl

Aψ
l xl + Λψzl

bl + σl(0) (8)

Now for simplicity of exposition lets assume only activations with trivial null space, i.e. σ(0) = 0.
Thus σ(z) = Λψz z. By composition, a DNN ψθψ (x) can now be formulated as a parameter-varying
affine map Aψ(x)x + bψ(x), parametrized by input x

ψθψ (x) := Aψ(x)x + bψ(x) =

Aψ
LΛψzL−1

(Aψ
L−1(. . .Λψz1

(Aψ
1 Λψz0

(Aψ
0 x + b0) + b1) . . .) + bL−1)x + bL

Aψ(x)x = Aψ
LΛψzL−1

Aψ
L−1 . . .Λ

ψ
z0

Aψ
0 x

bψ(x) = Aψ
L . . .A

ψ
2 Λψz1

Aψ
1 Λψz0

b0 + Aψ
L . . .A

ψ
2 Λψz1

Aψ
1 σ0(0)+

Aψ
L . . .A

ψ
2 Λψz1

b1 + Aψ
L . . .A

ψ
2 σ1(0) + . . .+ Aψ

LΛψzL−1
bL−1 + Aψ

LσL−1(0) + bL

(9)

Hence, each input feature vector x generates a unique affine map Aψ(x)x + bψ(x) of the DNN
ψθψ (x). Thus proving the equivalence of DNN map (3.2) with the form (2). The case with σ(0) 6= 0
can be derived following the same algebraic operations as as above.

3.2 Deep Markov Models

We consider a dynamical system with latent state variables xt ∈ Rn, and the observed variables
yt ∈ Rm. The transition from xt to the next time step xt+1, and the outputs yt are modeled by
probabilistic transitions. Over a horizon of T time steps with a step size ∆t, we assume the Markov
property to embed structural independence conditions in the dynamic state evolution, i.e.,

xt+1 ⊥ x0:t−1 | xt, (10)

Thus having latent state dynamics characterized by one-time-step conditional distribution P (xt+1|xt).
The joint distribution over the latent states and the observations is given by,

P (x0:T ,y0:T ) = P (x0)P (y0|x0)

T−1∏
t=0

P (xt+1|xt)P (yt|xt). (11)

More explicitly, we consider the following probabilistic transition and the emission maps:

xt+1 ∼ N (Kα(xt,∆t), Lβ(xt,∆t)) (Transition) (12a)
yt ∼M(Fκ(xt)) (Emission) (12b)

with the initial condition xt=0 = x0. Here, N and M denote the probability distributions. For
the transition mapping, N denotes a Gaussian distribution with the mean vector Kα(xt,∆t), and
covariances Lβ(xt,∆t). The distributionM can be arbitrary with its distribution characterized by
the map Fκ(xt). In this paper, we are interested in the stability characterizations of the latent state
dynamics given by transition map (12a), thereby assuming full state observability.

We are interested in expressing the dynamics of complex systems using (12), therefore it is suitable
to expand the expressivity of our model by parametrizing the conditional distribution P (xt+1|xt) by
deep neural networks (DNNs) given as,

Kα(xt,∆t) = fθf (xt), (13)
vec(Lβ(xt,∆t)) = gθg(xt), (14)

where f : Rn → Rn and g : Rn → Rn2

are two deep neural networks parametrized by θf and
θg, respectively. And vec(·) denotes standard vectorization operation. Therefore, the probabilistic
transition dynamics (12a) can be characterized by analysing the stability and boundedness of deep
neural networks f and g.
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3.3 Stability of Deep Markov Models

To this end, we bring forth a few stability notions in the context of stochastic state transitions. In
stochastic dynamics and control literature [Khasminskii, 2012], various different notions of stability
for stochastic state transitions, such as mean-square stability, almost-sure stability and stability via
convergence in probability, have been discussed. In this article, since we are interested in the latent
state trajectories of the dynamic systems, we consider the mean-square stability as defined in [Willems
and Willems, 1976, Nandanoori et al., 2018]. The dynamic system is said to be mean-square stable if
the first and the second moment converge over time.
Definition 2. The stochastic process xt ∈ Rn is mean-square stable (MSS) if and only if there exists
µ ∈ Rn,Σ ∈ Rn×n, such that limt→∞ E(xt) = µ, and limt→∞ E(xtx

T
t ) = Σ.

The MSS condition from Definition 2 requires the dynamics (13) to have stable equilibrium x̄e = µ,
where x̄ denotes the mean state vector. The definition also requires the covariance to converge. To
express the dynamic behavior of complex system, the second moment convergence criterion can be
relaxed by only requiring it to be norm bounded in order to ensure stochastic stability given as,

‖gθg(xt)‖p < K, K > 0, ∀t. (15)
Here ‖ · ‖p denotes any appropriate vector norm, e.g., L2−norm. The bound on the covariances will
depend on the extent of stochasticity that the dynamic system encounters in an uncertain environment.
However, in the later parts, we consider the convergence scenario for g as in Definition 2, rather than
merely boundedness, in prescribing the sufficient conditions for the MSS-type stability.

Let us first analyze the mean dynamics characterized by (13), and its equilibrium x̄e = µ which
satisfies the stationarity condition fθf (x̄e) = x̄e. We have the mean state vector x̄t evolving under
the following dynamics:

x̄t+1 = fθf (x̄t). (16)
(16) allows us to analyze the asymptotic stability of the DMM mean dynamics. Now in the main
result of this section we leverage the fact that the dynamic characteristics of the deep neural networks
fθf , gθg around a point x̄t can be evaluated by obtaining their exact pointwise affine forms (PWA) (2).
Based on this equivalence we formulate Theorem 3 and Corollary 5 as follows with sufficient
conditions for the stability of deep Markov models.
Theorem 3. The deep Markov model (12) which is parametrized by deep neural networks (13)-(14)
remains globally stable in the mean-square sense if the following holds. The mean neural network
fθf (x) is a contractive map for any x in the domain of fθf (x). The variance network gθg(x) is
bounded for any x in the domain of gθg(x). Or more formally:

‖Af (x)‖p < 1 (17a)

||Ag(x)||p +
||bg(x)||p
‖x‖p

< 1, (17b)

∀x ∈ Domain(fθf (x),gθg(x)). (17c)

Proof. First we prove the sufficiency of the contraction condition of the mean dynamics (17a). We
base the proof on the equivalence of multi-layer neural networks with pointwise affine maps (2). An
affine map is a contraction if the 2-norm of its linear part is bounded below one, i.e. ||A||2 < 1.
Thus it follows that the condition (17a) and equivalence (2) imply a contractive mean neural network
fθf (x). The sufficiency of the contraction condition on mean square stable (MSS) equilibrium in
the sense of Definition 2 follows directly from the Banach fixed-point theorem, which states that
every contractive map converges towards single point equilibirum. Hence condition (17a) implies
convergent mean transition dynamics:

µ = fθf (µ) = lim
t→∞

fθf (x̄t) (18)

Now we show the sufficiency of (17b) to guarantee the boundedness of the covariance matrix
elements (15) by bounding the p-norm of the covariance neural network ‖gθg(x)‖p. Please note that
using the form (2) gives us ‖gθg(x)‖p = ‖Ag(x)x + bg(x)‖p yielding following inequalities:

‖gθg(x)‖p ≤ ‖Ag(x)x‖p + ‖bg(x)‖p, (19a)
||gθg(x)||p
‖x‖p

≤ ‖Ag(x)‖p +
||bg(x)||p
‖x‖p

. (19b)

5



We show that (19b) gives in fact a local Lipschitz constant of the variance network gθg(x). We
exploit the point-wise affine nature of the neural network’s form (2) and the fact that the norm of a
linear operator A is equivalent to its minimal Lipschitz constant KAmin = ||A||p [Huster et al., 2018].
Thus we can compute the local Lipschitz constants of a neural network gθg(x) as:

Kg(x) = ||Ag(x)||p +
||bg(x)||p
‖x‖p

. (20)

Applying the upper bound (17b) on the local Lipschitz constant (20) guarantees the contraction of
the variance neural network fθg(x) towards a fixed steady state Σ.

Remark 4. To guarantee stochastic stability, the condition (17b) can be relaxed as given in (15) to
bounded second moment (15) with maxxKg(x) < K, where K > 0.
Corollary 5. The deep Markov model (12) which is parametrized by deep neural networks (13)-(14)
remains globally stable in the mean-square sense if the following holds: All weights Af

i of the
mean network are fθf contractive maps. All activation scaling matrices Λf

zi
of the mean network

are non-expanding. Norms of all weights Ag
j and activation scaling matrices Λg

zj
of the variance

network gθg are upper bounded by 1. Or more formally:

‖Af
i‖p < 1, ||Λf

zi
||p ≤ 1 i ∈ NLf

1 , (21a)

‖Ag
j ‖p < 1, ||Λg

zj
||p ≤ 1, j ∈ NLg

1 , (21b)

∀x ∈ Domain(fθf (x),gθg(x)). (21c)

Proof. First we show the sufficiency ‖Ai‖p < 1 of contractive weights and non-expanding activa-
tion scaling matrices ‖Λzi

‖ ≤ 1 to guarantee the contractivity of arbitrary deep neural networks.
Assuming general non-square weights Ai ∈ Rni×mi we use the submultiplicativity of the induced
p-norms to upper bound the norm of a products of m matrices given as:

‖A1 . . .Am‖p ≤ ‖A1‖p . . . ‖Am‖p (22)

Now by applying (22) to the linear parts (3) of the mean neural network fθf in the pointwise affine
form (2) with ‖Af

i‖p < 1, ∀i ∈ NL0 , ‖Λf
zj
‖p ≤ 1, ∀j ∈ NL1 , it yields ‖Af (x)‖p < 1 over the

entire domain of fθf (x), thus with p = 2 satisfying the contraction condition ||Af (x)||2 < 1 for
affine maps. The submultiplicativity (22) naturally applies also to the variance network gθg(x) thus
implying the contraction towards a fixed point given the conditions (21).

Remark 6. To guarantee stochastic stability, we can relax the upper bound of the second moment
as K =

∏L
i c

AcΛ, where cA > 0, and cΛ > 0 represent the relaxed upper bounds of the operator
norms in condition (21b). Thus satisfying the relaxed boundedness condition on the variance via (15).

Assuming the contraction conditions (17) or (21) hold and the mean neural network fθf has zero bias,
then the DMM’s mean network fθf (x) is equivalent with stable parameter varying linear map (3)
with equilibrium in the origin, i.e. x̄ = 0. In the case with non-zero bias in fθf , the corresponding
PWA map (2) has non-zero equilibrium x̄ 6= 0. Both conditions (17) or (21) are sufficient for a
convergence of a DMM (12) to a stable equilibrium x̄. However, they do not provide bounds of the
admissible values of the equilibrium x̄. The corresponding equilibrium bounds are provided in the
supplementary material.

3.4 Design of Stable Deep Markov Models

In this section, we provide a set of practical design methods for provably stable DMM (12). Based
on the Corollary 5 the use of contractive activation functions together with contractive weights for
both mean and variance network will guarantee the stability of DMM by design. In particular, the
conditions (21) on bounded norm of transitions’ activation scaling matrices ||Λf

zi
|| ≤ 1, ||Λg

zj
|| ≤ 1

implies Lipschitz continuous activation functions with constant K ≤ 1. Conveniently, this condition
is satisfied for many popular activation functions such as ReLU, LeakyReLU, or tanh. The
contractivity conditions (21) on weight matrices ‖Af

i‖p < 1, ‖Ag
j ‖p < 1, respectively, can be

enforced by employing various matrix factorizations proposed in the deep neural network litertature.
Examples include singular value decomposition (SVD) [Zhang et al., 2018], Perron-Frobenius
(PF) [Tuor et al., 2020], and Gershgorin discs (GD) [Lechner et al., 2020] factorizations given below.
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PF weights: This factorization applies Perron-Frobenius theorem for constraining the dominant
eigenvalue of the square nonnegative matrices. Based on this theorem, we can construct the weight
matrix A with bounded eigenvalues as follows:

M = λmax − (λmax − λmin)g(M′) (23a)

Ai,j =
exp(A′ij)∑nx

k=1 exp(A′ik)
Mi,j (23b)

here M represents the damping factor parameterized by the matrix M′ ∈ Rnx×nx , while A′ ∈
Rnx×nx represents the second parameter matrix encoding the stable weights A. The lower and upper
bound of the dominant eigenvalue are given by λmin and λmax, respectively.

SVD weights: Inspired by singular value decomposition (SVD), this method decomposes a possibly
non-square weight matrix A = UΣV into two unitary matrices U and V, and a diagonal matrix Σ
with singular values on its diagonal. The orthogonality of U and V is enforced via penalties:

Lreg = ||I−UU>||2 + ||I−U>U||2 + ||I−VV>||2 + ||I−V>V||2 (24)

An alternative approach to penalties introduced in Zhang et al. [2018] is to use Householder reflectors
to represent unitary matrices U and V. The constraints λmin and λmax on the singular values λ can be
implemented by clamping and scaling given as:

Σ = diag(λmax − (λmax − λmin) · σ(λ)) (25)

GD weights: This method supporting square matrices leverages the Gershgorin dics theorem [Varga,
2004]. It says that all eigenvalues λi of the weight A can be bounded in the complex plane with
center λ and radius r given by the formula:

A = diag
( r
s1
, ..., rsn

)
M + diag (λ, ..., λ) (26)

Where M ∈ Rn×n with mi,j ∼ U(0, 1), except mi,i = 0 is learnable parameter matrix. While
diagonal matrices diag

( r
s1
, ..., rsn

)
, and diag (λ, ..., λ) represent radii and centers of the bounded

eigenvalues, where sj =
∑
i 6=jmi,j .

Parametric stability constraints: The disadvantage of enforcing the global stability conditions as
given via Corollary 5 is their negative effect on the expressivity of the DMM, resulting in dynamics
with a single point or line attractors. This will effectively prevent the DMM from expressing more
complex attractors such limit cycles or chaotic attractors. As a more expressive alternative we
introduce the use of parameter varying bounds in the conditions (17), and (21), such as:

p(x) < ‖Af (x)‖p < p(x) (27)

Where p(x) : Rnx → R, and p(x) : Rnx → R are scalar valued functions parametrizing lower
and upper bounds of operator norm of the DMM’s mean transition dynamics. Similar parametric
constraints can be applied to the variance bounds in (17), or weight norm constraints in (21). This
approach allows us to control the contractivity of the DMMs depending on the position in the state
space. This allows us to increase the expressivity of the DMM, e.g., by partitioning the state space
into constrained and unconstrained regions resulting in DMM with hybrid or switching dynamics. In
particular, we could divide the state space to outer contractive regions (where conditions (17) hold)
and inner relaxed regions allowing for more complex trajectories to emerge. This parametrization
will effectively generate non-empty attractor set in which it is possible to learn arbitrary attractor
shape. The proposed state space partitioning method is inspired by the Bendinxon-Dulac criteria on
periodic solutions of differential equations [McCluskey and Muldowney, 1998].

4 Numerical Case Studies

In this section we empirically validate the conditions given in Theorem 3 and Corollary 5 by
investigating the dynamics of DMM’s transition maps (12) whose mean fθf (x) and variance gθg(x)
are parametrized by neural networks with different spectral distributions of their weights and activation
scaling matrices (6). We apply spectral analysis to the PWA forms (2) of neural networks modeling
the mean and variance maps to obtain the corresponding spectra of DMMs. We performed the
experiments using the probabilistic programming language Pyro [Bingham et al., 2019].
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4.1 Design of the Experiments

Since the stability of DMM (12) depends on the transition dynamcis, in all of the case studies we
consider a fully observable model with identity as an emission map. We parametrize the mean and
variances of the transition map fθf (x) (13) and gθg(x) (14) by feedforward neural networks. Given the
mean neural network fθf (x) we generate a set of different transition dynamcis by changing activation
functions v(x) ∈ {ReLU,Tanh,Sigmoid,SELU,Softplus}, layer depth L ∈ {1, 2, 4, 8}, and
presence of bias b ∈ {True,False}. For the variance network gθg(x) we use ReLU activations.
For both, mean and variance networks we initialize their weights with desired spectral properties via
design methods described in Section 3.4. In particular we use SVD, PF, and GD factorizations to
bound the weight’s singular values in a prescribed range. We generate three categories of weights
Ai: stable with operator norm strictly below one ||Ai||p < 1, marginally stable with norm close one
||Ai||p ≈ 1, and unstable with norm larger than one ||Ai||p > 1.

4.2 Stability Analysis of Deep Markov Models

St
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f
|| p
<

1
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lm

ea
n

||A
f
|| p
≈

1
U
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e

m
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n
||A

f
|| p
>

1

Stable var. ‖Ag‖p < 1 Marginal var. ‖Ag‖p ≈ 1 Unstable var. ‖Ag‖p > 1

Figure 1: Phase portraits of DMMs demonstrating the effect of norm bounds on mean fθf (x) and
variance fθg(x) networks modeling transition dynamics. Thin lines are samples of the stochastic
dynamics with bold lines representing mean trajectories. Colors represent different initial conditions.

In order to provide intuitive visualisations of the dynamics in the phase space, in this section, we
focus on two dimensional system. Fig. 1 visualizes the phase portraits of randomly generated DMM’s
probabilistic transition maps of the mean fθf (x) and variance fθg(x) networks with constrained
operator norms enforced using PF weights from Section 3.4. Figures in the first row demonstrate that
DMMs with asymptotically stable mean transition dynamics ||Af ||p < 1 with bounded variances
‖Ag‖p < K, K > 0 generate stable single point attractors. Hence they validate the sufficient
conditions of Theorem 3. Figures in the second row display dynamics of DMM with marginally
stable mean ||Af ||p ≈ 1. Due to the non-dissipativeness of the mean transition dynamics, the
trajectories converge to a line attractor only if the variance is a converging map ‖Ag‖p < 1, thus
having a dissipative second moment. In case of marginally stable variance, ‖Ag‖p ≈ 1 the energy
conserving nature of the mean and variance together generate random walk type trajectories along the
direction of the mean’s line attractor. For the cases with unstable variance ‖Ag‖p > 1, the overall
dynamics behaves close to a Brownian motion with a degree of randomness, which is positively

8



correlated with the variance network’s operator norm. Figures in the third row show diverging
dynamics of DMM with unstable mean ||Af ||p > 1. With converging variance ‖Ag‖p < 1 the
diverging stochastic trajectories stay close to the mean direction. While, for both marginal and
unstable variances the stochastic trajectories diverge in all directions.

4.3 Effect of Biases and Depth on the Stability of Deep Markov Models

(a) (b) (c)

(d) (e) (f)

Figure 2: Left panels show the effect of biases using PF regularization and ReLU activation ((a) w/o
bias, (d) w bias). Right panels show the effect of network f depths with SVD regularization and ReLU
: (b) 1 layer, (c) 2 layers, (e) 4 layers, (f) 8 layers.

In Fig. 2, we experiment with biases and depths of mean fθf (x) and variance gθg(x) networks.

Effect of biases: In the left panels of Fig. 2, we demonstrate the dynamics of DMM with tanh
activations and SVD factorized weights resulting in asymptotically stable transition maps, thus
||Af (x)|| < 1, and ||Ag(x)|| < 1. Fig. 2(a) shows the scenario without any bias whereas Fig. 2(d)
shows the scenario where both fθf (x),gθg(x) have bias terms. It demonstrates that the general
contractive nature of the stable behavior, as given via conditions (17), does not change with addition
of biases. Instead, the biases shift the region of attraction by generating non-zero equilibrium points.
This shift is correlated with absolute value of the aggregate bias term of the PWA form (2). For the
norm bounds on the equilibria of stable DMM see supplementary material.

Effect of depth: The right panels of Fig. 2 demonstrate the dynamics of DMMs with increasing
number of layers using ReLU activations and SVD weights close to marginal stability 0.99 <
||Ai(x)|| < 1. It can be seen that with increase in the number of layers, the convergence of
trajectories toward origin becomes less uncertain. In this case, a larger number of mildly contractive
layers results in stabilizing behavior, demonstrating the effect of the norm submultiplicativity on
the operator norm of the mean transition dynamics (22). However, one needs to be careful about
the delicate balance between stability, and ability to efficiently train the parameters of DMM with
gradient-based optimization. With increasing depth, the norm product of the contractive layers (22)
will eventually result in a network with a very small operator norm thus causing the vanishing gradient
problem. Analogously, the exploding gradient problem will occur for DMM parametrized with very
deep neural networks with non-contractive layers, i.e. ||Ai(x)|| > 1 The use of parametric stability
constraints (27) as a function of depth could be an efficient strategy for avoiding the vanishing and
exploding gradients by keeping the overall dynamics norm bounded.

4.4 Deep Markov Models with Parametrized Stability Constraints

In Fig. 3 we demonstrate the use of parametrized stability constraints (27) in the design of stable
DMMs without compromising the expressivity as it is in the case of restrictive single point attractors
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enforced via (17) and (21). In particular, we design two DMMs with randomly generated weights
with three phase space regions with different mean transition dynamics, (i) an inner expanding region
||Af (x)|| > 1, xi ∈ R1, (ii) a middle marginal region ||Af (xi)|| ≈ 1, xi ∈ R2, and (iii) an outer
contractive region ||Af (xi)|| < 1, xi ∈ R3. Where the regions are given asR1 = {x|0 ≤ ||x||2 <
20},R2 = {x|20 ≤ ||x||2 < 40}, andR3 = {x|40 ≤ ||x||2}, respectively. The variance dynamics
in both cases is kept being contractive ||Ag(xi)|| < 1. From Fig. 3 it is apparent that the overall
dynamics of the DMMs with parametrized constraints (27) is able to generate stochastic periodic
behavior while remaining bounded within prescribed region of attraction, thus providing high degree
of expressivity while being provable stable. On the left (Fig. 3 (a) and (c)) we show phase plots, and
on the right (Fig. 3 (b) and (d)) corresponding time series trajectories. As a potential extension, we
envision learning the constraints bounds p(x), and p(x) in (27) using penalty methods.

(a) (b)

(c) (d)

Figure 3: Phase plots (left panels), and time series trajectories (right panels) of DMMs with
parametrized stability constraints exhibiting periodic behavior within bounded regions of attaction.
Both cases consider SVD regularizations with softplus (top) and SELU(bottom) respectively.

5 Conclusion

In this paper, we introduce a new stability analysis method for deep Markov models (DMMs).
As the main result, we provide sufficient conditions for the stochastic stability and introduce a
set of practical methods for designing provably stable DMMs. In particular, we discuss the use
of contractive weight matrices factorizations and stability conditions for the activation functions.
Furthermore, we propose using novel parametric stability constraints allowing expression of more
complex stochastic dynamics while remaining contractive towards non-empty region of attraction.
The proposed theory is supported by numerical experiments, with design guidelines considering
weight factorizations, choices of activation functions, network depth, or use of the bias terms for
guaranteed stability. In future work, we aim to derive the stability guarantees for a broader family of
probability distributions modeled by normalizing flows. We also aim to expand the theory to partially
observable Markov decision processed (POMDP) to derive closed-loop stability guarantees in the
context of deep reinforcement learning.
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