
Supplementary Material

Table of Contents
S1 Backpropagation in matrix-derivatives for the general case 16

S1.1 Equivalence with Gauss-Newton decomposition 16

S2 Tools for the analysis 17
S2.1 General notation . 17
S2.2 Helper Lemmas . 17
S2.3 {Left, Right, Pseudo}- Inverses . 18
S2.4 Block row and column operations . 19
S2.5 Matrix derivatives . 21
S2.6 Rank of weight matrices at initialization . 21

S3 Rank of the outer-product term 23
S3.1 Proof of Proposition 2 . 23
S3.2 Example for two-layer networks . 23
S3.3 Proof of Theorem 3 . 24
S3.4 Proof of Corollary 4 . 27

S4 Rank of the functional Hessian term 28
S4.1 Proof of Theorem 5 . 28
S4.2 Proof of Corollary 6 . 33

S5 Evolution of Rank during training 35

S6 Pessimistic bounds in the non-linear case 38
S6.1 Proof strategy for the Ho upper bound . 38
S6.2 Lemmas on the structure and rank of Jacobian matrix of the unit-network 38
S6.3 Proof of Theorem 9 . 40
S6.4 Note on the assumption . 41

S7 Rank of the Hessian with bias 42
S7.1 Proof of Theorem 12 . 42
S7.2 Formulas for two layer networks . 44
S7.3 Formulas for L-layer networks . 44
S7.4 Effect of bias on rank

#params
. 44

S8 Properties of the Hessian Spectrum 46
S8.1 Spectrum of outer-product Hessian . 46
S8.2 Spectrum of Functional Hessian . 47

S9 Detailed Empirical Results 49
S9.1 Verification of Rank Predictions for Linear Networks 49
S9.2 Simulation of rank formulas for large settings 53
S9.3 Reconstruction Error Plots for More Non-Linearities and Losses 54
S9.4 Spectral Plots for More Non-Linearities . 57
S9.5 Rank Results for Neural Tangent Kernel . 59

15

S1 Backpropagation in matrix-derivatives for the general case

In the general case, we can represent the gradient in analogy as to Eq. (1),

∂F

∂Wk
= JL:k+1ΛΛΛk ⊗

[
F k−1:1(x)

]⊤
, where F k−1:1 = F k−1 ◦ · · · ◦ F 1 . (7)

And, further J denotes the Jacobian map across the indexed layers, which is itself a composition of
elementary Jacobians.

Jk = ΛΛΛkWk, ΛΛΛk = diag(σ̇(k)), Jk+1:L = JL:k+1⊤ . (8)

The Jacobian maps depend on functions of the input as each ΛΛΛk depends on the pre-activation
Wk xk−1. By the usual chain rule (backpropagation) one has for a linear DNN, at a sample (x,y):

∂ℓ

∂Wk
:=

∂ℓx,y
∂Wk

=
[
Wk+1:Lδδδx,y

]
︸ ︷︷ ︸

backward ∈RMk

·
[
Wk−1:1x

]⊤
︸ ︷︷ ︸
forward ∈RMk−1

= Wk+1:L[WL:1xx⊤ − yx⊤]W1:k−1 . (9)

The gradient with regard to Wk is first order in Wk and second order in the other matrices. In the
general case, we get

∂ℓ

∂Wk
=
[
Jk+1:Lδδδx,y

]
·
[
F k−1:1(x)

]⊤
(10)

Clearly, the partial forward maps are non-linear, whereas the backward maps are linearized at an
argument determined by the current input.

S1.1 Equivalence with Gauss-Newton decomposition

Remember, θθθ ∈ Rp denotes the (vectorized) parameters of the neural network map F , which then
feeds into the loss ℓ. Then, the Hessian of the composition of ℓ and F with respect to θθθ (computed
over a sample (x,y), but we omit specifying it for brevity) is,

∇2
θθθ(ℓ ◦ F) = ∇θθθF

⊤ [∂2ℓ] ∇θθθF +

K∑
c=1

[∂ℓ]c ∇2
θθθ Fc .

where ∂ℓ and ∂2ℓ are respectively the gradient and Hessian of the loss ℓ with respect to the network
function, F . Also,∇θθθF ∈ RK×p is the Jacobian map of the network function F (x) with respect to
the parameters θθθ. Let us employ the shorthand∇kF to denote the Jacobian of the network function
with respect to the weight matrix Wk in the numerator-layout style as mentioned earlier. Similarly,
let ∇2

kl Fc be the Hessian of c-th component of the network function with respect to weight matrices
Wk,Wl. Hence, we obtain,

∂2ℓ = IK , ∇kF = WL:k+1 ⊗ x⊤W1:k−1 , ∂2ℓ = IK ,

∇kF = WL:k+1 ⊗ x⊤W1:k−1 ,

∇kF
⊤IK∇lF = Wk+1:LWL:l+1 ⊗ Wk−1:1xx⊤W1:l−1 .

Now, the other term has a reduction (or contraction) with the components of the residual, i.e., ∂ℓ =
δδδx,y. Importantly, we notice that it has a block-hollow structure since, ∇2

kk Fc = 0, ∀c ∈ [1 · · ·K].
Thus all the diagonal blocks come from the first term in the Gauss-Newton decomposition. Now,
comparing the above expressions with the Eqns. (3, 4, 5), it is evident that the two approaches yield
the same structure of the Hessian.

As a side-remark, note that in Eqns. (3, 4, 5) we express the kl-th block as
∂2L

∂Wl∂Wk
instead of

∂2L
∂Wk∂Wl

, only to ensure consistent shape as per matrix derivative convention (but corresponding
entries are ofcourse equal).

16

S2 Tools for the analysis

S2.1 General notation

We employ the shorthand notation, Wk:l, to refer to the matrix product chain Wk · · ·Wl, when
k > l. When k < l, Wk:l will stand for the transposed product chain Wk⊤ · · ·Wl⊤ . In the edge
case k = l, this will imply either Wk or Wk⊤

depending on the context. Although, we will make
the notation explicit on occasions where it might not be evident. Besides, we use the ⊗ to denote
the Kronecker product of two matrices, vecc and vecr to denote the column-wise and row-wise
vectorization of matrices respectively. Ik denotes the identity matrix of size k, while 1k denotes the
all ones vector of length k, 0k denotes an all-zeros matrix of size k. The generalized inverse [41] S1

of a matrix A is given by a matrix A− which obeys AA−A = A. The notation A•i or A•i denotes
the i-th column of the matrix A, while Ai• or Ai• refers to its i-th row. We place the column and
row indices into the subscript or superscript depending on the context they are used.

S2.2 Helper Lemmas

Lemma 14. Let A ∈ Rm×n and B ∈ Rp×q. Then the row-partitioned matrix
[

Iq ⊗A
B⊗ In

]
has the

rank,

rk

[
Iq ⊗A
B⊗ In

]
= q rk(A) + n rk(B)− rk(A) rk(B)

Proof. The proof relies on the following rank formula due to [63], and are based on using the
generalized inverse of a matrix. Besides, the following proof closely follows Chuai and Tian [42].

rk

[
A
C

]
= rk(A) + rk

(
C−CA−A

)
= rk(C) + rk

(
A−AC−C

)
Here, C− denotes the weak (generalized) inverse of C, i.e., any solution such that CC−C = C.
Then, we have that,

rk

[
Iq ⊗A
B⊗ In

]
= rk(Iq ⊗A) + rk

(
(B⊗ In)− (B⊗ In) (Iq ⊗A)

−
(Iq ⊗A)

)
= rk(Iq) rk(A) + rk

(
(B⊗ In)− (B⊗ In) (Iq ⊗A−) (Iq ⊗A)

)
= q rk(A) + rk

(
(B⊗ In)−

(
B⊗A−A

))
= q rk(A) + rk

(
B⊗

(
In −A−A

))
= q rk(A) + rk(B) rk

(
In −A−A

)
(a)
= q rk(A) + rk(B)(n− rk(A))

= q rk(A) + n rk(B)− rk(A) rk(B)

where, in (a) we have used that rk (In −A−A) = n−rk(A), which follows from the fact that column
space of the matrix In−A−A, satisfies C (In −A−A) ⊂ N (A) (because the null spaceN (A) is the
set of column vectors α for which Aα = 0 and since any x = (In −A−A) y =⇒ Ax = 0) which
means rk (In −A−A) ≤ dimN (A) and rk (In −A−A) ≥ rk (In) − rk (A−A) = n − rk (A) =
dimN (A).

Lemma 15. Let A1 ∈ Rm1×n1 , A2 ∈ Rm2×n2 , B ∈ Rp×n1 . Then the column block matrix[
A1 ⊗A2

B⊗ In2

]
has the rank,

rk

[
A1 ⊗A2

B⊗ In2

]
= rk(A2)

(
rk

[
A1

B

]
− rk(B)

)
+ n2 rk(B)

S1This is like a general version of pseudoinverse which only satisfies the first Moore-Penrose condition.

17

Proof.

rk

[
A1 ⊗A2

B⊗ In2

]
(a)
= rk(B⊗ In2

) + rk
(
(A1 ⊗A2)− (A1 ⊗A2)(B⊗ In2

)−(B⊗ In2
)
)

= n2 rk(B) + rk
(
(A1 ⊗A2)− (A1 ⊗A2)(B

−B⊗ In2
)
)

= n2 rk(B) + rk
(
(A1 −A1B

−B)⊗A2)
)

= n2 rk(B) + rk(A1 −A1B
−B) rk(A2)

(b)
= n2 rk(B) +

(
rk

[
A1

B

]
− rk(B)

)
rk(A2)

= rk(A2)

(
rk

[
A1

B

]
− rk(B)

)
+ n2 rk(B)

Step (a) and (b) are due to the rank formula for the column block matrix [63].

rk

[
X
Y

]
= rk(Y) + rk

(
X−XY−Y

)
And, the other steps follow from the basic properties of Kronecker product.

Lemma 16. Let A ∈ Rp×q , B ∈ Rm×p, then we have that:

rk

[
A
BA

]
= rk(A)

Proof. This follows simply from the definition of generalized inverse (AA−A = A) and the rank
formula for column-block matrix.

rk

[
A
BA

]
= rk(A) + rk

(
(BA)− (BA)A−A

)
= rk(A) + rk(BA−BA) = rk(A)

Corollary 17. Let B ∈ Rm×p, then we get the elementary identity:

rk

[
Ip
B

]
= rk(Ip) = p .

Lemma 18. Given a matrix M := ABAT , with B ≻ 0 symmetric, then rk(M) = rk(A).

Proof. Since B ≻ 0, we can write M = (AB
1
2)(AB

1
2)⊤, where B

1
2 denotes the matrix square root

of B. This implies rk(M) = rk(AB
1
2), since the null space of X⊤X is the same as the null space of

any arbitrary matrix X, i.e., N (X⊤X) = N (X), and additionally using rk(X⊤) = rk(X). Next, as
B ≻ 0, we have B

1
2 ≻ 0, which further implies B

1
2 is full rank. Hence rk(AB

1
2) = rk(A), which

at last gives, rk(M) = rk(A).

S2.3 {Left, Right, Pseudo}- Inverses

For a matrix A with full column rank, the left inverse is defined to be a matrix A−L such that
A−LA = I. Likewise, when the matrix A has full rank, we can define a right inverse which is a
matrix A−R such that AA−R = I. The left and right inverses need not be unique. But often a nice
or convenient choice for the left inverse is A−L = (A⊤A)

−1
A⊤, while that for the right inverse is

A−R = A⊤(AA⊤)
−1.

18

The (Moore-Penrose) pseudoinverse A† of a matrix A ∈ Rm×n is a unique matrix that satisfies the
following properties:

AA†A = A

A†AA† = A†

(AA†)
⊤
= AA†

(A†A)
⊤
= A†A

When the matrix has full column rank or full row rank, then the pseudoinverse agrees with the
particular choice of left and right inverse we mentioned above. In such scenarios of full column or
row rank, when we want to refer to this choice of left or right inverse, we will simply denote them by
A†.

S2.4 Block row and column operations

In our proofs, we make use of row and column operations, taken altogether on blocks of matrices
rather than just individual rows or columns. So, here we clarify what we actually mean by such block
row and column operations, and how their usage does not affect the rank of matrix to which these are
applied. Essentially, we will look at the corresponding “elementary matrices” that get formed and
argue that they multiplying with them does not change rank.

Let us consider that we have with us the following matrix, P, with its row blocks labeled as
R1, · · · , RL.

P =

R1 Ω1 ⊗N1

...
Ri Ωi ⊗Ni

...
RL ΩL ⊗NL

. (11)

S2.4.1 Factoring-out block operations

Assume that the matrix Ωi has full column rank and then Ωi ⊗ I also has full column rank and is
left-invertible. That means we can write the following decomposition P = P1P2.

P =

I · · · 0 · · · 0

...
. . .

...
. . .

...
0 · · · Ωi ⊗ I · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · I

︸ ︷︷ ︸

P1

Ω1 ⊗N1

...
I⊗Ni

...
ΩL ⊗NL

︸ ︷︷ ︸

P2

. (12)

Since even P1 is left-invertible (identity matrix in all diagonals except for Ωi ⊗ I but which is
left-invertible), we have that,

rk(P) = rk(P1P2) = rk(P2) .

19

This is what we actually mean when applying the row operation,

Ri ← (Ωi ⊗ I)
†
Ri .

Subsequently, we start working with the matrix P2, although we may not explicitly update the name
of the matrix.

Remark. Likewise, we could have instead assumed N i to be left invertible, and factored out a
corresponding P1 matrix with I ⊗ N i as one of its diagonal blocks. Going further, in a similar
manner, we can define the column operation analogue of this by factoring out from the right a matrix
which is right-invertible, and will thus preserve rank.

S2.4.2 Deletion block operations

The block operations in this section are nothing but the analogue of the usual row operations, except
they are carried out at the level of blocks. Say that we have done the above factoring-out operation in
Eq. (14). Now, we are given that N1 = N i, i.e, we have the matrix:

P =

Ω1 ⊗N1

...
I⊗N1

...
ΩL ⊗NL

. (13)

Now, consider we multiply from the left with the matrix Q to yield P′:

P′ =

I · · · −Ω1 ⊗ I · · · 0

...
. . .

...
. . .

...
0 · · · I · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · I

︸ ︷︷ ︸

Q

Ω1 ⊗N1

...
I⊗N1

...
ΩL ⊗NL

=

0

...
I⊗N1

...
ΩL ⊗NL

. (14)

Since Q is a upper-triangular matrix with ones on the diagonal, it is invertible. As a result, rank of P
does not change when multiplied by Q from the left.

This is what we actually mean when applying the row operation,

R1 ← R1 − (Ω1 ⊗ I)Ri .

Subsequently, we start working with the matrix P′, although we may not explicitly update the name
of the matrix.

Remark. Notice, we could have done a similar thing on other side of Kronecker factors. Going
further, in a similar manner, we can define the column operation analogue of this by multiplying on
the right such a matrix which is invertible, and which will thus preserve rank.

Aliter. One can perhaps intuit these block operations from the point of view of inclusion of
subspaces, but here we are being a bit pedantic.

20

S2.5 Matrix derivatives

Let us start by discussing some simple facts on vectorization. Consider a matrix A ∈ Rm×n, and
recall that vecr and vecc denote rowwise and columnwise vectorization respectively. Then firstly we
have the following simple relation between them:

vecc(A) = vecr(A
⊤) . (15)

Now, we give the proof of the commonly-used identity, vecc(AXB) =
(
B⊤ ⊗A

)
vecc(X), where

A ∈ Rm×n , X ∈ Rn×p , B ∈ Rp×q . For more details on this, refer to [39, 64].

The main idea is to write X in the form of canonical basis vectors ei, i.e., X =
∑p

i=1 X•i e
⊤
i , where

X•i denotes the i-th column of X.

vecc

(
A

p∑
i=1

X•i e
⊤
i B

)
= vecc

(
p∑

i=1

(AX•i)
(
B⊤ei

))
(a)
=

p∑
i=1

(
B⊤ei

)
⊗ (AX•i)

(b)
=
(
B⊤ ⊗A

) p∑
i=1

ei ⊗X•i =
(
B⊤ ⊗A

)
vecc(X) □

In step (a), we have used that for two vectors a,b , the following basic fact vecc(ab⊤) = b ⊗ a
holds. And, in (b) we have employed the mixed-product property of Kronecker products.

Since, we utilize row-wise vectorization in our paper, let use find the equivalent relation in terms of
that:

vecr (AXB)
Eq. (15)
= vecc

(
B⊤X⊤A⊤) = (A⊗B⊤) vecc (X⊤) Eq. (15)

=
(
A⊗B⊤) vecr(X) .

(16)

Recall, we use the numerator (Jacobian) layout to express matrix-by-matrix derivatives, i.e.,

∂Y

∂X
:=

∂ vecr(Y)

∂ vecr(X)⊤
.

Thus, when Y = AXB, we use the above property along the first identification theorem of vector
calculus [39] as mentioned below:
Theorem 19. (first identification theorem):

df = A(x) dx⇐⇒ ∂f(x)

∂x⊤ = A(x) ,

where, d denotes the differential.

Finally, this yields that:
∂AXB

∂X
= A⊗B⊤ .

Remark. If we were using the column vectorization, we would have instead obtained B⊤ ⊗A.

S2.6 Rank of weight matrices at initialization

Here we study the rank of random matrices to understand how the weight matrices of a neural network
at initialization influence the rank.
Lemma 20. Consider a random matrix W ∈ Rm×n for m,n ∈ N where each entry is sampled i.i.d.
w.r.t. to some continuous (i.e. not discrete) probability distribution p, i.e. Wij ∼ p. Then it holds that

rank(W) = min(m,n) a.s.

21

Proof. Assume w.l.o.g. that n ≤ m (otherwise consider the transposed matrix) and enumerate the
columns of W as W1, . . . ,Wn ∈ Rm. We need to show the linear independence of {W1, . . . ,Wn}
over Rm. Let us show this inductively. First W1 ̸= 0 with probability 1 since p is continuous.
Consider now W2. Conditioned on the previously sampled column, W1, due to the continuous
nature of the distribution, the probability of W2 being contained in the span of W1 is zero:

P (W2 ∈ span(W1)) =

∫
R
P (W2 ∈ span(W1)|W1)︸ ︷︷ ︸

=0

p(W1)dW1 = 0

Finally, consider Wm and condition on the previously sampled vectors W1, . . . ,Wm−1. By the
induction hypotheses, they span an m−1-dimensional space. Again, due to the independence of Wm

from the previous vectors and the fact that an m− 1-dimensional subspace has Lebesgue measure 0
in Rm, it holds in a similar fashion that

P (Wm ∈ span(W1, . . . ,Wm−1)) = 0 (17)

and the matrix hence has full rank.

It turns out that we can apply a similar argument for the case of the product of two random matrices:
Lemma 21. Consider random matrices V ∈ Rm×n and W ∈ Rn×k, both drawn with i.i.d. entries
according to some continuous probability distribution p. Define Z = VW ∈ Rm×k. Then it holds
that

rank(Z) = min(m,n, k)

Proof. First, notice that by Lemma 20, both matrices have full rank, i.e. rank(V) = min(m,n)
and rank(W) = min(n, k). By standard linear algebra results (not involving the fact that we have
random matrices), we get that for n ≤ m, rank(Z) = rank(W) = min(m, k) and for n ≤ k,
rank(Z) = rank(V) = min(m,n).

Thus it remains to show the case where n ≥ k,m, i.e. the contracting dimension is the biggest.
Assume w.l.o.g. that k ≤ m (otherwise study the transposed matrix). The columns of Z are given by
zi = VWi for i = 1, . . . , k. It thus suffices to show the linear independence of {z1, . . . ,zk}.
Notice that rank(V) = m from the assumptions, thus {Vx : x ∈ Rn} is a m-dimensional subspace
of Rn. We will apply a similar argument as in Lemma 20. Consider z1 = VW1. Due to the
independence and the fact that rank(V) = m > 0, z1 ̸= 0 a.s. Assume that z1, . . . ,zk−1 are
linearly independent, they thus span a k − 1 dimensional space.

Conditioned on z1, , . . . , zk−1, zk = VWk is a random vector in Im(V) (think of V as a fixed
linear map since we are conditioning on it). Since span(z1, . . . ,zm−1) forms a k − 1 dimensional
subspace of Im(V), which has dimension m, the subspace again has Lebesgue measure zero and we
conclude that

P (zk ∈ span(z1, . . . ,zk−1)) =

∫
R
P (zk ∈ span(z1, . . . ,zk−1)|z1, . . . ,zk−1)︸ ︷︷ ︸

=0

p(zk)dzk

We can now easily use this result for an arbitrary sized matrix product:
Corollary 22. Consider random matrices Wi ∈ Rmi×mi+1 for i = 1, . . . , n where each entry is
initialized i.i.d. w.r.t. a continuous distribution p. Define the product matrix W = W1 . . .Wn. Then
it holds that

rank(W) = min(m1, . . . ,mn)

Proof. Apply Lemma 21 recursively, i.e. for W = W1W2:n, then for W2:n = W2W3:n up until
Wn.

22

S3 Rank of the outer-product term

We begin by discussing the proof of Proposition 2. Then, we briefly discuss the example of two-layer
networks to motivate the proof, and after that we discuss the proof of the Theorem 3. Subsequently,
we present the proof of Corollary 4.

S3.1 Proof of Proposition 2

Proposition 2. For a deep linear network, Ho = AoBoAo
⊤ , where Bo = IK ⊗Σxx ∈ RKd×Kd,

and A⊤
o =

(
WL:2 ⊗ Id · · · WL:l+1 ⊗W1:l−1 · · · IK ⊗W1:L−1

)
∈ RKd×p ,

Proof. From Eq. (3) we can notice that any block, say kl-th, of Ho can be re-written as,

Hkl
o =

(
Wk+1:L ⊗Wk−1:1

)
(IK ⊗Σxx)

(
WL:l+1 ⊗W1:l−1

)
,

where, we have used the mixed-product property of Kronecker products i.e., AB ⊗CD = (A ⊗
C)(B⊗D). Now, it is clear from looking at the terms which are on the left and right of IK ⊗Σxx,
that we get the required decomposition.

Remark R1. As mentioned in the preliminaries, we consider, without loss of generality, that when
the (uncentered) input covariance Σxx has rank r < d, then we take it to be

Σxx =

(
(Σxx) r×r 0 r×(d−r)

0 (d−r)×r 0 (d−r)×(d−r)

)
.

which is always possible by pre-processing the input (although this is not needed in practice). Thus,
in such a scenario we can equivalently work with Σxx := (Σxx) r×r and just consider the first r
columns of W1 (whose shape will then be RM1×r). Otherwise, if r = d, then we just continue with
Σxx and W1 ∈ RM1×d as usual. To simplify our discussion ahead, we will always write r in place
of d, however the meaning of it should be clear from this remark.

Thus, in our presentation of the proof of Theorem 3, we will make a similar adaptation to Proposition 2,
and so

A⊤
o =

(
WL:2 ⊗ Ir · · · WL:l+1 ⊗W1:l−1 · · · IK ⊗W1:L−1

)
∈ RKr× p′

,

where p′ = p+K(r − d).

S3.2 Example for two-layer networks

Let us first illustrate Theorem 3 via the example of L = 2, i.e., we have a 2-layer network Fθθθ(x) =
W2W1x, with weight matrices W2 ∈ RK×M1 and W1 ∈ RM1×r. Applying Proposition (2), we
obtain Ao with the familiar structure:

Ao =

(
W2⊤ ⊗ Ir

IK ⊗W1

)

Applying Lemma 1 on Ao thus yields: rk(Ao) = r rk(W2⊤) + K rk(W1) − rk(W2⊤) rk(W1).
If we assume that the hidden layer is the bottleneck, i.e., q := min(r,M1,K) = M1, then we get
rk(Ao) = rM1 +KM1 −M1

2, keeping in mind the Assumption A1.

While here the special Z-like structure is apparent at the outset, the general case of L-layers is more
involved and requires additional work to reduce to this structure, as illustrated in our proof ahead.

23

S3.3 Proof of Theorem 3

Let us restate the Theorem 3 from the main text,

Theorem 3. Consider the matrix Ao mentioned in Proposition 2. Under the assumption A1,

rk(Ao) = r rk(W2:L) +K rk(WL−1:1)− rk(W2:L) rk(WL−1:1) = q (r +K − q) .

Proof. The proof is divided into two parts: (1) Bottleneck case and (2) Non-bottleneck case. For
more details about the block-row operations that we employ here, please refer to the Section S2.4.

Part 1: Bottleneck case. We assume without loss of generality that the layer ℓ − 1 has the
minimum layer width out of all hidden layers, besides what is known that Mℓ−1 < min(d,K). We
will therefore have that Wℓ ∈ RMℓ×Mℓ−1 will have full column rank and will be left-invertible. Due
to random initialization of weight matrices (see Section S2.6) we will also have Wk:ℓ, k ≥ ℓ to also
have a left inverse.

Then let us write the block matrix Ao in the column manner and label the row blocks corresponding
to layer ℓ as Rℓ:

Ao =

R1 W2:L ⊗ Ir
...

Rℓ−1 Wℓ:L ⊗Wℓ−2:1

Rℓ Wℓ+1:L ⊗Wℓ−1:1

Rℓ+1 Wℓ+2:L ⊗Wℓ:1

...
RL IK ⊗WL−1:1

. (18)

Consider the following (block) row operations:

Rk ←
(
IMk
⊗Wk−1:ℓ

) †
Rk, ∀k ∈ ℓ+ 1, · · · , L

These row-operations are valid as the pre-factor has full-column rank, and are rank preserving, as
discussed in Section S2.4. In this way, we have

Ao =

R1 W2:L ⊗ Ir
...

Rℓ−2 Wℓ−1:L ⊗Wℓ−3:1

Rℓ−1 Wℓ:L ⊗Wℓ−2:1

Rℓ Wℓ+1:L ⊗Wℓ−1:1

Rℓ+1 Wℓ+2:L ⊗Wℓ−1:1

...
RL IK ⊗Wℓ−1:1

. (19)

Similarly, Wℓ−1⊤ ∈ RMℓ−2×Mℓ−1 as well as Wk : ℓ−1 for k ≤ ℓ− 1 is also full-column rank and
thus left-invertible. Then apply the following row operations,

Rk ←
(
Wk+1 : ℓ−1 ⊗ IMk−1

) †
Rk, ∀k ∈ ℓ− 2, · · · , 1

24

And we get,

Ao =

R1 Wℓ:L ⊗ Ir
...

Rℓ−2 Wℓ:L ⊗Wℓ−3:1

Rℓ−1 Wℓ:L ⊗Wℓ−2:1

Rℓ Wℓ+1:L ⊗Wℓ−1:1

Rℓ+1 Wℓ+2:L ⊗Wℓ−1:1

...
RL IK ⊗Wℓ−1:1

. (20)

Now using R1, we can apply the deletion block operations to remove {R2, · · · , Rℓ−1} as the left
term in the Kronecker is identical. Next, via RL we can apply the deletion block operations to get rid
of {Rℓ, · · · , RL} as now the right term in the Kronecker is identical. We are left with:

Ao =

R1 Wℓ:L ⊗ Ir

RL IK ⊗Wℓ−1:1

. (21)

Finally, we can apply Lemma 1 to obtain that, when Wℓ has full column rank or Mℓ−1 is the
minimum layer-width (i.e., the bottleneck dimension):

rk(Ao) = r rk(Wℓ:L) +K rk(Wℓ−1:1)− rk(Wℓ:L) rk(Wℓ−1:1)

= rMℓ−1 +KMℓ−1 −Mℓ−1
2

= q (r +K − q) ,

where, in the last step, we have used the definition of q := min(r,M1, · · · ,ML−1,K) = Mℓ−1

which gives rise to the equivalent expression.

Part 2: Non-bottleneck case. This part is very similar and we will see that it uses just one set of
row operations (like for the layers > ℓ and < ℓ). In the non-bottleneck case, there are further two
possibilities:

When K is the minimum: This means that WL⊤
has full column-rank as ML = K is the minimum

of all layer widths and input dimensionality. We start from the same Ao matrix as in Eq. (18). Now
consider the following factoring-out operations:

Rk ←
(
Wk+1:L ⊗ IMk−1

) †
Rk ∀k ∈ 1, · · · , L− 1

25

These row-operations are valid (i.e., rank-preserving) as the pre-factor of (block-)row Rk has full
column rank, as discussed in Section S2.4. This results in,

Ao =

R1 IK ⊗ Ir
...

Rℓ−1 IK ⊗Wℓ−2:1

Rℓ IK ⊗Wℓ−1:1

Rℓ+1 IK ⊗Wℓ:1

...
RL IK ⊗WL:1

. (22)

This is then followed by,

Rk ← Rk −
(
IK ⊗Wk−1:1

)
R1, ∀ k ∈ 2, · · · , L .

This results in,

Ao =
(

R1 IK ⊗ Ir
)
. (23)

When r is the minimum: This means that W1 has full column-rank as M0 = r is the minimum of
all layer widths, input and output dimensionality. We start from the same Ao matrix as in Eq. (18).
Now consider the following factoring-out operations:

Rk ←
(
IMk
⊗Wk−1:1

) †
Rk ∀ k ∈ 2, · · · , L

As before, these row-operations are valid (i.e., rank-preserving) as the pre-factor of (block-)row Rk

has full column rank, as discussed in Section S2.4. This results in,

Ao =

R1 W2:L ⊗ Ir
...

Rℓ−1 Wℓ:L ⊗ Ir

Rℓ Wℓ+1:L ⊗ Ir

Rℓ+1 Wℓ+2:L ⊗ Ir

...
RL IK ⊗ Ir

. (24)

This is then followed by,

Rk ← Rk −
(
Wk+1:L ⊗ Ir

)
RL, ∀k ∈ 1, · · · , L− 1 .

This results in,

Ao =
(

RL IK ⊗ Ir
)
. (25)

Resulting rank: Thus, for either scenario of K or r being the minimum we get,

rk(Ao) = rk(IK ⊗ Ir) = Kr.

26

Final note. It is easy to check that for both the first and second case, we can summarize the obtained
rank in the form of the following equality:

rk(Ao) = r rk(WL:2) +K rk(WL−1:1)− rk(WL:2) rk(WL−1:1) = q (r +K − q).

S3.4 Proof of Corollary 4

Let us first recall the Corollary,
Corollary 4. Under the setup of Theorem 3, the rank of Ho is given by

rk(Ho) = q (r +K − q) .

Proof. It is quite evident that we can use the rank of Ao to bound the rank of Ho due to the
decomposition from Proposition 2. However, as mentioned in the main text, we can show an equality
using the Lemma 18 since Ho is also of the form ABA⊤ with B = (IK ⊗Σxx) ≻ 0.

rk(Ho)
Prop. 2
= rk(AoBA⊤

o) =
Lemma 18

= rk(Ao)

Thm. 3
= q (r +K − q) .

27

S4 Rank of the functional Hessian term

S4.1 Proof of Theorem 5

Similar to the outer-product case, here as well the proof is divided into two cases. However, there is a
subtle difference in that the input-residual covariance matrix (Ω = E [δδδx,y x

⊤]) can also dictate the
rank, besides the weight matrix with minimum dimension. Especially since during training, as the
residual approaches zero, the matrix Ω→ 0. To abstract this, we will consider a new definition q̂ of
q which includes s = rk(Ω) in the minimum, and thus we get

q̂ = min(r,M1, · · · ,ML−1,K, s) .

Notice the additional s as the last argument in the minimum. Further, since Ω ∈ RK×r, we have that
s ≤ min(K, r).

Given these considerations, we split our analysis to the case where q̂ = s (referred to as the non-
bottleneck case) and where q̂ = min(M1, · · · ,ML−1) (referred to as the bottleneck case). In the
bottleneck case, we can also just substitute q in place of q̂, but we will retain q̂ for uniformity. Note,
if q̂ = r or q̂ = K, then these cases are already subsumed by q̂ = s case, since s ≤ min(K, r).

Further, in each of the two cases, we will analyse the rank of the block-columns of the functional
Hessian formed with respect to a transposed weight matrix, i.e., Ĥ•ℓ

f . This makes it easier to deal with
underlying structure of the actual block-columns H•ℓ

f , and does not affect the rank as it is invariant
to row or column permutations. Finally, before we proceed into the details of the two parts, let us
recollect the theorem statement,

Theorem 5. For a deep linear network, the rank of l-th column-block, Ĥ•l
f , of the matrix Ĥf , under

the assumption A1 is given as rk(Ĥ•l
f) = q̂ Ml−1 + q̂ Ml − q̂ 2 , for l ∈ [2, · · · , L− 1]. When l = 1,

we have rk(Ĥ•1
f) = q̂ M1 + q̂ s− q̂ 2 . And, when l = L, we have rk(Ĥ•L

f) = q̂ ML−1 + q̂ s− q̂ 2 .

Here, q̂ := min(r,M1, · · · ,ML−1,K, s) = min(q, s) and s := rk(Ω) = rk(E [δδδx,y x
⊤]).

S4.1.1 Non-bottleneck case (q̂ = s)

In this case, the Theorem boils down to showing the following:

1. The rank of the ℓth column (ℓ ∈ [2, · · · , L− 1]) of the functional Hessian, i.e. Ĥ•ℓ
f , is given

by:

rk(Ĥ•ℓ
f) = sMℓ−1 + sMℓ − s2

2. The rank of the first column of the functional Hessian, i.e. Ĥ•1
f , is given by:

rk(Ĥ•1
f) = sM1

3. The rank of the last column of the functional Hessian, i.e. Ĥ•L
f , is given by:

rk(Ĥ•L
f) = sML−1

Proof. In this case, Ω, which shows up in every single block will dictate the rank. As before, for
more details about the factoring-out and deletion block-row operations that we employ here, please
refer to the Section S2.4. Let us now look at each of the parts:

Part 1. Let us first consider the case of the inner-columns, with ℓ > 1 and ℓ < L. Now, the
expression for Ĥ•ℓ

f is given by,

28

Ĥ•ℓ
f =

vecr(W
ℓ⊤)

vecr(W
1) W2:ℓ−1 ⊗Ω⊤WL:ℓ+1

...

vecr(W
j) Wj+1:ℓ−1 ⊗Wj−1:1Ω⊤WL:ℓ+1

...

vecr(W
ℓ−1) IMℓ−1 ⊗Wℓ−2:1Ω⊤WL:ℓ+1

vecr(W
ℓ) 0

vecr(W
ℓ+1) Wℓ+2:LΩW1:ℓ−1 ⊗ IMℓ

...

vecr(W
k) Wk+1:LΩW1:ℓ−1 ⊗Wk−1:ℓ+1

...

vecr(W
L) ΩW1:ℓ−1 ⊗WL−1:ℓ+1

Now, since rk(Ω) = s, we can express it as Ω = CD, where C ∈ RK×s and D ∈ Rs×d. Then
consider the following factoring-out block operations:

Rj ←
(
Imj
⊗Wj−1:1D⊤)† Rj , ∀j ∈ 1, · · · , ℓ− 1

where, † denotes the left-inverse. When j = 1, Wj−1:1 := Ir. These row-operations are valid (i.e.,
rank-preserving) as Wj−1D⊤ has full column rank and is left-invertible. Similarly, consider the
following factoring-out block operations:

Rk ←
(
Wk+1:LC⊗ IMk−1

)†
Rk, ∀k ∈ ℓ+ 1, · · · , L

Note, when k = L, Wk+1:L := IK . These row-operations are also valid (i.e., rank-preserving) as
Wk+1:LC has full column rank and is left-invertible. Then we can express the Ĥ•ℓ

f as follows:

Ĥ•ℓ
f =

vecr(W
ℓ⊤)

vecr(W
1) W2:ℓ−1 ⊗C⊤WL:ℓ+1

...

vecr(W
j) Wj+1:ℓ−1 ⊗C⊤WL:ℓ+1

...

vecr(W
ℓ−1) IMℓ−1 ⊗C⊤WL:ℓ+1

vecr(W
ℓ) 0

vecr(W
ℓ+1) DW1:ℓ−1 ⊗ IMℓ

...

vecr(W
k) DW1:ℓ−1 ⊗Wk−1:ℓ+1

...

vecr(W
L) DW1:ℓ−1 ⊗WL−1:ℓ+1

29

Now, it is clear that we can use row block ℓ− 1 to eliminate all row blocks prior to it and row block
ℓ+ 1 to eliminate all row blocks after it by the following deletion block operations:

Rj ← Rj −
(
Wj+1:ℓ−1 ⊗ Iq

)
Rℓ−1, ∀j ∈ 1, · · · , ℓ− 1

Rk ← Rk −
(
Iq ⊗Wk−1:ℓ+1

)
Rℓ+1, ∀k ∈ ℓ+ 1, · · · , L

Hence, we have that

rk(Ĥ•ℓ
f) = rk

(
IMℓ−1

⊗C⊤WL:ℓ+1

DW1:ℓ−1 ⊗ IMℓ

)
= sMℓ−1 + sMℓ − s2

where, we used the Lemma from [42] in the last step.

Part 2. The procedure for this part will follow Part 1 procedure for blocks after the zero block.

rk(Ĥ•ℓ
f) = min(sM1, dM1) = sM1

Part 3. The procedure for this part will follow Part 1 procedure for blocks before the zero block.

rk(Ĥ•ℓ
f) = min(sML−1,K ML−1) = sML−1

S4.1.2 Bottleneck case (q̂ ̸= s)

Here, we need to prove the following:

1. The rank of the ℓth column (ℓ ∈ [2, · · · , L− 1]) of the functional Hessian, i.e. Ĥ•ℓ
f , is given

by:

rk(Ĥ•ℓ
f) = q̂ Mℓ−1 + q̂ Mℓ − q̂ 2

2. The rank of the first column of the functional Hessian, i.e. Ĥ•1
f , is given by:

rk(Ĥ•1
f) = q̂ M1 + q̂ s− q̂ 2

3. The rank of the last column of the functional Hessian, i.e. Ĥ•L
f , is given by:

rk(Ĥ•L
f) = q̂ ML−1 + q̂ s− q̂ 2

Proof. Let us assume that Mk is the bottleneck width, so it will “dictate" the rank now. Like in
previous parts, for more details about the block-row operations that we employ here, please refer to
the Section S2.4. Let us now look at each of the parts:

Part 1. Let us first consider the case of the inner-columns, with ℓ > 1 and ℓ < L. Further, let us
take k > ℓ, and the procedure in the other scenario of k < ℓ is similar.

We have that Ĥ•ℓ
f is as follows:

30

Ĥ•ℓ
f =

vecr(W
ℓ⊤)

vecr(W
1) W2:ℓ−1 ⊗Ω⊤WL:ℓ+1

...

vecr(W
j) Wj+1:ℓ−1 ⊗Wj−1:1Ω⊤WL:ℓ+1

...

vecr(W
ℓ−1) IMℓ−1 ⊗Wℓ−2:1Ω⊤WL:ℓ+1

vecr(W
ℓ) 0

vecr(W
ℓ+1) Wℓ+2:LΩW1:ℓ−1 ⊗ IMℓ

...

vecr(W
k) Wk+1:LΩW1:ℓ−1 ⊗Wk−1:ℓ+1

...

vecr(W
L) ΩW1:ℓ−1 ⊗WL−1:ℓ+1

Notice, we can write Wi+1:L = Wi+1:kWk+1:L, ∀i ≤ k − 1. The matrix Wi+1:k is left-invertible
as Mk is the bottleneck width. Then, we consider the following factoring-out block operations (see
Section S2.4) for the below zero part:

Ri ←
(
Wi+1:k ⊗ IMi−1

)†
Ri, ∀i ∈ ℓ+ 1, · · · , k − 1

where, † denotes the left-inverse. Now, for a layer i between {k + 2, · · · , L}, we notice that
Wi−1:ℓ+1 = Wi−1:k+1Wk:ℓ+1 with Wi−1:k+1 being left-invertible. Hence consider the factoring-
out operations,

Ri ←
(
IMi
⊗Wi−1:k+1

)†
Ri, ∀i ∈ k + 2, · · · , L

Now, for the row-blocks in the part above zero, we have that Wj−1:1Ω⊤WL:ℓ+1 =
Wj−1:1Ω⊤WL:k+1Wk:ℓ+1, ∀j ≤ ℓ− 1. Notice, that Wj−1:1Ω⊤WL:k+1 is left invertible due to
the bottleneck Mk. Hence, consider the following block-row operations:

Rj ←
(
Imj
⊗Wj−1:1Ω⊤WL:k+1

)†
Rj , ∀j ∈ 1, · · · , ℓ− 1

Here, it does not matter to us what the actual value of s is, since we know that Mk is the minimum
width which guarantees that the above expression containing Ω⊤ is left invertible.

31

Overall, we can thus express the Ĥ•ℓ
f as follows:

Ĥ•ℓ
f =

vecr(W
ℓ⊤)

vecr(W
1) W2:ℓ−1 ⊗Wk:ℓ+1

...

vecr(W
j) Wj+1:ℓ−1 ⊗Wk:ℓ+1

...

vecr(W
ℓ−1) IMℓ−1 ⊗Wk:ℓ+1

vecr(W
ℓ) 0

vecr(W
ℓ+1) Wk+1:LΩW1:ℓ−1 ⊗ IMℓ

...

vecr(W
k) Wk+1:LΩW1:ℓ−1 ⊗Wk−1:ℓ+1

...

vecr(W
L) ΩW1:ℓ−1 ⊗Wk:ℓ+1

Now, it is clear that we can use row ℓ− 1 to eliminate all rows prior to it as well as the rows from
k+ 1 to L. While the row ℓ+ 1 can be used to eliminate all rows from ℓ+ 2 until k. Hence, we have
that,

rk(Ĥ•ℓ
f) = rk

(
IMℓ−1

⊗Wk:ℓ+1

Wk+1:LΩW1:ℓ−1 ⊗ IMℓ

)
= q̂ Mℓ−1 + q̂ Mℓ − q̂ 2

where, we used the Lemma from [42] in the last step.

Part 2. Now we deal with the column block corresponding to first layer, which is:

Ĥ1
f =

vecr(W
1⊤)

vecr(W
1) 0

vecr(W
2) W3:LΩ⊗ IM1

...

vecr(W
k−1) Wk:LΩ⊗Wk−2:2

vecr(W
k) Wk+1:LΩ⊗Wk−1:2

vecr(W
k+1) Wk+2:LΩ⊗Wk:2

...

vecr(W
L) Ω⊗WL−1:2

Basically, we have to follow the same procedure for row blocks before k and for the ones after k
as done in the part 1. In other words, for the row blocks prior to k, we can write the Wi+1:L =
Wi+1:kWk+1:L. Since Wi+1:k is left-invertible due to the bottleneck, we consider the following
factoring-out operations:

Ri ←
(
Wi+1:k ⊗ IMi−1

)†
Ri, ∀i ∈ 2, · · · , k − 1

Now, for a layer i between {k+2, · · · , L}, we notice that Wi−1:2 = Wi−1:k+1Wk:2 with Wi−1:k+1

being left-invertible. Hence the factoring-out operations will be,

32

Ri ←
(
IMi
⊗Wi−1:k+1

)†
Ri, ∀i ∈ k + 2, · · · , L

This resulting Ĥ1
f is as follows:

Ĥ1
f =

vecr(W
1⊤)

vecr(W
1) 0

vecr(W
2) Wk+1:LΩ⊗ IM1

...

vecr(W
k−1) Wk+1:LΩ⊗Wk−2:2

vecr(W
k) Wk+1:LΩ⊗Wk−1:2

vecr(W
k+1) Wk+2:LΩ⊗Wk:2

...

vecr(W
L) Ω⊗Wk:2

Now, we can use row 2 to eliminate rows 3 until k, and similarly we can use row L to eliminate rows
k + 1 to L− 1. Thus, we have that:

rk(Ĥ1
f) = rk

(
Wk+1:LΩ⊗ IM1

Ω⊗Wk:2

)
= q̂ M1 + q̂ s− q̂ 2

Different from the previous analysis, in the above matrix we did not have a “naked" Identity matrix
on the left, so we could not directly use the Lemma 1. But, we used its generalized version contained
in Lemma 15 along with the Lemma 16 to obtain the rank in the final step.

Part 3. Finally, we have the last column:

Ĥ•L
f =

vecr(W
L⊤

)

vecr(W
1) W2:L−1 ⊗Ω⊤

...

vecr(W
k−1) Wk:L−1 ⊗Wk−2:1Ω⊤

vecr(W
k) Wk+1:L−1 ⊗Wk−1:1Ω⊤

vecr(W
k+1) Wk+2:L−1 ⊗Wk:1Ω⊤

...

vecr(W
L−1) IML−1 ⊗WL−2:1Ω⊤

vecr(W
L) 0

We can follow a similar strategy as carried out in Part 2 to get,

rk(Ĥ•L
f) = rk

(
Wk+1:L−1 ⊗Ω⊤

IML−1
⊗Wk:1Ω⊤

)
= q̂ ML−1 + q̂ s− q̂ 2

S4.2 Proof of Corollary 6

Let us remember the Corollary from the main text,

33

Corollary 6. Under the setup of Theorem 5, the rank of Hf can be upper bounded as,

rk(Hf) ≤ 2 q̂ M + 2 q̂ s− L q̂ 2 , where M =

L−1∑
ℓ=1

Mℓ .

Proof. By using the above Theorem 5 and applying the fact that rk([A B]) ≤ rk(A) + rk(B) on
the column-blocks of Ĥf , we get the desired upper bound on the rank of entire functional Hessian. ,

rk(Hf) = rk(Ĥf) ≤
L∑

ℓ=1

rk(Ĥ•ℓ
f)

= q̂ M1 + q̂ s− q̂ 2 +

L−1∑
ℓ=2

(
q̂ Mℓ−1 + q̂ Mℓ − q̂ 2

)
+ q̂ ML−1 + q̂ s− q̂ 2

= 2 q̂

(
L−1∑
ℓ=1

Mℓ

)
+ 2 q̂ s− L q̂ 2 = 2 q̂ M + 2 q̂ s− L q̂ 2

34

S5 Evolution of Rank during training

Here we prove Lemma 6, stating that the rank of the individual weights remains invariant under
gradient flow dynamics. For sake of readability, let us restate Lemma 8:

Lemma 8. For a deep linear network, consider the gradient flow dynamics Ẇl
t =

−η∇WlLS(θθθ)
∣∣
θθθ=θθθt

. Assume: (a) Centered classes: 1
N

∑N
i:yic=1 xi = 0, ∀ c ∈ [1, . . . ,K]. (b)

Balancedness at initialization: Wk+1⊤

0 Wk+1
0 = Wk

0

Wmk⊤

0 . (c) Square weight-matrices: Wl ∈ RM×M , ∀ l and K = d = M . Then for all layers l,
rk(Wl

t) = rk(Wl
0), ∀ t <∞ .

To prove Lemma 8, we first need some helper lemmas. We start with a well-known result:
Lemma 23. Under assumption b) in Lemma 8 and gradient flow dynamics, it holds that(

Wk+1
t

)T
Wk+1

t = Wk
t

(
Wk

t

)T
Proof. We refer to [65] (Theorem 1) for a proof.

This essentially guarantees that balancedness is preserved throughout training if we guarantee it at
initialization. Let us assume that the weights Wl are full rank, which for the squared matrix case
is equivalent to det

(
Wl
)
̸= 0. The Jacobi formula allows us to extend the dynamics of Wl to the

determinant:
Lemma 24. Given a dynamic matrix t 7→ A(t), the determinant follows:

d

dt
det (A(t)) = tr

(
adj (A(t))

dA(t)

dt

)
where adj (A(t)) is the adjugate matrix satisfying

A(t) adj (A(t)) = adj (A(t))A(t) = det(A(t))I

Proof. For a proof of this standard result we refer to Magnus and Neudecker [66] for instance.

We are now ready to proof the main claim:
Proof of Lemma 8: Let us first simplify the right-hand side of the gradient flow equation using the
assumptions, before applying Lemma 24 :

∇WlL(W)
∣∣
W=−ηWt

= −ηWl+1:L
t ΩW1:l−1

t

= −ηWl+1:L
t WL:l+1

t Wl
tW

l−1:1
t ΣW1:l−1

t

L1
= −η

(
Wl

tW
lT
t

)L−l
Wl

tW
l−1:1
t ΣW1:l−1

t

Applying Lemma 24, gives

d

dt
det
(
Wl

t

)
= tr

(
adj
(
Wl

t

)
Ẇl

t

)
= −η tr

(
adj
(
Wl

t

) (
Wl

tW
lT
t

)L−l
Wl

tW
l−1:1
t ΣW1:l−1

t

)
= −η tr

(
det
(
Wl

t

) (
WlT

t Wl
t

)L−l
Wl−1:1

t ΣW1:l−1
t

)
= −η det

(
Wl

t

)
tr
((

WlT
t Wl

t

)L−l
Wl−1:1

t ΣW1:l−1
t

)
= −η det

(
Wl

t

)
tr(B(t))

We can write the solution of this differential equation as

det
(
Wl

t

)
= e−η

∫ t
0
tr(B(s))ds det

(
Wl

0

)
Of course, we have no idea how to solve the integral in the exponential, but the exact solution
does not matter as it is always positive and thus not zero. Thus, as long as det

(
Wl

0

)
̸= 0, also

35

det
(
Wl

t

)
̸= 0 holds, at least for a finite time horizon t <∞. □

We illustrated this theoretical finding through linear networks in Fig. 5. We give more context here.
In Fig. 5 we consider a linear teacher, i.e. we start with a random Gaussian vector x ∼ N (0,130×30)
and we obtain targets through a teacher W ∈ R30×10 via y = Wx. We then train a linear network
with hidden layer sizes 25, 20, 15 on this dataset using SGD with learning rate η = 0.00009. We
observe in Fig. 5 how the weights remain full-rank throughout training and as a consequence, the
rank of the Hessians remains constant initially. Due to the linear nature of the teacher, an exact
training error of zero is achievable. As soon as the error reaches a certain threshold (around 10−30),
the contribution of the functional Hessian starts to vanish as its eigenvalues, one-by-one become too
small to count towards the rank. As a consequence, the rank of the loss Hessian also decreases as it is
composed of both the functional and the outer Hessian. Also observe how the outer Hessian remains
constant throughout the entire optimization, as it does not depend on error. As expected, at the end of
training, the loss Hessian collapses onto the outer Hessian.

Figure S1: Rank dynamics for a linear network with hidden layer sizes 25, 20, 15, trained using a linear teacher.
We show the rank of the Hessians as a function of training time. The dashed line shows how the rank of Hf

evolves when Ω is kept fixed (denoted as Hf
fixed).

We underline the fact that the decrease in rank comes solely from the vanishing error by calculating
the rank of Hf when Ω is kept fixed (we call this Hf

fixed. We visualize the result in Fig. S1. Indeed
we see that the corresponding rank of Hf

fixed does not evolve at all but remains constant.

To complete the picture we also show a non-linear network with its corresponding rank dynamics
for weights and Hessians in Fig. S2. We use a subset of MNIST, down-scaled to d = 25 and
hidden layer sizes 25, 20, 15. We train the model for 2000 epochs with SGD and a learning rate
η = 0.09. We observe that the weights also remain constant througout training when a non-linearity
is employed. Moreover, the we have a similar decrease in rank as for the linear case due to the
network achieving very small error, making the contribution of Hf zero eventually. Similarly, we
also show the corresponding rank dynamics for fixed Ω and again observe that the reduction in rank
largely comes from the residual tending to zero.

36

Figure S2: Rank dynamics for a ReLU network with hidden layer sizes 25, 20, 15, trained on a subset of MNIST.
We show the evolution of the rank of the weights (left) with usual Glorot initialization (guaranteeing maximal
rank) and the rank of the Hessians as a function of training time (right). The dashed line shows how the rank of
Hf evolves when Ω is kept fixed (denoted as Hf

fixed).

37

S6 Pessimistic bounds in the non-linear case

S6.1 Proof strategy for the Ho upper bound

The key idea behind our upcoming proof strategy is to do the analysis à la super-position of “unit-
networks”, i.e., networks with one-hidden neuron. This is because we can reformulate the network
function Fθθθ as sum of network functions of M unit-networks, one per each hidden neuron. Mathe-
matically,

Fθθθ(x) =

M∑
i=1

Fθi(x) , where, Fθi(x) = W2
• i σ(W

1⊤

i • x).

where, W1
i • ∈ Rr is the i-th row of W1 and W2

• i ∈ RK is the i-th column of W2. To ease notation,
we will henceforth use the shorthand: V := W1, and W := W2. The column and row indexing
follow the convention as before.

Our approach will be to analyze the rank of the outer-product Hessian Ho in the case of empirical
loss, or in other words with finitely many samples. Then, we will do a limiting argument to extend it
to case of population loss. The benefit of such an approach is that we can bound the rank of Ho via
the rank of the Jacobian of the function, ∇θθθFθθθ(X) formed over the entire data matrix X ∈ Rd×N .
We will, in turn, bound the rank of such a Jacobian matrix ∇θθθFθθθ(X) via the ranks of the Jacobian
matrices for the unit-network functions∇θθθFθi(X).
Remark R2. Similar to Remark R1, when the rank r of the data matrix (or alternatively the
empirical (uncentered) input covariance) is less than d, we will consider without loss of generality
that X ∈ Rr×N .

In other words, for the sake of analysis, we consider that the data matrix has been pre-processed to
take into account rank lower than input dimension.

S6.2 Lemmas on the structure and rank of Jacobian matrix of the unit-network

As a first step, the following Lemma 25 shows the structure of the Jacobian matrix for the unit-network,
formed over the entire data matrix.
Lemma 25. Consider the unit-network Fθθθi

(x) = W• i σ(V
⊤
i • x) corresponding to i-th neuron, with

the non-linearity σ such that σ(z) = σ′(z)z. Let the data-matrix be denoted by X ∈ Rr×N . Further,
let us denote the matrix which has on its diagonal — the activation derivatives σ′(V⊤

i • x) over all
the samples x, and zero elsewhere, by Λi ∈ RN×N . Then the Jacobian matrix∇θθθFθθθi

(X) is given
(in transposed form) by,

∇θθθFθi(X)⊤ =

0

Vi • XΛi ⊗W⊤
• i

W• i V⊤
i •XΛi ⊗ IK

0

Proof. Let us start simple by computing the gradient with respect to k-th component of the function,
i.e. F k, which comes out as follows:

∂F k

∂wij
= 1{k = i}σ(Vx)j

∂F k

∂vij
= wki σ

′(V⊤
i • x) xj

where σ(Vx)j = σ(V⊤
j • x), with Vj • being the j-th row of V, in a column vector format as

mentioned above. And, for example in case of ReLU, σ′(z) = ∂ σ(z)/∂z = 1{z > 0}.

38

For a fixed sample x, consider that the activation derivatives for all hidden-neurons are stored in a
diagonal matrix Λx ∈ RM×M , i.e., Λx

jj = σ′(V⊤
j • x). Then we can rewrite σ(Vx) = Λx Vx for

all non-linearities that satisfy σ(z) = σ′(z)z. So, we have that the Jacobian of the function with
respect to the parameters comes out to be,

∇θFθθθ(x)
⊤ =

F 1 · · · F k · · · FK

V1• w11 Λ
x
11 x · · · wk1 Λ

x
11 x · · · wK1 Λ

x
11 x

...
...

...
Vi• w1i Λ

x
ii x · · · wki Λ

x
ii x · · · wKi Λ

x
ii x

...
...

...
VM• w1M Λx

MM x · · · wkM Λx
MM x · · · wKM Λx

MM x

W1• Λx Vx · · · 0 · · · 0
...

.
...

Wk• 0 Λx Vx 0
...

.
...

WK• 0 · · · 0 · · · Λx Vx

Hence, from above we can we write the Jacobian of the i-th unit-network function W• i σ(V

⊤
i • x)

with respect to the entire set of parameters and at a given input x, as follows:

∇θθθ Fθi(x)
⊤ =

0

Vi • W⊤
• i ⊗Λx

ii x

W• i IK ⊗V⊤
i •
(
Λx

ii x
)

0

 (a)
=

0

Vi • Λx
ii x⊗W⊤

• i

W• i V⊤
i •
(
Λx

ii x
)
⊗ IK

0

 ,

where, in (a) we have used the fact that for vectors a, b we have that a⊤ ⊗ b = b ⊗ a⊤ = ba⊤,
as well as the fact that V⊤

i •
(
Λx

ii x
)

is a scalar which allows us to commute the factors in the
corresponding Kronecker product.

Finally, we can express the above Jacobian across all the samples in the data matrix, as stated in the
lemma:

∇θθθFθi(X)⊤ =

0

Vi • XΛi ⊗W⊤
• i

W• i V⊤
i •XΛi ⊗ IK

0

 .

Here, we utilized that A⊗B = [A• 1 ⊗B, · · · , A•n ⊗B] for some arbitrary matrix A containing
n columns. Besides, we have collected the activation derivatives for the i-th neuron, i.e., Λx

ii =
σ′(V⊤

i • x) , across all samples x, into the diagonal matrix Λi ∈ RN×N .

From the above Lemma, we can also see that the benefit of analyzing via the unit-networks is that we
only have to deal with the activation derivatives of a single neuron at a time. Besides, now that we
know the structure of the unit-network Jacobian, we will analyze its rank. But before, let’s recall the
assumption A2 from the main text, in our current notation:
Assumption A2. For each active hidden neuron i, the weighted input covariance has the same rank
as the overall input covariance, i.e., rk(E [αx xx

⊤]) = rk(Σxx) = r, with αx = σ′(x⊤ Vi •)
2
.

This assumption can be translated into finite-sample case as follows. First, note that the (uncen-
tered) input covariance Σxx corresponds to 1

NXX⊤, while the weighted covariance E [αx xx
⊤]

corresponds to the matrix 1
NXΛiΛiX⊤. This is straightforward to check, and notice αx = (Λx

ii)
2.

39

Then, the equivalent assumption is to require rk
(
XΛiΛiX⊤) = rk

(
XX⊤) = r, ignoring the

constant 1
N which does not affect rank. Further, since for any arbitrary matrix A, we have that

rk(AA⊤) = rk(A). Thus, our equivalent assumption can be simplified to as follows:
Assumption A2′. (finite-sample equivalent) For each active hidden neuron i, assume that
rk
(
XΛi

)
= rk (X) = r , where Λi, as detailed before, contains the activation derivatives across all

samples for this neuron i.
Lemma 26. Under the same setup as Lemma 25 and Assumptions A1, A2 (or equivalently A2′), the
rank of the Jacobian matrix,∇θθθFθθθi

(X), of the i-th unit-network is given by:
rk(∇θθθFθθθi

(X)) = r +K − 1 .

Proof. From Lemma 25, the Jacobian matrix is given by (ignoring the zero blocks which do not
matter for the analysis of rank),

∇θθθFθθθi
(X)⊤ =

(
XΛi ⊗W⊤

• i

V⊤
i •XΛi ⊗ IK

)
=

(
Ir ⊗W⊤

• i

V⊤
i • ⊗ IK

)
︸ ︷︷ ︸
Ai ∈R(r+K)×Kr

(
XΛi ⊗ IK

)︸ ︷︷ ︸
∈RKr×KN

Now this factorization reveals the familiar Z-like structure, and so the matrix labelled Ai in the above
factorization has rank equal to r +K − 1 by Lemma 1. And, rk(XΛi ⊗ IK) = K rk(XΛi) = Kr,
by employing assumption A2′. Thus, this matrix XΛi ⊗ IK is right invertible. Hence, we have:

rk(∇θθθFθθθi
(X)) = rk(∇θθθFθθθi

(X)
⊤
) = rk(Ai) = r +K − 1 .

S6.3 Proof of Theorem 9

Now, that we are equipped to prove the Theorem, and let us recall its statement from the main text:
Theorem 9. Consider a 1-hidden layer network with non-linearity σ such that σ(z) = σ′(z)z and
let M̃ be the # of active hidden neurons (i.e., probability of activation > 0). Then, under assumption
A1 and A2, rank of Ho is given as, rk(Ho) ≤ rM̃ + M̃K − M̃ .

Proof. In the case of empirical loss (i.e., finite-sample case), we can express the outer-product
Hessian as HN

o = 1
N∇θθθFθθθ(X)⊤ ∇θθθFθθθ(X) = 1

N

∑N
i=1∇θθθFθθθ(x

i)⊤ ∇θθθFθθθ(x
i). It is clear that rank

of HN
o is the same as the rank of∇θθθFθθθ(X) as rk(A⊤A) = rk(A) for any arbitrary matrix A. Thus

we have that,

rk(HN
o) = rk(∇θθθFθθθ(X)) = rk

(M∑
i=1

∇θθθFθθθi
(X)

)
≤

M∑
i=1

rk(∇θθθFθθθi
(X))

Lemma 26
≤

M̃∑
i=1

r +K − 1 = rM̃ + M̃K − M̃ .

The first inequality is because of subadditivity of rank, i.e., rk(A + B) ≤ rk(A) + rk(B). Next,
here we only sum over the active hidden neurons, whose count is M̃ . Because, for dead neurons
∇θθθFθθθ(X) = 0, and thus rank of Jacobian for dead unit-networks will be zero.

Now, in order to extend this to case of population loss, we essentially have to consider the limit of
N →∞. As we can see from the analysis so far, the rank of the outer-product Hessian HN

o is always
bounded by rM̃ + M̃K − M̃ for any finite N ≥ N0, where N0 is the minimum number of samples
that are needed for the assumption A2 to hold.

Thus, we have a sequence of matrices {HN
o }N≥N0

, each of which has rank bounded above by
rM̃ + M̃K − M̃ . Because, matrix rank is a lower semi-continuous function, the above sequence
will converge to a matrix, Ho of the population loss, with rank at most rM̃ + M̃K − M̃ . Therefore,

rk(Ho) ≤ rM̃ + M̃K − M̃ .

40

S6.4 Note on the assumption

The assumption A2′ that rk(XΛi) = r, holds as soon as rk(Λi) ≥ r in expectation. This is
something that depends on the data distribution but only mildly. For instance, one such scenario is
when we use the typical form of initialization vij

i.i.d.∼ N (0, 1), then conditioned on a fixed example x,
we have V⊤

i • x ∼ N (0, ∥x∥2). To further consolidate this point, let us consider σ(z) = ReLU(z) =
max(z, 0). Then, for instance if the underlying data distribution is symmetric, the entries of Λi —
which are nothing but σ′(V⊤

i • x) = 1{V⊤
i • x > 0}— will be non-zero with probability 1

2 . The rank
of the diagonal matrix Λi just amounts to the number of non-zero entries. Hence, in expectation, as
soon as we have at least 2r examples, or more simply 2d examples since d ≥ r, we should be fine.

41

S7 Rank of the Hessian with bias

S7.1 Proof of Theorem 12

We consider the case where each layer implements an affine mapping instead of a linear. So now we
have additional parameter vectors for these bias terms, b1, · · · ,bL, and we can write the network
function as:

F (x) = WL
(
· · ·
(
W2

(
W1x+ b1

)
+ b2

)
· · ·
)
+ bL

In terms of a recursive expansion, it can also be written in the following manner:

F (x) := FL:1(x) = WLFL−1:1(x) + bL , where F 0(x) = x . (26)

We will also use the notation F 1:l to mean F l:1⊤ . Let us recall the assumption and the theorem stated
in the main text:
Assumption A3. The input data has zero mean, i.e., x ∼ px is such that E [x] = 0.

In other words, we assume that the input data has zero mean, which is actually a standard practical
convention.
Theorem 12. Under the assumption A1 and A3, for a deep linear network with bias, the rank of Ho

is upper bounded as, rk(Ho) ≤ q(r +K − q) +K , where q := min(r,M1, · · · ,ML−1,K).

Proof. Since the above function, Eq. (26), is of a similar form as the one in Eq. (1), we use the
matrix-derivative rule in order to obtain the following expression of the (transposed) Jacobian at a
point (x,y):

∇F (x)⊤ =

vecr(W
1) W2:L ⊗ F 0(x)

...

vecr(W
l) Wl+1:L ⊗ F l−1:1(x)

...

vecr(W
L) IK ⊗ FL−1:1(x)

b1 W2:L

...

bl Wl+1:L

...

bL IK

(27)

Comment about the Hessian indexing: We will assume that the blocks from [1, · · · , L] index the
weight matrices and those from [L+ 1, · · · , 2L] index the bias parameters.

Recall the outer-product Hessian Ho in the case of mean-squared loss is given by

Ho = E
[
∇F (x)⊤∇F (x)

]
.

Let us look at the expression for the kl-th block, for k, l ∈ [L] (i.e., from the sub-matrix corresponding
to weight-weight Hessian):

Hkl
o = E

[
Wk+1:LWL:l+1 ⊗ F k−1:1(x)F 1:l−1(x)

]
(28)

= Wk+1:LWL:l+1 ⊗ E
[
F k−1:1(x)F 1:l−1(x)

]
(29)

42

Now, let us make use of the assumption A3. Once we have applied this, the dependence on input
is only via the uncentered covariance of input (or the second moment matrix). Alongside we have
terms corresponding to F l−1:1(0), which is the output of the network when 0 is passed as the input.
Overall, using the zero-mean assumption in Eq. (29) yields:

Hkl
o = Wk+1:LWL:l+1 ⊗ Wk−1:1ΣxxW

1:l−1︸ ︷︷ ︸
Expression in the linear, non-bias, case

+ Wk+1:LWL:l+1 ⊗ F k−1:1(0)F 1:l−1(0)︸ ︷︷ ︸
New terms containing bias

(30)

We see that first part of the expression is identical to the linear case without bias, and it is only the
second part that contains the bias terms.

Similarly, for the bias-bias Hessian blocks Hkl
o such that k, l ∈ [L · · · 2L], there is no dependence on

input at all and contains only bias terms. Likewise, the weight-bias Hessian blocks has no dependence
on the input.

Hence, it seems quite natural to separately analyze the terms without bias and with bias. So, the rank
of the first non-bias part comes directly from our previous analysis of Theorem 3 and is equal to
q(r +K − q).

The analysis for the left-over bias part is not too hard either. This can be simply decomposed as the
product BoB

⊤
o , where Bo is given by:

Bo =

vecr(W
2) W3:L ⊗ F 1(0)

...

vecr(W
l) Wl+1:L ⊗ F l−1:1(0)

...

vecr(W
L) IK ⊗ FL−1:1(0)

b1 W2:L

...

bl Wl+1:L

...

bL IK

(31)

If we compare this expression to that in Eq. 27, we see that there is no block corresponding to the first
row there, as F 0(0) = 0. Then, one simply has to notice that the last block in Bo, which essentially
corresponds to the parameter bL, is the K ×K identity matrix IK . Hence, the matrix Bo which
itself has K columns, has rank equal to K, using Lemma 16. Then, the rank of the bias part is equal
to that of rk(Bo) = K, since we know that rk(AA⊤) = rk(A).

Finally, we use the subadditivity of rank, i.e., rk(A+B) ≤ rk(A) + rk(B), on this decomposition
of the outer-product Hessian into outer-product Hessian for non-bias and the new terms containing
the bias parameters. Thus, we obtain that:

rk(Ho) ≤ q(r +K − q) +K .

43

S7.2 Formulas for two layer networks

For two layer (1-hidden layer) networks with linear activation and M1 hidden units, d dimensional
input and K classes, empirical evidence seems to suggest the following. Define s = min(r,K) and
q = min(r,M1,K). Let us define s′ := min(r + 1,K). Then we find:

• rk(Ho) = q (r +K − q) +K

• rk (Hf) = 2sM1 + 1{K > r} 2M1 = 2min(K, r + 1)M1 = 2s′M1

• rk (HL) = 2min(K, r+1) (M1−q)+q (K+r+1)+K = 2s′(M1−q) + q (K+r+1)+K

If we compare the upper-bounds for the scenario without bias to the one with bias, we find that
change in the rank of Hf is due to changing r → r + 1 in the formula, which makes sense as bias
can be understood as adding a homogeneous coordinate in the input. For Ho, the rank formula now
includes an additive term of K. And both these changes together affect the change in rank for HL.

S7.3 Formulas for L-layer networks

The upper-bound for Ho that we noted in the previous section also holds for the general case, as
evident from our proof in Section S7.1. Empirically as well, we obtain rk(Ho) = q (r+K−q)+K
as the exact formula.

For the functional and overall Hessian, we list formulas that seem to hold empirically for the non-
bottleneck case. Here, the input size has to take into account the homogeneous coordinate, so by
non-bottleneck it is meant that Mi ≥ min(r + 1,K), ∀ i ∈ [1, · · · , L− 1]).

Define q′ = min(r+1,M1, · · · ,ML−1,K) = min(r+1,K), which because of our non-bottleneck
assumption comes out to be same as the s′ in the previous section.

• rk (Hf) = 2q′
(∑L−1

i=1 Mi

)
+ 2q′s′ − Lq′

2
+ (L− 2)q′

• rk (HL) = 2q′
(∑L−1

i=1 Mi

)
+ q′(r+K)−Lq′

2
+Lq′ = 2q′M + q′(r+K)−Lq′

2
+Lq′

Let us compare the above bound to the rank of Hessian HL in the linear case with bias by assuming
that the output layer has the smallest size, i.e., q′ = K.

Then for linear case without bias:

rk(HL) = 2KM − LK2 +K(r +K)

While for linear case with bias:

rk(HL) = 2KM − LK2 +K(r +K) + LK

Basically, we just have an additional term of LK in the rank, whereas the additional number of
parameters are,

L∑
i=1

Mi ≥ LK .

S7.4 Effect of bias on rank
#params

In Fig. S3 we showcase the resulting effect of enabling bias in the network on the Hessian rank, by
simulating the ratio rank

#params across increasing depth, for the loss Hessian HL with and without bias.
We find that in both cases the rank

#params curve saturates to a small threshold. But interestingly, we see
that enabling bias further results in a decrease in this ratio.

44

Figure S3: We simulate rank
params over depth for HL,H

bias
L — in other words, with bias disabled and bias enabled.

For this, we use M = 1000, d = r = 784 and K = 100.

45

S8 Properties of the Hessian Spectrum

S8.1 Spectrum of outer-product Hessian

Figure S4: Spectrum of outer product. Ho spectrum has q plateaus of size K−ML−1 located at the eigenvalues
of E

[
FL−1:1(x)F 1:L−1(x)

]
, even with non-linearities and for any L. Here, K = 20, and q = ML−1 = 2, 3, 4

in each of the sub-figures respectively. We use Gaussian mixture data of dimension 5.

Figure S5: Spectrum of outer product. Ho spectrum has q plateaus of size K−ML−1 located at the eigenvalues
of E

[
FL−1:1(x)F 1:L−1(x)

]
, even with non-linearities and for any L. Here, K = 10, and q = ML−1 = 3, 4, 5

in each of the sub-figures respectively. We use down scaled MNIST d = 25.

The eigenvalues of the outer-product term of the Hessian, which is the one that dominates the
spectrum near the end of training, can be written in closed-form for fully-connected neural networks,
with linear activations.

Recall from Proposition. (2) that the outer-product Hessian can be decomposed as follows, Ho =
Ao(IK ⊗Σxx)A

⊤
o , where Ao ∈ Rp×Kd is as follows:

Ao =

W2:L ⊗ Id

...
Wℓ+1:L ⊗Wℓ−1:1

...
IK ⊗WL−1:1

Since AB and BA have the same non-zero eigenvalues, we have that eigenvalues of Ho are the
same as H̃o = A⊤

o Ao(IK ⊗Σxx), and notice A⊤
o Ao ∈ RKd×Kd and comes out to be,

A⊤
o Ao =

L∑
ℓ=1

WL:ℓ+1Wℓ+1:L ⊗W1:ℓ−1Wℓ−1:1

This is nothing but the diagonal-blocks of the Hessian-outer product added in the “transposed” fashion.
Hence we have the result on the eigenvalues (evals) that,

evals(Ho) = evals(A⊤
o Ao (IK ⊗Σxx)) = evals

(
L∑

ℓ=1

WL:ℓ+1Wℓ+1:L ⊗W1:ℓ−1Wℓ−1:1Σxx

)

46

Repeated eigenvalues. A consequence of this is that a plateau of repeated eigenvalue exists,
whenever the last layer is strictly bigger than the penultimate layer. In fact, this plateau phenomenon
also holds for non-linear networks, since even for such networks the last layer is not usually followed
by non-linearities.

Notice, that when K > ML−1, the matrix WL:ℓ+1Wℓ+1:L in the left part of the Kronecker product
will have rank at most ML−1, except for the case when ℓ = L. There, for ℓ = L, we obtain a identity
matrix, IK , in the left part of the Kronecker product, whose rank is of course K. Thus when all
terms are added up together, K −ML−1 times the eigenvalues of W1:L−1WL−1:1Σxx will show
up for the overall Hessian Ho as well. Obviously, since Kronecker product with identity implies
eigenvalues of the other matrix are multiplied by 1. This results in the plateaued behaviour of the
eigenvalue spectrum. We illustrate this finding in Figure S4 for a ReLU network on Gaussian mixture
data. We also show the results for MNIST in Figure S5. Due to the spectrum being not as cleanly
separated as for the Gaussian case, the results are not as clearly visible but still hold exactly as verified
experimentally.

S8.2 Spectrum of Functional Hessian

Figure S6: Spectrum of Functional Hessian. We use a Gaussian mixture of dimension d = 5 and a linear model
with one hidden layer of size M = 15. We vary the number of classes K = 3, 4, 5 in each of the sub-figures
respectively. Notice that we have 2K plateaus of width M = 15.

Figure S7: Spectrum of Functional Hessian. We use down-sampled MNIST of dimension d = 25 and a linear
model with one hidden layer of size M = 10. We vary the number of classes K = 3, 4, 5 in each of the
sub-figures respectively. Notice that we have 2K plateaus of width M = 10.

Consider the case of 1-hidden layer network with M hidden neurons. We notice that the functional
Hessian in the linear case has a interesting step-like structure in the spectrum, while in the non-linear
case empirically appears to interpolate or pass through it.

Here, the functional Hessian part is given as follows:

Hf =

(
0KM Ω⊗ IM

Ω⊤ ⊗ IM 0dM

)
,

where, Ω = E [δδδx,y x
⊤] as before. Now since eigenvalues λ are given by the solution to the

characteristic polynomial, ρ(λ) = det(Hf − λIp), where p = dM +KM denotes the total number
of parameters. We can further write it as,

47

Hf =

(−λIKM Ω⊗ IM

Ω⊤ ⊗ IM −λIdM

)

Now, we consider the determinant formula through the Schur complement assuming the block matrix
A is invertible, i.e.,

det(M) = det

(
A B
C D

)
= det(A) det(D−CA−1B)

Hence, in our case we obtain:

ρ(λ) = (−λ)KM det
(
−λ2 IdM + (Ω⊤Ω⊗ IM)

)
Where we can see that det

(
−λ2 IdM + (Ω⊤Ω⊗ IM)

)
corresponds to the characteristic polynomial

of the matrix Z = (Ω⊤Ω)⊗ IM and with each eigenvalue of Z occurring with both as positive and
negative signs as eigenvalues of Hf , repeated M times. See Figure S6 for Gaussian mixture data and
Figure S7 for down-sampled MNIST.

48

S9 Detailed Empirical Results

Here we collect the variety of experiments omitted from the main text due to space constraints. We
begin by providing further evidence for the validity of our rank predictions for linear networks by
varying the dataset and the loss function employed in the calculation of the Hessian. We then present
more experiments for the non-linear case, showing more spectral plots and reconstruction errors for
more non-linearities. Finally, also show how our rank predictions also extend to the neural tangent
kernel.

Experiments were implemented in the JAX frameworkS2 and performed on CPU (AMD EPYC 7H12)
with 256 GB memory.

S9.1 Verification of Rank Predictions for Linear Networks

We verify our formulas for MNIST [45], CIFAR10 [47] and FASHION-MNIST [46]. Moreover we
employ diverse losses such as mean-squared error, cross entropy loss and cosh loss. We show the
dynamics of rank as a function of sample size, minimal width and depth.

For all the considered settings, we observe exact matches across all datasets and all losses. We
structure the experiments as follows. We group by loss functions, starting with MSE, then cross
entropy and then cosh loss. For each loss function, we vary the sample size, width and depth of the
architecture for the three datasets. Finally, we vary the initialization scheme and study the effect
of sample size, width and depth for MSE loss on CIFAR10. Finally, we verify the predictions
for architectures that use bias, again using MSE loss on CIFAR10. For all the experiments, we
down-sample the corresponding dataset to dimensionality d = 64 for width and sample size plots,
while for depth plots, in order to be able to use deeper models, we down-sample to d = 16. We use
N = 300 number of samples for all experiments.

S9.1.1 Mean Squared Error (MSE)

Here we perform more experiments in the spirit of Figure 2c. We also show the rank dynamics with
varying depth and only present the normalized plots for both width and depth. Figure S8 shows the
results for CIFAR10, S9 for FashionMNIST and S10 for MNIST. We observe a perfect match for
all the datasets.

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S8: Behaviour of rank and rank/#params on CIFAR10 using MSE, with hidden layers: 50, 20, 20, 20
(Fig. S8a), M∗,M∗ (Fig. S8b) and L layers of width M = 25 (Fig. S8c). The lines indicate the true value and
circles denote our formula predictions.

S2https://github.com/google/jax

49

https://github.com/google/jax

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S9: Behaviour of rank and rank/#params on FashionMNIST using MSE, with hidden layers:
50, 20, 20, 20 (Fig. S9a), M∗,M∗ (Fig. S9b) and L layers of width M = 25 (Fig. S9c). The lines indi-
cate the true value and circles denote our formula predictions.

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S10: Behaviour of rank and rank/#params on MNIST using MSE, with hidden layers: 50, 20, 20, 20
(Fig. S10a), M∗,M∗ (Fig. S10b) and L layers of width M = 25 (Fig. S10c). The lines indicate the true value
and circles denote our formula predictions.

S9.1.2 Cross Entropy

Here we consider another popular loss function, namely cross entropy, which is defined as

ℓcp(θθθ) = −
N∑
i=1

K∑
k=1

log (softmaxk(Fθθθ(xi)) yik

where yik =

{
1 if “k” is the label
0 otherwise

and softmaxk(z) = ezk∑K
l=1 ezl

. Observe that cross entropy

is combined with a softmax operation at the output layer, constraining the final vector to sum to 1,
i.e.
∑K

l=1 softmaxk(z) = 1. This induces, by construction a linear dependence at the output, thus
instead of having K free outputs, we only have K − 1 independent outputs. We reflect this in our
rank formulas by replacing every occurrence of K by K − 1.

Figure S11 shows the results for CIFAR10, Figure S12 for FashionMNIST and Figure S13 for
MNIST. We observe a perfect match for all the datasets.

50

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S11: Behaviour of rank and rank/#params on CIFAR10 using cross entropy, with hidden layers:
50, 20, 20, 20 (Fig. S11a), M∗,M∗ (Fig. S11b) and L layers of width M = 25 (Fig. S11c). The lines indicate
the true value and circles denote our formula predictions.

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S12: Behaviour of rank and rank/#params on FashionMNIST using cross entropy, with hidden layers:
50, 20, 20, 20 (Fig. S12a), M∗,M∗ (Fig. S12b) and L layers of width M = 25 (Fig. S12c). The lines indicate
the true value and circles denote our formula predictions.

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S13: Behaviour of rank and rank/#params on MNIST using cross entropy, with hidden layers:
50, 20, 20, 20 (Fig. S13a), M∗,M∗ (Fig. S13b) and L layers of width M = 25 (Fig. S13c). The lines in-
dicate the true value and circles denote our formula predictions.

S9.1.3 Cosh Loss

To highlight that our formulas are very robust to even more exotic loss functions, we consider the
cosh-loss, defined as

ℓcosh(θθθ) =

N∑
i=1

K∑
k=1

log (cosh (ŷik − yik))

Figure S14 shows the results for CIFAR10, Figure S15 for FashionMNIST and Figure S16 for
MNIST. We observe a perfect match for all the datasets. Also in this case we observe an exact match
empirically for all datasets and varying sample size, width and depth.

51

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S14: Behaviour of rank and rank/#params on CIFAR10 using cosh loss, with hidden layers: 50, 20, 20, 20
(Fig. S14a), M∗,M∗ (Fig. S14b) and L layers of width M = 25 (Fig. S14c). The lines indicate the true value
and circles denote our formula predictions.

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S15: Behaviour of rank and rank/#params on FashionMNIST using cosh loss, with hidden layers:
50, 20, 20, 20 (Fig. S15a), M∗,M∗ (Fig. S15b) and L layers of width M = 25 (Fig. S15c). The lines indicate
the true value and circles denote our formula predictions.

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S16: Behaviour of rank and rank/#params on MNIST using cosh loss, with hidden layers: 50, 20, 20, 20
(Fig. S16a), M∗,M∗ (Fig. S16b) and L layers of width M = 25 (Fig. S16c). The lines indicate the true value
and circles denote our formula predictions.

S9.1.4 Different Initializations

Here we want to assess whether different initialization schemes can affect our rank predictions.
Although our theoretical results suggest that our results hold for any initialization scheme that
guarantees full-rank weight matrices, we perform an empirical study on CIFAR10 to check this.
All the preceding experiments have used Gaussian initialization. Here we also check for uniform
initialization, W l

ij ∼ U(−1, 1), and for orthogonal initialization. We display the results for uniform
initialization in Figure S17 while Figure S18 shows the results for orthogonal initialization, for
varying sample size, width and depth. As expected from our theoretical insights, we again observe
exact matches with our predictions.

52

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S17: Behaviour of rank and rank/#params on CIFAR10 using MSE and uniform initialization with
hidden layers: 50, 20, 20, 20 (Fig. S17a), M∗,M∗ (Fig. S17b) and L layers of width M = 25 (Fig. S17c). The
lines indicate the true value and circles denote our formula predictions.

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S18: Behaviour of rank and rank/#params on CIFAR10 using MSE and orthogonal initialization with
hidden layers: 50, 20, 20, 20 (Fig. S17a), M∗,M∗ (Fig. S17b) and L layers of width M = 25 (Fig. S17c). The
lines indicate the true value and circles denote our formula predictions.

S9.1.5 Rank Formulas With Bias

Here we verify the rank formulas derived for the case with bias in S7.3. We use MSE loss and
CIFAR10 as the dataset. Again we see that the the rank predictions from our formulas exactly match
the rank observed in practice.

(a) Rank vs sample size n (b) rank
params vs minimal width M∗ (c) rank

params vs depth L

Figure S19: Behaviour of rank and rank/#params on CIFAR10 using MSE and bias with hidden layers:
50, 20, 20, 20 (Fig. S19a), M∗,M∗ (Fig. S19b) and L layers of width M = 25 (Fig. S19c). The lines indicate
the true value and circles denote our formula predictions.

S9.2 Simulation of rank formulas for large settings

In the previous subsection, we have established how our formulas hold exactly in practice. An added
benefit of these formulas is that they allow us to visualize how the rank will growth in relation to
the number of parameters for bigger architectures — without actually having to do the Hessian
computations. In Fig. S20 we show such a simulation for increasing width and depth. The simulations
make the limiting behaviour of the fraction rank

#params even more apparent, as the fraction decreases
with more and more overparametrization (in terms of both depth and width), until it reaches a
threshold.

53

The left subfigure, which is the width-simulation plot, also shows an interesting behaviour. In the
early phase, the outer-product Hessian Ho dominates the functional Hessian Hf in terms of rank

#params ,
but after a certain width Hf starts to dominate Ho and continues to do so throughout. It would be of
relevance for future work to further investigate the interaction between Ho and Hf , and provide an
understanding of these two phases.

Figure S20: Simulating rank/#params over width (left) and depth (middle). For the width plot: L = 4, r =
2352, and for the depth plot: r = 2352 and hidden layer size 5000.

S9.3 Reconstruction Error Plots for More Non-Linearities and Losses

To further illustrate how our predictions extend to different non-linearities, we repeat the reconstruc-
tion error experiment for different types of non-linearities and loss functions. In particular we study
the activation functions

σ(x) = ReLU(x) σ(x) = tanh(x) σ(x) = ELU(x) =

{
x x > 0

ex − 1 x ≤ 0

As before, we group the experiment by the loss function employed and vary the non-linearity used in
each architecture. We test on this down-scaled MNIST with input dimensionality of d = 64 for the
smaller architectures and d = 49 for the bigger ones. The number of samples is N = 200 across all
settings.

S9.3.1 Mean Squared Error

Here we expand on the Figure 4, using the same setting as presented in the main text but we consider
more non-linearities. We display the results for ReLU in Figure S21, for ELU in Figure S22 and
for tanh in Figure S23. We also consider slightly bigger architectures in Figures S24, S25 and S26,
using the same ordering for the non-linearities as before. Again we observe that our rank prediction
offers an excellent cut-off, allowing to preserve almost the entire structure of the Hessian, even
for the bigger architectures. This is again strong evidence that our prediction captures the relevant
eigenvalues but becomes distorted by smaller, irrelevant ones, inflating the exact rank.

54

Figure S21: Hessian reconstruction error for ReLU under MSE as the rank of the approximation is increased.
The x-axis represents the number of top eigenvectors that form the low-rank approximation. The y-axis displays
the reconstruction error in percentage (100 % for zero eigenvectors used). The dashed vertical lines indicate the
cut-off at various values of the rank: first line at the prediction based on the linear model, second line at the
empirical measurement of rank, and third line based on upper bounds from [33], which become too coarse to be
of any use (actually even greater than the # of parameters but not marked there for visualization purposes). The
hidden layer sizes are 30, 20.

Figure S22: Hessian reconstruction error for ELU under MSE as the rank of the approximation is increased.
The x-axis represents the number of top eigenvectors that form the low-rank approximation. The y-axis displays
the reconstruction error in percentage (100 % for zero eigenvectors used). The dashed vertical lines indicate the
cut-off at various values of the rank: first line at the prediction based on the linear model, second line at the
empirical measurement of rank, and third line based on upper bounds from [33], which become too coarse to be
of any use (actually even greater than the # of parameters but not marked there for visualization purposes). The
hidden layer sizes are 30, 20.

Figure S23: Hessian reconstruction error for Tanh under MSE as the rank of the approximation is increased.
The x-axis represents the number of top eigenvectors that form the low-rank approximation. The y-axis displays
the reconstruction error in percentage (100 % for zero eigenvectors used). The dashed vertical lines indicate the
cut-off at various values of the rank: first line at the prediction based on the linear model, second line at the
empirical measurement of rank, and third line based on upper bounds from [33], which become too coarse to be
of any use (actually even greater than the # of parameters but not marked there for visualization purposes). The
hidden layer sizes are 30, 20.

55

Figure S24: Hessian reconstruction error for ReLU under MSE as the rank of the approximation is increased.
The x-axis represents the number of top eigenvectors that form the low-rank approximation. The y-axis displays
the reconstruction error in percentage (100 % for zero eigenvectors used). The dashed vertical lines indicate the
cut-off at various values of the rank: first line at the prediction based on the linear model, second line at the
empirical measurement of rank, and third line based on upper bounds from [33], which become too coarse to be
of any use (actually even greater than the # of parameters but not marked there for visualization purposes). The
hidden layer sizes are 50, 40, 30.

Figure S25: Hessian reconstruction error for ELU under MSE as the rank of the approximation is increased.
The x-axis represents the number of top eigenvectors that form the low-rank approximation. The y-axis displays
the reconstruction error in percentage (100 % for zero eigenvectors used). The dashed vertical lines indicate the
cut-off at various values of the rank: first line at the prediction based on the linear model, second line at the
empirical measurement of rank, and third line based on upper bounds from [33], which become too coarse to be
of any use (actually even greater than the # of parameters but not marked there for visualization purposes). The
hidden layer sizes are 50, 40, 30.

Figure S26: Hessian reconstruction error for Tanh under MSE as the rank of the approximation is increased.
The x-axis represents the number of top eigenvectors that form the low-rank approximation. The y-axis displays
the reconstruction error in percentage (100 % for zero eigenvectors used). The dashed vertical lines indicate the
cut-off at various values of the rank: first line at the prediction based on the linear model, second line at the
empirical measurement of rank, and third line based on upper bounds from [33], which become too coarse to be
of any use (actually even greater than the # of parameters but not marked there for visualization purposes). The
hidden layer sizes are 50, 40, 30.

S9.3.2 Cross Entropy

Here we repeat the same experiments for cross entropy loss. We use the adjusted formula for the
linear rank predictions, i.e. we replace K by K − 1. We display the results for ReLU in Figure
S27, for ELU in Figure S28 and for tanh in Figure S29. We also obtain excellent approximations
for the numerical rank in this setting, showing that our predictions also extend to other losses under
non-linearities.

56

Figure S27: Hessian reconstruction error for ReLU as the rank of the approximation is increased under cross
entropy loss. The x-axis represents the number of top eigenvectors that form the low-rank approximation. The
y-axis displays the reconstruction error in percentage (100 % for zero eigenvectors used). The dashed vertical
lines indicate the cut-off at various values of the rank: first line at the prediction based on the linear model,
second line at the empirical measurement of rank, and third line based on upper bounds from [33], which
become too coarse to be of any use (actually even greater than the # of parameters but not marked there for
visualization purposes). The hidden layer sizes are 30, 20.

Figure S28: Hessian reconstruction error for ELU as the rank of the approximation is increased under cross
entropy loss. The x-axis represents the number of top eigenvectors that form the low-rank approximation. The
y-axis displays the reconstruction error in percentage (100 % for zero eigenvectors used). The dashed vertical
lines indicate the cut-off at various values of the rank: first line at the prediction based on the linear model,
second line at the empirical measurement of rank, and third line based on upper bounds from [33], which
become too coarse to be of any use (actually even greater than the # of parameters but not marked there for
visualization purposes). The hidden layer sizes are 30, 20.

Figure S29: Hessian reconstruction error for Tanh as the rank of the approximation is increased under cross
entropy loss. The x-axis represents the number of top eigenvectors that form the low-rank approximation. The
y-axis displays the reconstruction error in percentage (100 % for zero eigenvectors used). The dashed vertical
lines indicate the cut-off at various values of the rank: first line at the prediction based on the linear model,
second line at the empirical measurement of rank, and third line based on upper bounds from [33], which
become too coarse to be of any use (actually even greater than the # of parameters but not marked there for
visualization purposes). The hidden layer sizes are 30, 20.

S9.4 Spectral Plots for More Non-Linearities

To further underline the utility of our theoretical results in the non-linear setting, we present more
spectral plots, super-imposing the linear and corresponding non-linear spectrum for more non-
linearities and loss functions. For all experiments we use d = 64 and N = 200.

57

S9.4.1 Mean Squared Error

In Figure S30, we show the results for ReLU non-linearity, observing that the plateau of the spectrum
is accurately described by our predictions. The same also holds for ELU activation, as can be readily
seen in Figure S31.

relu

Figure S30: Spectrum of the loss Hessian HL (left), functional Hessian Hf (middle) and outer product Ho

(right), for a ReLU network. Black dashed lines are the predictions of the bulk size via our rank formulas. We
use 2 hidden layers of size 30, 20 on MNIST.

Figure S31: Spectrum of the loss Hessian HL (left), functional Hessian Hf (middle) and outer product Ho

(right), for linear and non-linear networks. Black dashed lines are the predictions of the bulk size via our rank
formulas. We use 2 hidden layers of size 30, 20 with ELU activation on MNIST.

S9.4.2 Cross Entropy

Here we show that the spectrum also behaves very similar if cross entropy is employed, again
regardless of the non-linearity used. We show the results for ReLU non-linearity in Figure S32, for
tanh in Figure S33 and ELU in Figure S34.

Figure S32: Spectrum of the loss Hessian HL (left), functional Hessian Hf (middle) and outer product Ho

(right), for linear and non-linear networks. Black dashed lines are the predictions of the bulk size via our rank
formulas. We use 2 hidden layers of size 30, 20 with ReLU activation on MNIST under cross entropy loss.

58

Figure S33: Spectrum of the loss Hessian HL (left), functional Hessian Hf (middle) and outer product Ho

(right), for linear and non-linear networks. Black dashed lines are the predictions of the bulk size via our rank
formulas. We use 2 hidden layers of size 30, 20 with tanh activation on MNIST under cross entropy loss.

Figure S34: Spectrum of the loss Hessian HL (left), functional Hessian Hf (middle) and outer product Ho

(right), for linear and non-linear networks. Black dashed lines are the predictions of the bulk size via our rank
formulas. We use 2 hidden layers of size 30, 20 with ELU activation on MNIST under cross entropy loss.

S9.5 Rank Results for Neural Tangent Kernel

In this section we show that our formulas also allow for insights into rank of the Gram matrix induced
by the neural tangent kernel (NTK) [44] at initialization. The NTK is a matrix defined entry-wise as

Σ̂ij = (∇θFθ(xi))
⊤∇θFθ(xj)

In Figure S35 we display the rank dynamics of the Gram matrix as a function of sample size. We use
the predictions based on the outer-product Hessian. We down-scale to d = 64 and use hidden layer
sizes 20, 20 and use K = 1 classes. We observe an exact match for all datasets and sample sizes.

Figure S35: Rank of the empirical NTK versus sample size n for architecture 20, 20. We display the predictions
based on the outer-product Ho as dots, using CIFAR10 (left), FashionMNIST (middle) and MNIST (right).

59

