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A Appendix for Risk Functionals (Section 4)

A.1 Review of Risk Functionals

In Section 4.1 we introduced several classes of risk functionals and popular examples of each class.
We now provide a formal axiomatic definition for classes of risk functionals, and begin by enumerating
a set of prominent axioms used to describe risk functionals in the current literature [3, 42]. Classes of
risk functionals are defined by the axioms that they satisfy, and one can define a class by choosing
the subset best suited to the problem at hand.
Definition A.1 (Axioms of Risk Functionals). Consider a pair of random variables Z and Z

0 and a
risk functional ⇢. We have the following axioms:

1. Monotonicity: ⇢(Z)  ⇢(Z 0) whenever Z  Z
0.

2. Subadditivity: ⇢(Z + Z
0)  ⇢(Z) + ⇢(Z 0).

3. Additivity: ⇢(Z+Z
0) = ⇢(Z)+⇢(Z 0) if Z and Z

0 are co-monotonic random variables (i.e.,
there exists a random variable Y and weakly increasing functions f, g such that Z = f(Y )
and Z

0 = g(Y )).

4. Translation invariance: ⇢(Z + c) = ⇢(Z) + c, 8c 2 R.

5. Positive homogeneity: ⇢(tZ) = t⇢(Z) for t > 0.

6. Bounded above by the maximum cost, i.e., ⇢(Z)  max(Z).

7. Bounded below by the mean cost, i.e., ⇢(Z) � E[Z].

Coherent Risk Functionals. The set of risk functionals that satisfy monotonicity (Axiom 1),
subadditivity (Axiom 2), translation invariance (Axiom 4), and positive homogeneity (Axiom 5),
constitute the class of coherent risk functionals [3, 15]. Further, if a law-invariant coherent risk
functional additionally satisfies Additivity (Axiom 3), it is said to be a spectral risk functional [26, 1].

Distorted Risk Functionals. Distorted risk functionals have many desirable theoretical properties.
They are translation invariant (Axiom 4) and positive homogeneous (Axiom 5), and are defined
utilizing (Axiom 6) and (Axiom 7) [58]. They satisfy Axiom 7 if and only if g(s) � s 8s 2

[0, 1] [58], and are subadditive (Axiom 2) if and only if g is concave, which preserves second order
stochastic dominance [55]. In addition, all distorted risk functionals preserve stochastic first order
dominance [58].

CPT-Inspired Risk Functionals. In general, due to the separate consideration of losses and gains,
the CPT-inspired risk functional may not satisfy any of the above axioms. However, additional
assumptions on the distortions g+ and g

� may allow certain axioms to be satisfied. For example, if
the random variable has nonnegative support and the threshold c is set to be 0 so that only gains are
observed, and g

+ is additionally increasing, we recover the distorted risk functionals with axioms
specified above. If g+ is additionally concave, then we recover the coherent risk functionals.

A.2 Proofs for Risk Functionals

Proof of Lemma 4.1.

|⇢ (FZ)� ⇢ (FZ0) | =

�����

Z D

0
g (1� FZ(t))� g (1� FZ0(t)) dt

�����



Z D

0
|g (1� FZ(t))� g (1� FZ0(t))| dt



Z D

0

L

D
|FZ0(t)� FZ(t)| dt

 Lmax
t

|FZ(t)� FZ0(t)| ,

where the second to last step uses the L/D-Lipschitzness of ⇢.
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Proof of Lemma 4.2. Using the definition of the CDF, note that on the bounded support of [0, D] the
CPT functional can be rewritten as

⇢(FZ) =

Z D

0
g
+
�
PZ

�
u
+(Z) > t

��
dt�

Z D

0
g
� �PZ

�
u
�(Z) > t

��
dt.

Then,

|⇢(Z)� ⇢(Z 0)| =
���
Z D

0
g
+
�
PZ

�
u
+(Z) > t

��
dt�

Z D

0
g
� �PZ

�
u
�(Z) > t

��
dt

�

Z D

0
g
+
�
PZ0

�
u
+(Z 0) > t

��
dt�

Z D

0
g
� �PZ0

�
u
�(Z 0) > t

��
dt

���



�����

Z D

0
g
+
�
PZ

�
u
+(Z) > t

��
dt�

Z D

0
g
+
�
PZ0

�
u
+(Z 0) > t

��
dt

�����

+

�����

Z D

0
g
� �PZ

�
u
�(Z) > t

��
dt�

Z D

0
g
� �PZ0

�
u
�(Z 0) > t

��
dt

�����


L

D

Z D

0

��PZ

�
u
+(Z) > t

�
� PZ0

�
u
+(Z 0) > t

��� dt

+
L

D

Z D

0

��PZ

�
u
�(Z) > t

�
� PZ0

�
u
�(Z 0) > t

��� dt


L

D

Z D

0
|PZ (Z > t)� PZ0 (Z 0

> t)| dt

+
L

D

Z D

0
|PZ (Z > t)� PZ0 (Z 0

> t)| dt

= 2
L

D

Z D

0
|FZ0(t)� FZ(t)| dt

 2Lmax
t

|FZ(t)� FZ0(t)|

Proof of Lemma 4.3. For the variance of any random variable Z with bounded support [0, D], we
have

V(Z) = E(Z2)� E(Z)2.

Note that by the definition of expectation,

E(Z2) =

Z D2

t2=0
1� FZ2(t2)dt2

Then using dt
2 = 2tdt and the fact that P(Z2

� t
2) = P(Z � t) since t is nonnegative, with this

change of variables we have

E(Z2) = 2

Z D

t=0
t (1� FZ(t)) dt.

This gives us the following expression for variance:

V(Z) = 2

Z D

0
t(1� FZ(t))dt�

 Z D

0
(1� FZ(t))dt

!2
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Next, consider a pair of random variables Z and Z
0 with FZ and FZ0 as their CDF respectively.

Therefore,

|V(Z)� V(Z 0)| 

�����2
Z D

0
t(FZ(t)� FZ0(t))dt

�����+

������

 Z D

0
(1� FZ(t))dt

!2

�

 Z D

0
(1� FZ0(t))dt

!2
������

 D
2
kFZ(t)� FZ0k1 +

�����

Z D

0
(FZ(t)� FZ0(t))dt

�����

�����

Z D

0
(1� FZ(t))dt+

Z D

0
(1� FZ0(t))dt

�����

 D
2
kFZ(t)� FZ0k1 + 2D

�����

Z D

0
(FZ(t)� FZ0(t))dt

�����

 D
2
kFZ(t)� FZ0k1 + 2D2

kFZ(t)� FZ0k1

= 3D2
kFZ � FZ0k1

Proof of Lemma 4.4. The proof of this lemma follows directly from the definition of Lipschitzness:
�����

KX

k=1

�k⇢k(Z)�
KX

k=1

�k⇢k(Z
0)

����� 
KX

k=1

�k |⇢k(Z)� ⇢k(Z
0)|

 kFZ � FZ0k1

KX

k=1

�kLk.
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B Proofs for Importance Sampling Estimators (Section 5.1)

B.1 Proof: Bias and Variance of IS CDF Estimate

Proof of Lemma 5.1. We take the expectation of the IS estimator (1) with respect to P� . Then for
any t 2 R,

EP� [ bFIS(t)] = EP�

"
1

n

nX

i=1

w(Ai, Xi) {Rit}

#

= EP�


EP�


⇡(A|X)

�(A|X)
EP�

⇥
{Rt}|X,A

⇤��

= EP
⇥
w(A,X) {Rt}

⇤

= F (t).

Recall that G(t;X,A) = E[ {Rt}|X,A}]. The variance of the IS estimator is derived using:

VP�

h
bFIS(t)

i
=

1

n
VP�

⇥
w(A,X) {Rt}

⇤

=
1

n
EP�

⇥
w(A,X)2VP�

⇥
{Rt}|A,X

⇤⇤
+

1

n
VP�

⇥
w(A,X)EP�

⇥
{Rt}|A,X

⇤⇤

=
1

n
EP�

⇥
w(A,X)2�2(t;X,A)

⇤
+

1

n
VP� [w(A,X)G(t;X,A)]

=
1

n
EP�

⇥
w(A,X)2�2(t;X,A)

⇤
+

1

n
VP�

⇥
EP� [w(A,X)G(t;X,A)|X]

⇤

+
1

n
EP�

⇥
VP� [w(A,X)G(t;X,A)|X]

⇤

where the second equality uses the law of total variance conditioned on actions A and contexts X ,
and the third equality uses the definitions of �2 and G. The last equality is another application of the
law of total variance conditioning on the context X .

B.2 Proof: Error Bound of IS CDF Estimate

Proof Theorem 5.1. Define the following function class:

F(n) :=
n
f(r) := %

1

n
{rt} : 8t 2 R; 8r 2 Q, % 2 {�1,+1}

o

Note that this is a countable set. Using this definition, we have

sup
t2R

��� bFIS(t)� F (t)
��� = sup

f2F(n)

�����

 
nX

i

�
w(Ai, Xi)f(Ri)� EP� [w(Ai, Xi)f(Ri)]

�
!�����

Using this equality, for � > 0, we have:

EP�


exp

✓
� sup

t2R

��� bFIS(t)� F (t)
���
◆�

= EP�

"
exp

 
� sup

f2F(n)

�����

 
nX

i

�
w(Ai, Xi)f(Ri)� EP� [w(Ai, Xi)f(Ri)]

�
!�����

!#

= EP�

"
exp

 
� sup

f2F(n)

�����

 
EP�

"
nX

i

(w(Ai, Xi)f(Ri)� w(X 0
i, A

0
i)f(R

0
i))
���{Xi, Ai, Ri}

n
i

#!�����

!#

 EP�

"
exp

 
� sup

f2F(n)

�����EP�

" 
nX

i

(w(Ai, Xi)f(Ri)� w(X 0
i, A

0
i)f(R

0
i))
���{Xi, Ai, Ri}

n
i

#!�����

!#

 EP�

"
exp

 
�EP�

"
sup

f2F(n)

�����

 
nX

i

(w(Ai, Xi)f(Ri)� w(X 0
i, A

0
i)f(R

0
i))
���{Xi, Ai, Ri}

n
i

#!�����

!#
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 EP�

"
exp

 
� sup

f2F(n)

�����

 
nX

i

(w(Ai, Xi)f(Ri)� w(X 0
i, A

0
i)f(R

0
i))

!�����

!#

= EP� ,R

"
exp

 
� sup

f2F(n)

�����

 
nX

i

⇠i(w(Ai, Xi)f(Ri)� w(X 0
i, A

0
i)f(R

0
i))

!�����

!#

 EP� ,R

"
exp

 
2� sup

f2F(n)

�����

 
nX

i

⇠iw(Ai, Xi)f(Ri)

!�����

!#

= EP� ,R

"
sup

f2F(n)
exp

 
2�

�����

 
nX

i

⇠iw(Ai, Xi)f(Ri)

!�����

!#

with R a Rademacher measure on a set of Rademacher random variable {⇠i} a Rademacher random
variable.

Next, permute the indices i such that R1  . . . Ri . . .  Rn. Consider a function f(r) = 1
n% {rt}.

For such a function,
Pn

i ⇠iw(Ai, Xi)f(Ri) is equal to

• 0 if t < mini{Ri}
n
i ,

• 1
n%
Pj

i w(Ai, Xi)⇠i when Rj  t < Rj+1 for a j 2 {1, . . . , n� 1},

• 1
n%
Pn

i w(Ai, Xi)⇠i otherwise.

Then,

sup
f2F(n)

exp

 
2�

�����

 
nX

i

⇠iw(Ai, Xi)f(Ri)

!�����

!

= max
%,j

exp

 
2�

n
%

jX

i

w(Ai, Xi)⇠i

!

= max
j

⇣
exp

 
2�

n

jX

i

w(Ai, Xi)⇠i

!

{
Pj

i w(Ai,Xi)⇠i�0}

+ exp

 
�
2�

n

jX

i

w(Ai, Xi)⇠i

!

{
Pj

i w(Ai,Xi)⇠i<0}

⌘

= max
j

 
exp

 
2�

n

jX

i

w(Ai, Xi)⇠i

!

{
Pj

i w(Ai,Xi)⇠i�0}

!

+max
j

 
exp

 
�
2�

n

jX

i

w(Ai, Xi)⇠i

!

{
Pj

i w(Ai,Xi)⇠i<0}

!

Which gives us the inequality

EP�


exp

✓
� sup

t2R

��� bFIS(t)� F (t)
���
◆�

 2EP� ,R

"
max

j
exp

 
2�

n

jX

i

w(Ai, Xi)⇠i

!

{
Pj

i w(Ai,Xi)⇠i�0}

#

(9)

Now we are left to bound the right hand side of (9). Using Lemma B.1, for the right hand side of the
(9) we have,

EP� ,R

"
exp

 
2�

n
max

j

jX

i

w(Ai, Xi)⇠i

!

{maxj
Pj

i w(Ai,Xi)⇠i�0}

#
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= P�{max
j

2�

n

jX

i

w(Ai, Xi)⇠i � 0}

+ �

Z 1

0
exp(�t)P{max

j

2�

n

jX

i

w(Ai, Xi)⇠i � t}dt

 P�{max
j

2�

n

jX

i

w(Ai, Xi)⇠i � 0}

+ 2�

Z 1

0
exp(�t)P{2�

n

X

i

w(Ai, Xi)⇠i � t}dt (10)

Note that similarly we have,

EP� ,R

"
exp

 
2�

n

X

i

w(Ai, Xi)⇠i

!

{
P

i w(Ai,Xi)⇠i�0}

#

=P�{
2�

n

X

i

w(Ai, Xi)⇠i � 0}+ �

Z 1

0
exp(�t)P{2�

n

X

i

w(Ai, Xi)⇠i � t}dt (11)

Putting these two statements, i.e., (10), and (11) together, and applying the result of Lemma B.2, we
have,

EP� ,R

"
exp

 
max

j

2�

n

jX

i

w(Ai, Xi)⇠i

!

{
Pj

i w(Ai,Xi)⇠i�0}

#

 P�{max
j

2�

n

jX

i

w(Ai, Xi)⇠i � 0}

+ 2EP� ,R

"
exp

 
2�

n

X

i

w(Ai, Xi)⇠i

!

{
P

i w(Ai,Xi)⇠i�0}

#

� 2P�{
2�

n

X

i

w(Ai, Xi)⇠i � 0}

 2EP� ,R

"
exp

 
2�

n

X

i

w(Ai, Xi)⇠i

!

{
P

i w(Ai,Xi)⇠i�0}

#

 2EP� ,R

"
exp

 
2�

n

X

i

w(Ai, Xi)⇠i

!#

Note that 2
nw(Ai, Xi)⇠i is a mean zero random variable with values in [� 2

nwmax,
2
nwmax]. Therefore,

it is a sub-Gaussian random variable with sub-Gaussian constant as
�
2
n

�2
w

2
max. Using this, we have,

2
n

P
i w(Ai, Xi)⇠i is 4

nw
2
max sub-Gaussian random variable. Therefore, we have,

EP� ,R

"
exp

 
max

j

2�

n

jX

i

w(Ai, Xi)⇠i

!

{
Pj

i w(Ai,Xi)⇠i�0}

#
 2EP� ,R

"
exp

 
2�

n

X

i

w(Ai, Xi)⇠i

!#

 2 exp

✓
�
2 2

n
w

2
max

◆

Putting this with the (9), we have
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EP�


exp

✓
� sup

t2R

��� bFIS(t)� F (t)
���
◆�

 2EP� ,R

"
exp

 
max

j

2�

n

jX

i

w(Ai, Xi)⇠i

!

{
Pj

i w(Ai,Xi)⇠i�0}

#

 4 exp

✓
�
2 2

n
w

2
max

◆

Using Markov inequality we have

P�

✓
sup
t2R

��� bFIS(t)� F (t)
��� � ✏

◆
= P�

✓
exp

✓
� sup

t2R

��� bFIS(t)� F (t)
���
◆

� exp(�✏)

◆

 4 exp

✓
�
2 2

n
w

2
max

◆
exp(��✏)

= 4 exp

✓
�
2 2

n
w

2
max � �✏

◆

This holds for any choice of � > 0, resulting in

P�

✓
sup
t2R

��� bFIS(t)� F (t)
��� � ✏

◆
 inf

�>0
4 exp

✓
�
2 2

n
w

2
max � �✏

◆
= 4 exp

✓
�n✏

2

8w2
max

◆

Using this, we have

P�

 
sup
t2R

��� bFIS(t)� F (t)
��� 

s
8w2

max

n
log

✓
4

�

◆!
� 1� �.

Bernstein style: To bound this EP� ,R

⇥
exp

�
2�
n

P
i w(Ai, Xi)⇠i

�⇤
now we use Bernstein’s. As

discussed, the random variable w(Ai, Xi)⇠i is in [�wmax, wmax]. However, if we look at its variance,
we have EP� ,R

⇥
w(Ai, Xi)2⇠2i

⇤
= EP� ,R

⇥
w(Ai, Xi)2

⇤
which is the second order Rényi divergence

w . Therefore, for 0 < � <
n

2wmax
, we have

EP� ,R

"
exp

 
2�

n

X

i

w(Ai, Xi)⇠i

!#
=
Y

i

EP� ,R


exp

✓
2�

n
w(Ai, Xi)⇠i

◆�



Y

i

exp

 
�
2 4w

n2

2
�
1� �

2
nwmax

�
!

= exp

 
n�

2 4w
n2

2
�
1� �

2
nwmax

�
!

Using the Markov inequality, we have,

P�

✓
sup
t2R

��� bFIS(t)� F (t)
��� � ✏

◆
= 4 exp

 
n�

2 4w
n2

2
�
1� �

2
nwmax

� � �✏

!

Setting � = ✏
2wmax✏

n +n
4w

n2

, we have,

P�

✓
sup
t2R

��� bFIS(t)� F (t)
��� � ✏

◆
 4 exp

 
�✏

2

2
�
2
nwmax✏+ n

4w
n2

�
!
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= 4 exp

✓
�n✏

2

4wmax✏+ 8w

◆

which results in,

P�

0

@sup
t2R

��� bFIS(t)� F (t)
��� 

4wmax log(
4
� )

n
+ 2

s
2w log( 4� )

n

1

A � 1� �.

Finally, we note that since supt | bFIS-clip(t)� F (t)|  supt | bFIS(t)� F (t)|, the above results for bFIS

also hold for bFIS-clip.

Auxiliary Lemmas

Lemma B.1. For any random variable X , with probability measure P, we have

E
⇥
exp(�X) {X�0}

⇤
= P{X � 0}+ �

Z 1

0
exp(�t)P{X � t}dt.

Proof. for any random variable X , with probability measure P, we have

E
⇥
exp(�X) {X�0}

⇤
= E

" 
exp(0) +

Z X

0
� exp(�t)dt

!

{X�0}

#

= E
⇥

{X�0} exp(0)
⇤
+ E

"

{X�0}�

Z X

0
exp(�t) {X�0}dt

#

= P{X � 0}+ E
"
�

Z X

0
exp(�t) {X�0}dt

#

= P{X � 0}+ �

Z 1

0
exp(�t)P{X � t}dt. (12)

Lemma B.2. For � > 0, we have,

P�

"
max

j

jX

i

w(Ai, Xi)⇠i � �

#
 2P�

"
nX

i

w(Ai, Xi)⇠i � �

#
(13)

Proof. Consider events Ej := {
Pj

i w(Ai, Xi)⇠i � �,
Pl

i w(Ai, Xi)⇠i < �, 8l < j} with E0 := ;.
Using these definitions, we have,

{max
j

jX

i

w(Ai, Xi)⇠i � �} ⇢

[

j

Ej

Also,

[

j

0

@Ej

\
{

X

i>j

w(Ai, Xi)⇠i � 0}

1

A ⇢ {

X

i

w(Ai, Xi)⇠i � �}

Also note that

P�

2

4
X

i>j

w(Ai, Xi)⇠i � 0

3

5 �
1

2
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since this quantity is mean zero and symmetric. Also note that the event
P

i>j w(Ai, Xi)⇠i is
independent of Ej .

Using these, we have,

P�

2

4Ej

\
{

X

i>j
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As a result we have,
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which concludes the statement.
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C Proofs for Doubly Robust Estimators (Section 5.3)

C.1 Proof: Bias and Variance of DR CDF Estimate

Proof of Lemma 5.2. The expectation of the DR estimator (22) is as follows:

EP�

h
bFDR(t)

i
= EP�

h
w(A,X) {Rt}

i
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h
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i
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⇥
G(t;X,⇡)� EP� [w(A,X)G(t;X,A)|X]

⇤
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⇥
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= F (t).

Next, we derive the variance.
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The first equality follows from applying the law of total variance, noting that the variance
VP�

⇥
G(t;X,A)|X,A

⇤
= 0, and using the definitions of G and �

2. The second equality again
applies the law of total variance.

C.2 Proof: Error Bound of DR CDF Estimate

Proof of Theorem 5.2. Recall that the DR estimator bFDR(t) is defined as

bFDR(t) =
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. We can decompose the error of the DR estimator as:
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We have already bounded the first term in Theorem 5.1, and Lemma C.1 bounds the second term.
Then in total, we have
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Simplifying,
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which gives us our error bound for the DR estimator bFDR.

As mentioned previously, however, bFDR may not be monotone, and in practice we must use a
monotone transformation of the estimator. Consider a monotone transformation M of bFDR that is a
simple accumulation function, e.g. 8t,

M
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⌘
= max

t0t
bFDR(t

0)

Now we want to bound the error between the monotonized estimate M
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Putting these two inequalities together, we have
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The theorem statement, which applies to the clipped monotone transformation, follows from the fact
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Lemma C.1. Let G(t;x, a) be a valid conditional CDF for all x 2 X , a 2 A, and let w : A⇥X ! R
be the importance sampling weights. Then for � 2 (0, 1],
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where G(t;x,⇡) = EP[G(t;x,A)|x].

Proof. Since G is a valid CDF, we apply Lemma C.2 to G. Consider a function of the form
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The function ⇣ can be seen as a stepwise CDF function, where each step is 1/m and occurs at points
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j
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Lemma C.2 approximates G using such 1/m-stepwise CDFs. For each context x and action a, let
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such that the following inequality holds:
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Next, consider the class of functions
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where the second line uses the definition of G(t;Xi,⇡), the third line uses a change of measure
through the importance sampling weight w, the fourth line uses (C.2), and the last line uses the fact
that, conditioned on {s

j
x,a}

m
j=1, the function ⇣ is a member of G(m).

We can now upper bound the RHS. Going forward, we refer to ⇣({sjX,A}
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j=1) as ⇣(X,A) for short.

Then for � > 0 we have:
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where {A
0
}
n
i are the ghost variables, the second to last inequality uses symmetrization (Lemma C.3),

and the last line uses the definition of ⇣(Xi, Ai) = ⇣(s1Xi,Ai
, ..., s
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Xi,Ai

).
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Now, for each j, permute the indices i such that sjXj(1),Aj(1)
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Putting it together, we have that
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Now we are left to bound the RHS of (17). Using Lemma B.1,
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Similarly, for any j, we have
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Putting these two together, we have

EP� ,R

"
max
j,k

exp

 
2�

n

kX

i

w(Aj(i), Xj(i))⇠j(i)

!

{
Pk

i w(Aj(i),Xj(i))⇠j(i)�0}

#



X

j

P�

 
max

k

2�

n

kX

i

w(Aj(i), Xj(i))⇠j(i) � 0

!
� 2

X

j

P�

 
2�

n

nX

i

w(Aj(i), Xj(i))⇠j(i) � 0

!

+ 2
X

j

EP� ,R

"
exp

 
2�

n

nX

i

w(Aj(i), Xj(i))⇠j(i)

!

{
Pn

i w(Aj(i),Xj(i))⇠j(i)�0}

#

 2
X

j

EP� ,R

"
exp

 
2�

n

nX

i

w(Aj(i), Xj(i))⇠j(i)

!

{
Pn

i w(Aj(i),Xj(i))⇠j(i)�0}

#

 2mEP� ,R

"
exp

 
2�

n

nX

i

w(Aj(i), Xj(i))⇠j(i)

!#

 2m exp

✓
2�2

w
2
max

n

◆

where the last inequality uses the fact that ⇠ is a Rademacher random variable, and w(A,X)  wmax.
Finally, using Markov’s inequality,
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Because this holds for any � > 0, we can minimize the RHS over �:
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Auxiliary Lemmas

Lemma C.2. For any ⇣, a non-decreasing function with support [0, D], there exists m points
s
1
....s

m
2 Qm such that for a function of the form,

⇣(t; s1, ..., sm) =
1

m

mX

j=1

{sjt}, 8t 2 R

the following inequality holds:

k⇣ � ⇣k1 
1

2m
.

Proof of Lemma C.2. Uniformly partition the interval [0, D] to m partitions, with partition points
{

j
D}

m
j=0. We construct the set {sj}mj=1 using the following procedure. For any j 2 {1, . . . ,m} and

the corresponding partition point j�1
D , let sj 2 Q be a point such that either limt!sj�

⇣(t) = j�1
m + 1

2m

or limt!sj+
⇣(t) = j�1

m + 1
2m (e.g., as illustrated in Figure 4). Then for any t, ⇣(t) is 1

2m -close to
⇣(t).

1

1/#
2/#

$

ℝ

$

Figure 4: Approximating monotonic function ⇣ with ⇣ when the support is [0, 1] .

Lemma C.3. For the function class G defined in Appendix C.2, we have for any � > 0 that
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where contexts and actions X,A,A
0
⇠ P� , and Rademacher random variables ⇠i ⇠ R.

Proof. For each i = 1, ..., n, and let ⇠i be i.i.d. Rademacher random variables. Set
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We have that, conditioned on Xi, (A+
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i). Then
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Our last step is to bound the last line of the above display.
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Lemma C.4. Let G(t;X,⇡) = EP[ {Rt}|X] be the conditional CDF of returns for all x 2 X .
Then for � 2 (0, 1],
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Proof. Since G is a valid CDF, we apply Lemma C.2 to G. Consider a function of the form

⇣(t; s1, ..., sm) =
1

m

mX

j=1

{sit}

The function ⇣ can be seen as a stepwise CDF function, where each step is 1/m and occurs at points
{s

j
}
m
j=1.

Lemma C.2 approximates G using such 1/m-stepwise CDFs. For each context x, let s1x, ..., smx 2 Qm

be the points chosen according to the deterministic procedure in Lemma C.2, such that the following
inequality holds:

sup
t

��G(t;x,⇡)� ⇣
�
t; {sjx}

m
j=1

���  1

2m
. (18)

Next, consider the class of functions

G(m) :=
n
⇣(s1, ..., sm) :=

1

m
%

mX

j=1

{sjt} : 8t 2 R, % 2 {�1,+1}; {sj}mj=1 2 Qm
o

Note that, ⇣ is a subset of the function class G(m), e.g. ⇣
�
t; {sjx}

m
j=1

�
2 G(m).

Then our problem becomes
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We can now upper bound the RHS. Going forward, we refer to ⇣({sjX}
m
j=1) as ⇣(X) for short. Then

for � > 0 we have:
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5 (19)

where {X
0
}
n
i are the ghost variables, and the last line uses the definition of ⇣(Xi) = ⇣(s1Xi

, ..., s
m
Xi

).

Now, for each j, permute the indices i such that sjXj(1)
 ...  s

j
Xj(i)

 ...  s
j
Xj(n)

. Then, for a
given j, consider the function

nX

i=1

⇠j(i) {sjXj(i)
t},

which equals

1. 0 if t < s
j
Xj(1)

,

2. %
Pk

i=1 ⇠j(i) if there exists k 2 {1, ..., n� 1} such that sjXj(k)
 t  s

j
Xj(k)+1

,

3. %
Pn

i=1 ⇠j(i) otherwise.
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Then the RHS of (19) equals
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Putting it together, we have that
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Now we are left to bound the RHS of (20). Using Lemma B.1,
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Putting these two together, we have
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where the last inequality uses the fact that ⇠ is a Rademacher random variable. Finally, using Markov’s
inequality,

P�

 
sup
t

�����
1

n

nX

i=1

G(t;Xi,⇡)� F (t)

����� � ✏+
1

m

!

 P�

 
exp

 
� sup

t

�����
1

n

nX

i=1

⇣(Xi)� EP�

"
1

n

nX

i=1

⇣(Xi)

#�����

!
� exp(�✏)

!

 4m exp

✓
2�2

n
� �✏

◆

Because this holds for any � > 0, we can minimize the RHS over �:
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Then we have
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Setting m =
p
n/8 gives the theorem statement:
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D Proofs for Risk Functional Estimation (Section 6)

Proof of Theorem 6.1. By the definition of L-Lipschitz risk functionals, for the CDFs F and bF ,

|⇢( bF )� ⇢(F )|  Lk bF � Fk1

 L✏

with probability at least 1� �, where the last line uses the fact that bF is ✏-close to F with probability
at least 1� �.

33



E Risk Estimation with Unknown Behavior Policy

We begin this section with a consideration of estimators when the behavior policy is unknown, and
must be modeled or estimated, which we call b�. We first define the IS, DR, and DI estimators using
b�, then derive their bias and variance expressions. To differentiate between the estimator that use �

and the estimators that use b�, we call the latter eF while continuing to call the former bF .

The proofs of bias and variance begins with derivations for the DR estimator with estimated policy,
from which the bias and variance of the remaining estimators can be derived as special cases.

Let b� be the estimated behavior policy, and let bw(a, x) := ⇡(a|x)
b�(a|x)

be the importance weight with
estimated policy. Then the importance sampling (IS) estimator is given by

eFIS(t) :=
1

n

nX

i=1

bw(ai, xi) {rit} (21)

Then doubly robust (DR) estimator is:

eFDR(t) :=
1

n

nX

i=1

bw(ai, xi)
�

{rit} �G(t;xi, ai)
�
+G(t;xi,⇡) (22)

And the direct method (DI) estimator is still defined to be

bFDI(t) :=
1

n

nX

i=1

G(t;xi,⇡) (23)

Note that the direct estimator does not depend on the behavior policy, and thus we continue to call it
eFDI.

E.1 Bias and Variance

Next, we analyze the bias and variance of these estimators. Define �(a, x, t) to be the additive error
between G and the model G, and define �(x, a) to be the multiplicative error of the estimate b�, that
is:

�(t;x, a) := G(t;x, a)�G(t;x, a),

�(x, a) := 1� �(a|x)/b�(a|x).

Note that when � is known or b� = � for all x, a, �(x, a) = 0, The bias of the IS estimator then given
in Lemma E.1, in terms of � and the conditional reward distribution G.

Lemma E.1 (Bias and Variance of IS Estimator with b�.). The expectation of the IS estimator is

EP� [ eFIS(t)] = F (t) + EP[�(A,X)G(t;X,⇡)]

When b�(a|x) = �(a|x) for all a, x, the IS estimator is unbiased and EP� [ bFIS(t)] = F (t). Further,
the variance is

VP� [ eFIS(t)] =
1

n
EP
h
(1� �(A,X))2 �2(t;X,A)

i
+

1

n
VP [EP [(1� �(A,X))G(t;X,A)|X]]

+
1

n
EP
⇥
VP� [ bw(A,X)G(t;X,A)|X]

⇤
(24)

The expression for variance is broken down into three terms. The first represents randomness in
the rewards, and the second represents variance from the aleatoric uncertainty due to randomness
over contexts X . The final term represents variance arising from using importance sampling, and is
proportional to the true CDF of conditional rewards G.

The following lemma, similarly, derives the bias and variance for the DR estimator:
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Lemma E.2 (Bias and Variance of DR Estimator with b�.). The pointwise expectation of the DR
estimator is

EP� [ eFDR(t)] = F (t) + EP[�(X,A)�(t;X,A)]

Further, when there is perfect knowledge of the behavior policy �, e.g. �̂(a|x) = �(a|x) for all a, x,
the DR estimator is unbiased and

EP� [ eFDR(t)] = F (t)

The variance of the doubly robust estimator is given by

VP� [ eFDR(t)] =
1

n
EP
h
(1� �(A,X))2 �2(t;X,A)

i
+

1

n
VP [EP [�(A,X)�(t;X,A) +G(t;X,A)|X]]

+
1

n
EP
⇥
VP� [ bw(A,X)�(t;X,A)|X]

⇤
(25)

Because the DR estimator takes advantage of both policy and reward estimates, it is unbiased
whenever either the estimated policy or estimated reward is unbiased. Further, when we have access
to the true behavior policy � and bw = w, it retains the unbiasedness of the IS estimator.

Compared to the IS estimator, the DR estimator may also have pointwise reduced variance. When the
variances of the IS estimator (24) and the DR estimator (25) are compared, the first term is identical,
and the middle term is of similar magnitude because the randomness in contexts X is endemic. The
third term is the primary difference. For the IS estimator, it is proportional to G, but for the DR
estimator, it is proportional to the error � between the estimated conditional CDF G and the true
G. Thus, this term can be much larger in the IS estimator when bw is large and the error � is smaller
than G. This demonstrates that the DR estimator retains the low bias of the IS estimator, but has the
advantage of reduced variance.

Next, Lemma E.3 gives the bias and variance of the DI estimator, which is directly related to the bias
and variance of the conditional distribution model G.
Lemma E.3 (Bias of DI Estimator with b�.). The bias is

Ex,a⇠�,r[ eFDI(t)] = F (t) + EP[�]

and the variance is
V[ eFDI(t)] =

1

n
VP
h
G(t;X,⇡) +�].

While the DI estimator has lower variance than both the IS and DR estimators, it suffers from
potentially high bias from G. Unlike the other two estimators, it is biased even when b� is a perfect
estimate of �, which in practice is undesirable. Though the DI estimator has low bias when G is a
good model of the condition reward distribution, it is often much easier to form accurate models of �
than of G.

Proofs: Bias and Variance

We begin by proving the bias and variance expressions of the DR estimator with b�. The bias and
variance of the other estimators can be derived as special cases, which we show later.

Proof of Lemma E.2. First, we take the expectation of the DR estimator (22) with respect to P� :
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When b� = � for all a, x, we have � = 0, giving the unbiasedness of the estimator.

Starting from the second line of the proof of variance for the DR estimator (Appendix C.1), we have
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+
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n
EP
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the second line uses a change of measure in the first term, and the law of total variance conditioned on
the context X . The third line follows again from change of measure and substituting in the definition
of � and �.

Lemma E.1 is derived from Lemma E.2 using the fact that the IS estimator is a special case of the DR
estimator with G = 0.

Lemma E.3 is derived from Lemma E.2 by using b� ! 1 which means bw = 0, e.g. importance
weighting is not used, and � = 1.

E.2 CDF and Risk Estimate Error Bounds

Theorem E.1 generalizes the CDF error bounds established for the IS and DR estimators with known
behavior policy to the case where b� is estimated, given an additional high-probability guarantee on
the quality of b�.

Theorem E.1. For the IS or DR CDF estimator eF that uses estimated weights bw(a, x) =

⇡(a|x)/b�(a, x), given an estimate b� that is ✏�-close to the true behavior policy �, that is

sup
a,x

|�(a|x)� b�(a|x)|  ✏� ,

we have with probability at least 1� � that

P�

✓
sup
t2R

��� eF (t)� F (t)
���  ✏+ c✏�

◆
� 1� �

where ✏ is either ✏IS or ✏ = ✏DR depending the choice of bF , and c = wmax

⇣
infa,x b�(a|x)

⌘�1
.

Similarly, for L-Lipschitz risk functionals, the general error bound given in Theorem 6.1 can be
extended to the case of b� by adding the additional error term from the policy estimation.
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Corollary E.1. For the IS or DR CDF estimator eF that uses estimated weights bw(a, x) =

⇡(a|x)/b�(a, x), given an estimate b� that is ✏�-close to the true behavior policy �, we have with
probability at least 1� � that

���⇢( eF )� ⇢(F )
���  L (✏+ c✏�)

where c = wmax

⇣
infa,x b�(a|x)

⌘�1
.

Note that the error contributed by policy estimation, c✏� , is primarily dependent upon two factors.
First, the quality of b� estimation determines the magnitude of ✏� ; a poor estimate naturally leads
to a higher value of this constant. Second, c is a problem-dependent constant proportional to the
maximum importance weight wmax and the minimum probability of the estimated behavior policy
infa,x b�(a|x). If infa,x b�(a|x) is particularly small, the error bound is also large. This reflects the
fact that CDF estimation can be difficult when the behavior policy places low probability in some
area of the context and action space.

Remark E.1. When actions and contexts are discrete, and b� is estimated using empirical averages,
standard concentrations for the mean of a random variable can be used to determine ✏� . If b� is
estimated using regression, depending on the estimator ✏� can also be determined from concentration
inequalities.

v2

Proofs: Error Bounds

The proof of these results is given below.

Proof of Theorem E.1. We can decompose the error bF � F as:

sup
t

| eF (t)� F (t)|  sup
t

⇣
| bF (t)� F (t)|+ | eF (t)� bF (t)|

⌘

 sup
t

| bF (t)� F (t)|+ sup
t

| eF (t)� bF (t)|

Theorem 5.1 gives a bound for the first term, and the bound for the second term bound is given in
Lemma E.4 for the IS estimator, and in Lemma E.5 for the DR estimator.

Proof of Corollary E.1. This result follows directly from applying the general risk estimation error
bound in Theorem 6.1 to the error from Theorem E.1.

The intermediary lemmas are defined and proved below:

Lemma E.4. Suppose that |b�(a|x)� �(a|x)|  ✏� for all a, x with probability at least 1� �. Then
with probability at least 1� �,

sup
t

| eFIS(t)� bFIS(t)|  c✏�

where c = wmax

⇣
infa,x b�(a|x)

⌘�1
.
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Proof. We can bound the LHS of the lemma statement as follows.
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where the last line follows from using the assumption that |b�(a|x)� �(a|x)|  ✏� for all a, x.

Lemma E.5. Suppose that |b�(a|x)� �(a|x)|  ✏� for all a, x with probability at least 1� �. Then
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Proof. We can bound the LHS of the lemma statement as follows. Using the definitions of the DR
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where the last line uses the assumption that |b�(a|x)� �(a|x)|  ✏� for all a, x.

38



F Additional Experiments

UCI Implementation Details Following [20, 19, 57], we obtain our off-policy contextual bandit
datasets by transforming classification datasets. The contexts are the provided features, and the
actions correspond to the possible class labels. To obtain the evaluation policy ⇡, we use the
output probabilities of a trained logistic regression classifier [36]. The behavior policy is defined as
� = ↵⇡+ (1�↵)⇡UNIF, where ⇡UNIF is a uniform policy over the actions, for some ↵ 2 (0, 1]. Each
dataset is generated by drawing actions for each context according to the probabilities of �, and the
deterministic reward is 1 if the action matches the ground truth label, and 0 otherwise.

We apply this process to the set of 9 UCI datasets [18] used in [20, 19, 57], which each have differing
dimensions d, actions k, and sample size n. Models G must be constructed for the DM and DR
estimators. As in [20], the dataset is divided into two splits, with each of the two splits used to
estimate G, which is then used with the other split to calculate the estimator. The two results are
averaged to produce the final estimators. In order to estimate G, we discretize the reward support into
t 2 [0, 1], and train a logistic regression classifier [36] for each action a and each t, with regularization
parameter C = 1 and tolerance 0.0001. The code to reproduce these experiments is provided in the
supplementary. On a CPU, they take roughly half a day of compute in total.

Relationship With ↵ We plot the error over the range of ↵, which controls the mismatch between
the behavioral policy � and the target policy ⇡ and is thus proportional to wmax, for the PageBlocks
dataset (also in Figure 1). The CDF error is shown in Figure 5 and the mean squared error (MSE) for
the mean, CVaR 0.5, and variance risk functionals are shown in Figure 6.

The DR estimator exhibits lower error than any other estimator, and significantly lower variance than
the IS and WIS estimators, across the range of ↵. This is particularly obvious in the region where
↵ is small, which is where importance weights can become larger and the IS-based estimators are
prone to higher variance. Note that the CVaR0.5 MSE is close to 0 for all estimators.

Figure 5: Sup-norm CDF error over ↵ for PageBlocks. Shaded region shows one empirical standard
deviation.

Figure 6: Mean squared error (MSE) over ↵ for different risk functionals evaluated in the PageBlocks
dataset. Shaded region shows one empirical standard deviation.
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Evaluation Over UCI Datasets We display the sup-norm error of the estimated CDF and the
mean-squared error (MSE) of estimated risk functionals (mean, CVaR0.5, and variance) for the 9
UCI datasets below. Here, ↵ = 0.5 is fixed. All plots are shown over 500 repetitions, with error bars
omitted for readability but similar to those shown in Figure 1.

The general trends reflect analysis presented in Section 7. As expected of our distribution-based
approach, trends in CDF estimation performance are reflected in risk estimation performance. Both
the DR and IS estimators exhibit the expected O(1/

p
n) error convergence across the estimation

tasks. Generally, the DR estimator does as well as if not better than the other estimators; where the
model is difficult to specify well, the DR estimator may suffer slightly in performance in the low
sample regime, but always outperforms the other estimators as the number of samples n increases.
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