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Abstract

We study the problem of extracting correspondences between a pair of point clouds
for registration. For correspondence retrieval, existing works benefit from matching
sparse keypoints detected from dense points but usually struggle to guarantee their
repeatability. To address this issue, we present CoFiNet - Coarse-to-Fine Network
which extracts hierarchical correspondences from coarse to fine without keypoint
detection. On a coarse scale and guided by a weighting scheme, our model firstly
learns to match down-sampled nodes whose vicinity points share more overlap,
which significantly shrinks the search space of a consecutive stage. On a finer
scale, node proposals are consecutively expanded to patches that consist of groups
of points together with associated descriptors. Point correspondences are then
refined from the overlap areas of corresponding patches, by a density-adaptive
matching module capable to deal with varying point density. Extensive evaluation
of CoFiNet on both indoor and outdoor standard benchmarks shows our superiority
over existing methods. Especially on 3DLoMatch where point clouds share less
overlap, CoFiNet significantly outperforms state-of-the-art approaches by at least
5% on Registration Recall, with at most two-third of their parameters. [Code]

1 Introduction

Correspondence search is a core topic of computer vision and establishing reliable correspondences is
a key to success in many fundamental vision tasks, such as tracking, reconstruction, flow estimation,
and particularly, point cloud registration. Point cloud registration aims at recovering the transforma-
tion between a pair of partially overlapped point clouds. It is a fundamental task in a wide range
of real applications, including scene reconstruction, autonomous driving, simultaneous localization
and mapping (SLAM), etc. However, due to the unordered and irregular properties of point clouds,
extracting reliable correspondences from them has been a challenging task for a long time. From
early-stage hand-crafted methods [1, 2, 3, 4, 5] to recently emerged deep learning-based approaches
[6, 7, 8, 9, 10, 11, 12], many works contributed to improving the reliability of correspondences.

We can broadly categorize recent deep learning-based point cloud registration methods into three
categories. The first [13, 14, 15] follows the idea of ICP [16], where they iteratively find dense
correspondences and compute pose estimation. The second [17, 18] includes the correspondence-free
methods based on the intuition that the feature distance between two well-aligned point clouds should
be small. Such methods encode the whole point cloud as a single feature and iteratively optimize
the relative pose between two frames by minimizing the distance of corresponding features. Though
achieving reasonable results on synthetic object datasets [19], both of them struggle on large-scale real
benchmarks [20, 6], as the first suffers from low correspondence precision and high computational
complexity, while the second lacks robustness to noise and partial overlap.
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Figure 1: Left: Overview of CoFiNet. From top to bottom: 1) Dense points are down-sampled
to uniformly distributed nodes, while associated features are jointly learned. 2) Correspondence
Proposal Block (Top Right): Features are strengthened and used to calculate the similarity matrix.
Coarse node correspondences are then proposed from the confidence matrix. 3) Strengthened features
are decoded to dense descriptors associated with each input point. 4) Correspondence Refinement
Block (Bottom Right): Coarse node proposals are first expanded to patches via grouping. Patch
correspondences are then refined to point level by our proposed density-adaptive matching module,
whose details can be found in Fig. 2.

Differently, the last category of methods [6, 7, 8, 9, 10, 11, 12] tackles point cloud registration in a
two-stage manner. They firstly learn local descriptors of down-sampled sparse points (nodes) for
matching, and afterward use robust pose estimators, e.g., RANSAC [21], for recovering the relative
transformation. Their two-stage strategy makes them achieve state-of-the-art performance on large-
scale real benchmarks [20, 6]. Uniform sampling [7, 8] and keypoint detection [22, 10, 11, 12] are two
common ways to introduce sparsity. Compared to uniform sampling that samples points randomly,
keypoint detection estimates the saliency of points and samples points with strong geometry features,
which significantly reduces the ambiguity of matching. However, the sparsity by nature challenges
repeatability, i.e., sub-sampling increases the risk where a certain point loses its corresponding point
in the other frame, which constrains the performance of detection-based methods [22, 10, 11, 12].

Recently, a coarse-to-fine mechanism is leveraged by our 2D counterparts [23, 24, 25] to avoid direct
keypoint detection, which shows superiority over the state-of-the-art detection-based method [26].
However, in 3D point cloud matching, where keypoint detectors usually perform worse, existing deep
learning-based methods do not yet exploit such a coarse-to-fine strategy. To fill the gap, we focus on
leveraging the coarse-to-fine mechanism to eliminate the side effects of detecting sparse keypoints.

Nevertheless, designing such a coarse-to-fine pipeline in point cloud matching is non-trivial, mainly
due to the inherent unordered and irregular nature of point clouds. To this end, we propose a weighting
scheme for coarse node matching and a density-adaptive matching module for correspondence
refinement, which enables CoFiNet to extract coarse-to-fine correspondences from point clouds.
More specifically, on a coarse scale, the weighting scheme proportional to local overlap ratios
guides the model to propose correspondences of nodes whose vicinity areas share more overlap,
which effectively squeezes the search space of the consecutive refinement. On a finer scale, the
density-adaptive matching module refines coarse correspondence proposals to point level by solving
a differentiable optimal transport problem [26] with awareness to varying point density, which shows
more robustness on irregular points. An overview of our proposed method can be found in Fig. 1.
Our main contributions are summarized as follows:

• A detection-free learning framework that treats point cloud registration as a coarse-to-fine
correspondence problem, where point correspondences are consecutively refined from coarse
proposals that are extracted from unordered and irregular point clouds.
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• A weighting scheme that, on a coarse scale, guides our model to learn to match uniformly
down-sampled nodes whose vicinity areas share more overlap, which significantly shrinks
the search space for the refinement.

• A differentiable density-adaptive matching module that refines coarse correspondences to
point level based on solving an optimal transport problem with awareness to point density,
which is more robust to the varying point density.

To the best of our knowledge, we are the first deep learning-based work that incorporates a coarse-
to-fine mechanism in correspondence search for point cloud registration. Extensive experiments
are conducted on both indoor and outdoor benchmarks to show our superiority. Notably, CoFiNet
surpasses the state-of-the-art with much fewer parameters. Compared to [12], we only use around
two-third and one-fourth of parameters on indoor and outdoor benchmarks, respectively.

2 Related Work

Learned local descriptors. Early networks proposed to learn local descriptors for 3D correspon-
dence search mainly take uniformly distributed local patches as input. As a pioneer, Zeng et al. [6]
propose the 3DMatch benchmark, on which they exploit a Siamese network [27] that consumes voxel
grids of TDFs (Truncated Distance Fields) to match local patches. PPFNet [7] directly consumes
raw points augmented with point-pair features (PPF) by leveraging PointNet [28] as its encoder.
PPF-FoldNet [8] leverages only PPF, which is naturally rotation-invariant, as its input and further
incorporates a FoldingNet [29] architecture to enable the unsupervised training of rotation-invariant
descriptors. Gojcic et al. [9] propose a network to consume the smoothed density value (SDV)
representation aligned to the local reference frame (LRF) to eliminate the rotation-variance of learned
descriptors. To extract better geometrical features, Graphite [11] utilizes graph neural networks for
local patch description. SpinNet [30] utilizes LRF for patch alignment and 3D cylindrical convolution
layers for feature extraction, achieving the best generalization ability to unseen datasets. However,
patch-based methods usually suffer from low computational efficiency, as typically shared activations
of adjacent patches are not reused. To address this, FCGF [31] makes the first attempt by using sparse
convolutions [32] to compute dense descriptors of the whole point cloud in a single pass, which leads
to 600x speed-up while still being able to achieve comparable performance to patch-based methods.

Learned 3D keypoint detectors. USIP [22] learns to regress the position of the most salient point
in each local patch in a self-supervised manner. However, it suffers from degenerated cases when the
number of desired keypoints is relatively small. D3Feat [10] exploits a fully convolutional encoder-
decoder architecture for joint dense detection and description. However, it does not consider overlap
relationships and shows low robustness on low-overlap scenarios. In addition to jointly estimating
salient scores and learning local descriptors, PREDATOR [12] also predicts dense overlap scores
that indicate the confidence whether points are on the overlap regions. Keypoints will be sampled
under the condition of both saliency and overlap scores. Though it surpasses existing methods by a
large margin on both 3DMatch[6] and 3DLoMatch[12], the precision of estimated scores and the
repeatability of sampled keypoints constrain its performance.

Coarse-to-fine correspondences. As witnessed in 2D image matching, many recent works [23, 24,
25] leverage a coarse-to-fine mechanism to eliminate the inherent repeatability problem in keypoint
detection and thus boost the performance. DRC-Net [23] utilizes 4D cost volumes to enumerate all
the possible matches and establishes pixel correspondences in a coarse-to-fine manner. Concurrently
with DRC-Net, Patch2Pix [24] first establishes patch correspondences and then regresses pixel
correspondences according to matched patches. In a similar coarse-to-fine manner with Patch2Pixel,
LoFTR [25] leverages Transformers [33], together with an optimal transport matching layer [26], to
match mutual-nearest patches on the coarse level, and then refines the corresponding pixel of the
patch center on the finer level.

3 Methodology
Problem statement. Given a pair of unordered point sets X with n points xi ∈ R3 and Y with
m points yj ∈ R3, we aim at recovering the rigid transformation T

X

Y ∈ SE(3) between them. For
simpler notation, we define their coordinate matrices as PX ∈ Rn×3 and PY ∈ Rm×3, respectively.
We follow the path of extracting correspondences first and then estimating the relative pose, where we
mainly focus on the former. For this purpose, we propose CoFiNet that takes a pair of point clouds as
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input and outputs point correspondences, which can be leveraged to estimate the rigid transformation
by RANSAC [21].

3.1 Coarse-scale Matching

Point encoding. On the coarse level, our target is matching uniformly down-sampled nodes whose
vicinity areas share more overlap. To achieve this goal, we first adopt shared KPConv [34] encoders to
down-sample raw points to uniformly distributed nodes P′X ∈ Rn′×3 and P′Y ∈ Rm′×3, while jointly
learning their associated features F′X ∈ Rn′×b and F′Y ∈ Rm′×b. Demonstration of down-sampled
nodes can be found in 1) of Fig. 1. Please refer to Appendix for more details of network architecture.

Attentional feature aggregation. As illustrated in Fig. 1, the Correspondence Proposal Block
(CPB) takes as input the down-sampled nodes and associated features. In CPB (a), following [26, 12],
the attention [33] mechanism is leveraged to incorporate more global contexts to the learned features.
Following [12], we adopt a sequence of self-, cross- and self-attention modules, which interactively
aggregates global contexts across nodes from the same and the other frame in a pair of point clouds.
Below we briefly introduce the cross-attention module. Given (F′X, F′Y), akin to database retrieval,
the former is linearly projected by a learnable matrix WQ ∈ Rb×b to query Q as Q = F′XWQ, while
the latter is similarly projected to key K and value V by learnable matrices WK and WV, respectively.
The attention matrix A is represented as A = QKT /

√
b, whose rows are then normalized by softmax.

The message M flows from F′Y to F′X is formulated as M = A ·V, which represents the linear
combination of values weighted by the attention matrix. In the cross-attention module, contexts are
aggregated bidirectionally, from F′X to F′Y and from F′Y to F′X. For computational efficiency, we
replace the graph-based module [35] leveraged in [12] with the self-attention module in [26], which
has the same architecture as the cross-attention module but takes the features from the same point
cloud, e.g., (F′X, F′X), as input.

Correspondence proposal. As shown in CPB (b) of Fig. 1, we leverage strengthened features
F̃′X and F̃′Y to calculate the similarity matrix. Down-sampled nodes whose vicinity areas share
enough overlap are matched. However, there can be two cases where a node fails to match: 1) The
major portion of its vicinity areas is occluded in the other frame. 2) Though most of its vicinity
areas are visible in the other frame, there does not exist a node whose vicinity areas share sufficient
overlap with its. Thus, for the similarity matrix, we expand it with a slack row and column with m′
and n′ slack entries, respectively [36]. So that nodes fail to match other nodes could match their
corresponding slack entries, i.e., having maximum scores there. Similar to [26], we compute the
similarity matrix using an inner product, which can be presented as:

S′ =

F̃′XF̃′
T

Y z

zT z

 , S′ ∈ R(n′+1)×(m′+1), (1)

where all slack entries are set to the same learnable parameter z. On S′ we run the Sinkhorn
Algorithm [37, 38, 39], seeking an optimal solution for the optimal transport problem. After that,
each entry (i′, j′) in the obtained matrix represents the matching confidence between the node i′
and node j′ from P′X and P′Y, respectively. To guarantee a higher recall, we adopt a threshold τc
for likely correspondences whose confidence scores are above τc. We define the obtained coarse
node correspondence set as C′ = {(P′X(i′),P′Y(j′))}, with |C′| = c′, where |·| denotes the set
cardinality. Furthermore, we set the other threshold τm to guarantee that c′ ≥ τm. When c′ < τm,
we gradually decrease τc to extract more coarse node correspondences.

3.2 Point-level Refinement

Node decoding. On the finer scale, we aim at refining coarse correspondences from the preceding
stage to point level. Those refined correspondences can then be used for point cloud registration. We
first stack several KPConv [34] layers to recover the raw points, PX and PY, while jointly learning
associated dense descriptors, FX ∈ Rn×c and FY ∈ Rm×c. We thereby assign to each point p an
associated feature p↔ f ∈ Rc, as illustrated in 3) of Fig. 1. Then, as demonstrated in 4) of Fig. 1,
obtained dense descriptors, together with raw points and coarse correspondences are fed into the
Correspondence Refinement Block (CRB), where coarse proposals are expanded to patches that are
then refined to point correspondences.
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Figure 2: Illustration of our proposed density-adaptive matching module. The input is a pair of
patches truncated by k. a) We use the context aggregation part from the Correspondence Proposal
Block to condition on both patches and to strengthen features. b.1) The similarity matrix is computed.
Slack entries are initialized with 0 and muted entries corresponding to repeatedly sampled points are
set to −∞ . b.2) N iterations of the Sinkhorn Algorithm are performed. We drop the slack row and
column for row and column normalization, respectively. b.3) We obtain the confidence matrix, whose
first k rows and k columns are row- and column-normalized, respectively. For correspondences, we
pick the maximum confidence score in every row and column to guarantee a higher precision.

Point-to-node grouping. For refinement, we need to expand nodes in coarse correspondences to
patches consisting of groups of points and associated descriptors. Accordingly, we use a point-to-node
grouping strategy [40, 41, 22] to assign points to their nearest nodes in geometry space. If a point has
multiple nearest nodes, a random one will be picked. We demonstrate this procedure in CRB (a) of
Fig. 1. The advantages of point-to-node over k-nearest neighbor search or radius-based ball query are
two-fold: 1) Every point will be assigned to exactly one node, while some points could be left out in
other strategies. 2) It can automatically adapt to various scales [22]. After grouping, nodes with their
associated points and descriptors form patches, upon which we can extract point correspondences.
For a certain node P′X(i′), its associated point set GP

i′ and feature set GF
i′ can be denoted as: GP

i′ = {p ∈ PX

∣∣‖p−P′X(i′)‖ ≤ ‖p−P′X(j′)‖,∀j′ 6= i′},

GF
i′ = {f ∈ FX

∣∣f ↔ p with p ∈ GP
i′ },

(2)

where ‖·‖ = ‖·‖2 represents the Euclidean norm. In the point-to-node grouping, we expand the
coarse node correspondence set C′ to its corresponding patch correspondence set, both in geometry
space CP = {(GP

i′ ,G
P
j′)} and feature space CF = {(GF

i′ ,G
F
j′)}.

Density-adaptive matching. Extracting point correspondences from a pair of overlapped patches
is in some way analogous to matching two smaller scale point clouds from a local perspective.
Thus, directly leveraging the CPB in Fig. 1 with input (GP

i′ ,G
F
i′) and (GP

j′ ,G
F
j′) could theoretically

tackle the problem. However, simply utilizing CPB to extract point correspondences would lead to
a bias towards slack rows and columns, i.e., the model learns to predict more points as occluded.
Reasons for this are two-fold: 1) For computational efficiency, similar to radius-based ball query, in a
point-to-node grouping, we need to truncate the number of points to a unified number k for every
patch. If a patch contains less than k points, like in [42], a fixed point or randomly sampled points will
be repeated as a supplement. 2) On a coarse level, our model learns to propose corresponding nodes
with overlapped vicinity areas. However, after expansion, proposed patches can be supplemented by
some occluded points, which introduces biases in the training of refinement. To address the issue,
we propose a density-adaptive matching module that refines coarse correspondences to point level
by solving an optimal transport problem with awareness to point density. We denote the truncated
patches as G̃ and demonstrate our proposed density-adaptive matching module in Fig. 2. Notably,
both during and after normalization, the exponent projection of any muted entries is always equal
to 0, which eliminates the side effects caused by the repeated sampling of points. The final point
correspondence set C̃ is represented as the union of all the obtained correspondence sets C̃(l). C̃ can
be directly leveraged by RANSAC[21] for registration.

3.3 Loss Functions

Our total loss L = Lc + λLf is calculated as the weighted sum of the coarse-scale Lc and the
fine-scale Lf , where λ is used to balance the terms. We detail the individual parts hereafter.
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Coarse scale. On the coarse scale, we leverage a weighting scheme proportional to the overlap
ratios over patches as coarse supervision. Given a pair of down-sampled nodes P′X(i′) and P′Y(j′),
with their expanded patch representation in geometry space, GP

i′ and GP
j′ , we can compute the ratio

of points in GP
i′ that are visible in point cloud PY as:

r(i′) =
|{p ∈ GP

i′ |∃q ∈ PY s.t. ‖TX

Y(p)− q‖ < τp}|
|GP

i′ |
, (3)

where τp is the distance threshold. Similarly, we can calculate the ratio of points in GP
i′ that have

correspondences in GP
j′ as:

r(i′, j′) =
|{p ∈ GP

i′ |∃q ∈ GP
j′ s.t. ‖TX

Y(p)− q‖ < τp}|
|GP

i′ |
. (4)

Based on Eq. 3 and Eq. 4, we define the weight matrix W′ ∈ R(n
′+1)×(m′+1) as:

W′(i′, j′) =


min(r(i′, j′), r(j′, i′)), i′ ≤ n′ ∧ j′ ≤ m′,
1− r(i′), i′ ≤ n′ ∧ j′ = m′ + 1,
1− r(j′), i′ = n′ + 1 ∧ j′ ≤ m′,
0, otherwise.

(5)

Finally, we define the coarse scale loss as:

Lc =
−
∑

i′,j′ W
′ (i′, j′) log(S′ (i′, j′))∑

i′,j′ W
′ (i′, j′)

. (6)

Finer scale. On the finer point level, for the lth truncated patch correspondence (G̃P
i′ , G̃

P
j′) s.t.

(GP
i′ ,G

P
j′) ∈ CP, we define the binary matrix B̃(l) ∈ R(k+1)×(k+1) as:

B̃(l)(i, j) =

{
1, ‖TX

Y(G̃P
i′ (i))− G̃P

j′(j)‖ < τp,
0, otherwise,

∀i,∀j ∈ [1, k] , (7)

and

B̃(l)(i, k + 1) = max(0, 1−
k∑

j=1

B̃(l)(i, j)), ∀i ∈ [1, k] ,

B̃(l)(k + 1, j) = max(0, 1−
k∑

i=1

B̃(l)(i, j)), ∀j ∈ [1, k] .

(8)

Additionally, we further set the rows and columns of B̃(l) which correspond to repeatedly sampled
points to 0 to eliminate their side effects during training. B̃(l)(k+1, k+1) is also set to 0. Therefore,
by defining the confidence matrix in b.3 of Fig. 2 as S̃(l), the loss function on the finer scale reads as:

Lf =
−
∑

l,i,j B̃
(l) (i, j) log(S̃(l) (i, j))∑
l,i,j B̃

(l) (i, j)
, (9)

where we define 0 · log(0) = 0.

4 Results

We evaluate our model on three challenging public benchmarks, including both indoor1 and outdoor
scenarios. Following [12], for indoor scenes, we evaluate our model on both 3DMatch [6], where
point cloud pairs share > 30% overlap, and 3DLoMatch [12], where point cloud pairs have 10% ~30%
overlap. In line with existing works [10, 12], we evaluate for outdoor scenes on odometryKITTI [20].
Please refer to Appendix for more details of implementation and datasets.

1As PREDATOR fixed a bug after our submission, we update their latest results. We also update ours
according to the rebuttal.
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Figure 3: Qualitative results on Inlier Ratio. We compare our point correspondences (the last column)
with our coarse correspondences (the third column) and correspondences from PREDATOR (the
second column) on a hard case from 3DLoMatch. The first column provides the ground truth
alignment, which shows that overlap is very limited. The significantly larger inlier ratio can be
observed from the incorrect (red) and correct (green) correspondence connections.

4.1 3DMatch and 3DLoMatch

We compare our proposed CoFiNet to other state-of-the-art approaches including 3DSN [9],
FCGF [31], D3Feat [10] and PREDATOR [12] in Tab. 1 2 and Fig. 4. Comparisons to SpinIm-
ages [1], SHOT [2], FPFH [4] and 3DMatch [6] are also included in Fig. 4. For efficiency and
qualitative results, please refer to Appendix.

Table 1: Results2 on both 3DMatch and 3DLoMatch datasets under different numbers of samples.
We also show the number of utilized parameters of all the approaches in the last column. Best
performance is highlighted in bold while the second best is marked with an underline.

3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250 # Params ↓

Registration Recall(%) ↑
3DSN[9] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0 10.2M
FCGF[31] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8 8.76M
D3Feat[10] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1 27.3M
PREDATOR[12] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1 7.43M
CoFiNet(ours) 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0 5.48M

Feature Matching Recall(%) ↑
3DSN[9] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2 10.2M
FCGF[31] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3 8.76M
D3Feat[10] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5 27.3M
PREDATOR[12] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3 7.43M
CoFiNet(ours) 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6 5.48M

Inlier Ratio(%) ↑
3DSN[9] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8 10.2M
FCGF[31] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6 8.76M
D3Feat[10] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0 27.3M
PREDATOR[12] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8 7.43M
CoFiNet(ours) 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9 5.48M

Metrics. We adopt three typically-used metrics, namely Registration Recall (RR), Feature Match-
ing Recall (FMR) and Inlier Ratio (IR), to show the superiority of CoFiNet over existing approaches.
Specifically, 1) the Registration Recall is the fraction of point cloud pairs whose error of transforma-
tion estimated by RANSAC is smaller than a certain threshold, e.g., RMSE < 0.2m, compared to the
ground truth. 2) The Feature Matching Recall indicates the percentage of point cloud pairs whose
Inlier Ratio is larger than a certain threshold, e.g., τ2 = 5%. 3) The Inlier Ratio is the fraction of
correspondences whose residual error in geometry space is less than a threshold, e.g., τ1 = 10cm,
under the ground truth transformation. Metric details are given in Appendix.

2As PREDATOR computes Inlier Ratio on a correspondence set different to the one used for registration, we
give more results in 4.1 and Tab. 3 for a fair comparison.
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Correspondence sampling. We follow [10, 12] and report performance with different numbers of
samples. However, as CoFiNet avoids keypoint detection and directly outputs point correspondences,
we cannot strictly follow [10, 12] to sample different numbers of interest points. For a fair comparison,
we instead sample correspondences in our experiments but keep the same number as them. Corre-
spondences are sampled with probability proportional to a global confidence cglobal = cfine · ccoarse.
For a certain point correspondence refined from patch correspondence (G̃P

i′ , G̃
P
j′), we define cfine as

its fine-level confidence score and ccoarse as S′(i′, j′).

Inlier Ratio.2 As the main contribution of CoFiNet is that we adopt the coarse-to-fine mechanism to
avoid keypoint detection, while existing methods struggle to sample repeatable keypoints for matching,
we first check the Inlier Ratio of CoFiNet, which is directly related to the quality of extracted
correspondences. We show quantitative results in Tab. 1 and qualitative results in Fig. 3. As shown in
Tab. 1, on Inlier Ratio, CoFiNet outperforms all the previous methods except PREDATOR [12] on
3DLoMatch and only performs worse than PREDATOR [12] and FCGF[31] on 3DMatch. Notably,
when the sample number is 250, we perform the best on both datasets, since detection-based methods
face a more severe repeatability problem in this case. By contrast, as our method leverages a coarse-
to-fine mechanism and thus avoids keypoint detection, it is more robust to the aforementioned case.
Furthermore, the fact that sampling fewer correspondences leads to a higher Inlier Ratio indicates
that our learned scores are well-calibrated, i.e., higher confidence scores indicate more reliable
correspondences.

Table 2: Registration results without RANSAC [21]. Relative poses are directly solved based on
extracted correspondences by singular value decomposition (SVD). Best performance is highlighted
in bold while the second best is marked with an underline.

3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Registration Recall w/o RANSAC (%) ↑
FCGF[31] 28.5 27.9 25.7 23.2 21.2 2.3 1.7 1.3 1.1 1.1
D3Feat[10] 24.3 24.0 23.0 22.4 19.1 1.1 1.4 1.1 1.0 1.0
PREDATOR[12] 48.7 51.8 54.3 53.5 53.0 6.1 8.1 10.1 11.4 11.3
CoFiNet(ours) 63.2 63.4 63.8 64.9 64.6 19.0 20.4 21.0 20.9 21.6

Reliability of our correspondences. Though Inlier Ratio is an important metric of correspondence
quality, it is naturally affected by the distance threshold τ1. To better illustrate the reliability of
correspondences extracted by CoFiNet and show our superiority over existing methods, we conduct
another experiment and show related results in Tab. 2. In this experiment, we directly solve the
relative poses using singular value decomposition (SVD) based on extracted correspondences, without
the assistance of the robust estimator RANSAC [21]. As we can see, for FCGF [31] and D3Feat [10],
though they can work on 3DMatch, they fail on 3DLoMatch, where point cloud share less overlap
and thus reliable correspondences are harder to obtain. Compared with PREDATOR [12], on both
3DMatch and 3DLoMatch, our proposed CoFiNet performs much better, which indicates that we
propose more reliable correspondences on both datasets.

𝜏! = 0.05 𝜏" = 0.1m

Figure 4: Feature Matching Recall in relation to: 1) Inlier
Ratio Threshold (τ2) and 2) Inlier Distance Threshold (τ1)
on 3DMatch.

Feature Matching Recall and Regis-
tration Recall. On Feature Match-
ing Recall, CoFiNet significantly out-
performs all the other methods on
both 3DMatch and 3DLoMatch. Espe-
cially on 3DLoMatch, which is more
challenging due to the low-overlap
scenarios, our proposed method sur-
passes others with a large margin
of more than 4%. It indicates that
CoFiNet is more robust to different
scenes, i.e., we find at least 5% inlier
correspondences for more test cases.
Additionally, we also follow [10, 12]
to show the Feature Matching Recall
in relation to τ2 and τ1 on 3DMatch in
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Fig. 4, which further shows our superiority over other methods. When referring to the most important
metric Registration Recall which better reflects the final performance on point cloud registration,
though we perform slightly worse than PREDATOR [12], we significantly outperform others on
3DMatch. When evaluated on 3DLoMatch, our proposed approach significantly surpasses all the
others, which shows the advantages of our method in scenarios with less overlap. Moreover, we
also compare the number of parameters used in different methods in the last column of Tab.1, which
shows that CoFiNet uses the least parameters while achieving the best performance.

Table 3: Inlier Ratio and Registration Recall on the same correspondence set. For CoFiNet, coarse
correspondences are extracted based on thresholds and non-mutual selection is used on the finer scale.
Best performance is highlighted in bold while the second best is marked with an underline.

3DMatch 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Registration Recall(%) ↑
PREDATOR[12](mutual) 86.6 86.4 85.3 85.6 84.3 61.8 61.8 61.6 58.4 56.2
PREDATOR[12](non-mutual) 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
CoFiNet(ours) 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0

Inlier Ratio(%) ↑
PREDATOR[12](mutual) 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
PREDATOR[12](non-mutual) 46.6 48.3 47.2 44.1 38.8 19.3 21.6 22.1 21.3 19.7
CoFiNet(ours) 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9

Inlier Ratio and Registration Recall on the same correspondence set. In Tab. 1, PREDA-
TOR [12] reports Inlier Ratio on a correspondence set that is different to the one used for registration,
while CoFiNet uses the same. PREDATOR uses correspondences extracted by mutual selection
to report Inlier Ratio, while computing Registration Recall on a correspondence set obtained by
non-mutual selection. As we target at registration, we consider it meaningless to evaluate on a
correspondence set that is not used for pose estimation. Thus, to make a fair comparison, we compare
CoFiNet with both PREDATOR(mutual) and PREDATOR(non-mutual) in Tab. 3. In mutual selection,
two points x and y are considered as a correspondence when x match to y and y match to x, while in
non-mutual selection, the correspondence is extracted when x match to y or y match to x. In Tab. 3,
compared to non-mutual, mutual selection rejects some outliers, and thus increases Inlier Ratio of
PREDATOR. However, as it meanwhile filters out some inlier correspondences, when combined with
RANSAC [21], Registration Recall usually drops. Since our task is registration, PREDATOR(non-
mutual) with higher Registration Recall is preferred over itself with mutual selection. In this case,
CoFiNet achieves higher Inlier Ratio than PREDATOR on both datasets.

Table 4: Ablation study of the number of coarse correspondences, tested
with # Samples=2500. # Coarse indicates the average number of sampled
coarse correspondences. Best performance is highlighted in bold.

3DMatch 3DLoMatch
τc τm IR (%)↑ RR (%) ↑ # Coarse IR (%)↑ RR (%)↑ # Coarse
0.05 - 49.4 87.4 575 27.3 62.8 260
0.10 - 51.1 88.1 335 29.8 62.3 128
0.15 - 55.5 85.5 222 32.7 58.9 74
0.20 200 51.2 88.9 230 25.9 66.2 203

Influence of the number
of coarse correspon-
dences. As illustrated
in Tab. 4, on both
3DMatch and 3DLo-
Match, when sampled
only with τc, a higher
threshold results in fewer
coarse correspondences
and meanwhile a higher
Inlier Ratio, which
indicates the learned
confidence scores are well-calibrated on the coarse level. However, Registration Recall drops at
the same time, as the number of correspondences for refinement is decreased, and thus fewer point
correspondences are leveraged in RANSAC for pose estimation. The last row is the strategy used
in our paper. Except for τc, we also use τm to guarantee that CoFiNet samples at least τm coarse
correspondences on each point cloud pair, as described before. This strategy slightly sacrifices Inlier
Ratio but brings significant improvements on Registration Recall.

Importance of individual modules. As shown in Tab. 5, in the first experiment, we directly use
the coarse correspondence set C′ for point cloud registration. Unsurprisingly, it performs worse on
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all the metrics, indicating that CoFiNet benefits from refinement. Then, we ablate the weighting
scheme which is proportional to overlap ratios and guides the coarse matching of down-sampled
nodes. We replace it with a binary mask similar to the one used on the finer level. Results show that it
leads to a worse performance, which proves that coarse matching of nodes benefits from our designed
weighting scheme. Finally, we do the last ablation study on the density-adaptive matching module.
Results indicate that on both 3DMatch and 3DLoMatch, with the density-adaptive matching module,
CoFiNet better adapts to the irregular nature of point clouds.

Table 5: Ablation study of individual modules, tested with # Samples=2500. Best performance is
highlighted in bold.

3DMatch 3DLoMatch
RR (%)↑ FMR (%)↑ IR (%) ↑ RR (%)↑ FMR (%)↑ IR (%)↑

Full CoFiNet 88.9 98.3 51.2 66.2 83.5 25.9
w/o refinement 79.6 96.5 44.3 41.2 81.4 21.3
w/o weighting 87.4 97.3 50.0 61.5 80.5 23.5
w/o density-adaptive 88.3 97.9 49.3 65.1 82.7 24.7

4.2 KITTI

Metrics. We follow [12] and use 3 metrics, namely, the Relative Rotation Error (RRE), which is
the geodesic distance between estimated and ground truth rotation matrices, the Relative Translation
Error (RTE), which is the Euclidean distance between the estimated and ground truth translation, and
the Registration Recall (RR) mentioned before. More details are provided in Appendix.

Table 6: Quantitative comparisons on KITTI. Best performance is
highlighted in bold.

Method RTE(cm)↓ RRE(◦)↓ RR(%)↑ Params↓
3DFeat-Net [43] 25.9 0.57 96.0 0.32M
FCGF [31] 9.5 0.30 96.6 8.76M
D3Feat [10] 7.2 0.30 99.8 27.3M
PREDATOR [12] 6.8 0.27 99.8 22.8M
CoFiNet(ours) 8.5 0.41 99.8 5.48M

Comparisons to existing ap-
proaches. On KITTI, we com-
pare CoFiNet to 3DFeat-net [43],
FCGF [31], D3Feat [10] and
PREDATOR [12]. Quantitative
results can be found in Tab. 6,
while qualitative results are given
in Appendix. On RTE and RRE,
we stay in the middle, but for
RR, together with [10, 12], we
perform the best. Notably, we
achieve such performance by us-
ing only 5.48M parameters and training for 20 epochs compared to the best performing model [12],
which uses over 20M parameters and is trained for 150 epochs. This experiment indicates that our
model can deal with outdoor scenarios.

5 Conclusion

In this paper, we present a deep neural network that leverages a coarse-to-fine strategy to extract
correspondences from unordered and irregularly sampled point clouds for registration. Our proposed
model is capable of directly consuming unordered point sets and proposing reliable correspondences
without the assistance of keypoints. To tackle the irregularity of point clouds, on a coarse scale,
we first propose a weighting scheme proportional to local overlap ratios. It guides the model to
match nodes that have overlapped vicinity areas, which significantly shrinks the search space of the
following refinement. On a finer level, we then adopt a density-adaptive matching module, which
eliminates the side effects from repeated sampling and enables our model to deal with density varying
points. Extensive experiments on both indoor and outdoor benchmarks validate the effectiveness of
our proposed model. We stay on par with the state-of-the-art approaches on 3DMatch and KITTI,
while surpassing them on 3DLoMatch using a model with significantly fewer parameters. Limitations
and broader impact are discussed in Appendix.
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