
Supplemental Material

We present the following items in the supplemental:

a. Data collection information (Section A)
b. An exploration of the data in our corpus (Section B)
c. Qualitative analysis of model representations (Section C)
d. An exploration of the intermediate visual representations (Section D)
e. Hyperparameters and experimental setup used for all experiments (Section E)
f. A Datasheet [37] for our YT-Temporal-180M dataset (Section F)

A Collecting Videos and Transcripts from YouTube

We adopt the following high-level process to collect YouTube videos and their accompanying
transcripts:

a. Collect channel pages that are likely to cover visually-textually grounded events (A.1),
b. Download videos from each channel, while filtering out videos without English ASR

captions, or unlikely to have (changing) real-world scenes and objects (A.2),
c. ‘Denoise’ the transcripts – using a language model to rewrite transcripts in a style more

similar to written English, as opposed to spoken English (A.3),
d. Last, align words in the transcript to video frames, and extract the segments for pretraining

(A.4).

As we will discuss in more detail in the following subsections, we designed our strategy to preserve
user privacy as much as possible – an imperative when constructing a corpus on public-facing
multimodal data. We conclude with a high-level summary of these privacy-preserving decisions, as
well as about our release strategy (A.5).

A.1 Collecting channel IDs + video IDs

The first stage in our pipeline was to collect YouTube video IDs that could potentially be relevant for
learning visual-textual relationships. We opted to search for interesting channels rather than search
for videos directly, as we found the API limits for searching for videos somewhat restrictive. Once a
channel was downloaded, we could then download its videos.

We found channels using YouTube’s auto-generated ‘topic’ pages, corresponding to entries in
FreeBase like ‘Science’ or ‘Home Improvement.’ We identified 18 of these topics, and retrieved the
IDs for all channels that were linked to by each topic page. We also used YouTube channels that
appeared in the VLOG dataset [35], as well as a selection of viral ‘How-To’ and ‘Cooking’ channels.
Last, we searched YouTube for concrete nouns, using the object list from MSCOCO (‘baseball’,
‘snowboard’, etc.) as a starting point; we retrieved channel IDs for each video that appeared.

Channels on YouTube often feature other (often similar) channels; so we downloaded more channel
IDs by performing a graph breadth-first search over the initial set of channels. We identified 50k
channels total and filtered out any more ‘personal’ channels (with fewer than 10k views between all
videos). Last, we gathered all video IDs that came from our list of channels, which left us with 27
million video IDs, which formed our final candidate list.

Privacy implications. Our high-level goal was to preserve user privacy by mainly using popular (and
more monetized) YouTube videos and channels in our dataset, as opposed to personal ones. The
YouTube search algorithm helped us do that, by ordering results (in part) by the popularity of a video
/ channel. Downloading all videos from a channel, and filtering out channels with fewer than 10k
views, favors popular content (like for celebrities, professional YouTubers, and cable news stations).
Our analysis in Appendix B shows this strategy was largely successful.

Connection with HowTo100M. As discussed in the paper, we used both a diverse selection of YouTube
videos (coming from this process), as well as the video list from HowTo100M [80]. We simply
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concatenated the video IDs from HowTo100M with the video IDs from this searching step. This
means first, that the HowTo100M videos were also filtered by the next steps (and thus our copy of
HowTo100M is slightly smaller than the original), though we found that the filtering step had minimal
impact on those videos (that were already filtered by [80]). Second, it means that the HowTo100M
videos do contain some instructional videos from less-popular channels. Our intuition here is that
this might be okay from a privacy standpoint: few of these people are discussing personal topics; a
typical example might be a grainy video of somebody baking cookies. Nonetheless, given the scale
that we operated at ourselves, we tried to be more cautious with the filtering.

A.2 Filtering out videos

After retrieving a set of video IDs, our next step was to download ones likely to be appropriate
for pre-training MERLOT. Not all videos would are likely to work well: many videos have no
spoken words, are not in English, or otherwise do not have automatically-generated (ASR) captions.
Likewise, many videos are not grounded: some just have still images (like podcasts), some are of
people talking to each other or to the camera, and many are of people playing video games. Our
intention was to filter out these videos, ideally without having to download them (so as to conserve
bandwidth).

For each video ID, we perform the following steps:

• Downloading info: YouTube allows us to download the video metadata separately from each
video. We do this first as the video info file is much smaller than the video itself. We thus
first (try to) download this file. We exit here if one of the following conditions are met:

– the video was removed,
– the video is categorized as a ‘Gaming’ video,
– the video does not contain any English ASR captions,
– the video is over 20 minutes long (and thus might be overly expensive to download).

• Inspecting thumbnails: the YouTube API has a hidden feature that allows us to download four
thumbnails [35]; in terms of bandwidth usage, this is often much cheaper than downloading
the whole video. We use these thumbnails as a proxy as to whether the entire video is
likely suitable for pretraining.6 We trained a lightweight MobileNet-V2 CNN [93] to score
whether a COCO object class is present in an image or not, using a sigmoid cross entropy
loss. We exit here if one of the following conditions are met:

– the CNN classifies fewer than four COCO objects as being ‘present’ over the four
frames, using a minimum threshold of 30% probability for an object to be counted
as being ‘present.’ This is mainly to recognize scenes with people, as opposed to
animations, landscape footage, or blank/placeholder slides.

– The average cosine similarity between all feature representations (computed by the
classifier) is over 0.9; this allows us to skip videos that have no visual variance (like a
person sitting in front of a camera for the whole video, or an album cover while a song
is playing).

• Downloading the video: if we have not exited yet, we download the video.

A.3 Denoising ASR Captions

One concern with pretraining on ASR is that written text may differ from spoken text: thus, when
transferring to downstream tasks based on written corpora, models pretrained on spoken transcriptions
may not transfer well. Also, ASR generated by YouTube does not include punctuation or capitalization.
Furthermore, ASR transcripts can contain errors, e.g., by mistranscribing rare words/proper nouns
and instead predicting incorrect, but similarly pronounced, words. And finally, YouTube’s ASR
system sometimes attempts to translate text from a different language to English, which is sometimes
successful, but other times produces nonsense.

6Note that YouTube thumbnails are also (algorithmically) curated: when thumbnails aren’t hand-selected
by the uploader, YouTube’s thumbnail selection algorithm selects high quality, clear frames. https://ai.
googleblog.com/2015/10/improving-youtube-video-thumbnails-with.html
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We aim to sidestep these issues by using a language model to ‘denoise’ ASR text, as well to filter
out excessively noisy transcripts. We use a GROVER-Large language model to do this [124], as it
was exclusively pretrained on written text from news articles. Then, we finetuned it in a sequence-to-
sequence setting to ‘denoise’ ASR.

We created data for our ‘denoising’ task using the following procedure. Given an article from
RealNews [124], we would trim it to 600 BPE tokens, and perform the following corruptions:

• We lowercase all text, and remove all punctuation.

• For each word (splitting by whitespace), we replace it with a random word 1% of the time.
Within this 1%, 25% of the time, we use the CMU Pronouncing Dictionary7 to swap-in a
word with identical pronunciation (to simulate mistranscriptions), and 75% of the time we
use a random sequence of BPE tokens of the same length as the actual word.

• For each word, 1% of the time we insert a ‘filler word’ before it, such as ‘umm,’ ‘hmm,’ or
‘yeah.’

The model was trained to generate the ‘noisy’ news article, followed by a ‘START’ token, then the
original ‘clean’ news article, and then an ‘END’ token; all using a standard cross-entropy loss. We
prioritize learning the ‘clean’ text by multiplying the loss on the initial ‘noisy’ tokens by 0.01. We
trained this model using a batch size of 256 sequences of maximum sequence length 1536, a learning
rate of 1e-5, and 80k steps.

The result is a model that not only attempts to fix mistranscriptions and corruptions, but also adds
punctuation and capitalization. The model also produces an estimated likelihood of the ASR caption
track, which we later use to filter out videos with very low quality ASR transcripts, e.g., poorly
translated transcripts.

We apply the model to each video’s transcript that survived the described filtration, breaking up long
transcripts into groups of 512 tokens. These groups are handed as input to the model, and Nucleus
Sampling (with p=0.9) [48] is used to generate a cleaned transcript for the group. We exit, filtering
out the entire video, if any group has a perplexity of over 200. Finally, we concatenated all the groups
together to form a ‘clean’ transcript.

A.4 Putting everything together: aligning videos and cleaned transcripts to frames

To recap, at this stage in the pipeline, for each video, we have the video file, along with the original
ASR transcript (with words, as well as timestamps for each word), and the cleaned ASR caption
(without timing info). To estimate timing info for the clean transcript, we align the noisy and cleaned
transcripts on a word-by-word level using Dynamic Time Warping [85]; word-word distance is
computed using Levenstein distance. The timing estimate for a cleaned token was computed as the
average of the noisy tokens assigned to it in this alignment.

Finally, given a video and its cleaned, per-word timed transcript, we sought to extract corresponding
video frames – the data format we rely on for pretraining. We start with (empty) buffers of at most
L = 32 tokens for both the original, and noisy transcripts. We loop through the (aligned) clean
and noisy transcripts, and add the tokens to their respective buffers. If adding the next word would
cause the buffer to exceed L = 32 tokens in length, we commit the segment – returning the noisy
ASR text, along with the clean text, and timing information. We then extract a frame from the video
corresponding to the middle of that segment. We do this until the end of the video. We use the GPT2
BPE encoder for this [97, 88], as was also widely adopted in later work (e.g. RoBERTa [72]).

Not all videos fit neatly into 16 segments, which was the format we used for training. Thus, we
merged segments from videos shorter than 16 segments, and for longer videos, we split them into
multiple examples. We didn’t use any video sequence-level padding: all of our dataset examples have
16 valid frames, even though we did include padding at the token level (so many segments had fewer
than L = 32 tokens).

7http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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A.5 Summary - scraping while preserving privacy

As we discussed in the sections above, we tailored our scraping process to protect user privacy. It
should be mentioned here that we focused on public videos. Possibly due to cues of engagement like
view/subscriber counts, users on YouTube appear to understand the privacy implications of uploading
a ‘public’ video [55], differentiating YouTube from more private venues, like email and social media.
Under Marwick and boyd [78]’s framework of networked privacy, when web users (particularly those
with less viewership) upload public videos, they are often ‘being in public without being public.’
The idea behind this distinction is that web users, understanding that their content might be visible
to others, tend to avoid sharing overly private data (like their phone number or date of birth); the
information that they do share is often encoded (i.e., referring to a friend by their first name, not their
full name). Finally, we took extra steps to filter out more ‘personal’ videos (without many views);
our analysis in Appendix B shows this strategy was largely successful.

An additional aspect of our approach, as it relates to privacy, was our decision to use a diverse
selection of channels. We did this to minimize risks of models ‘overfitting’ to specific individuals –
a risk evidenced by a large GPT2 model memorizing users’ phone numbers [18]. We believe that
training a base-sized model in a large- and diverse-data regime minimizes many of the harms in this
case; that said, the risk in the multimodal (video) space is unclear as of yet, and more research is
needed.

Finally, we do not plan on releasing videos for download, only their IDs, following a strategy from
prior work [1, 80]. This gives users an explicit ‘right to be forgotten’ not just from YouTube, but
our data as well. We understand that this might make exact reproducibility difficult; we address
this by releasing code for our filtering process. Thus, if in the future, if N videos get deleted from
YT-Temporal-180M, a practitioner can download N new YouTube videos that pass through the same
filters that we used.

B Data Exploration

Curating large pretraining corpora necessitates some ad-hoc decisions, e.g., what data to search for,
what data to keep/discard, etc., and our work is no exception. The described data extraction pipeline
contains several heuristics that we developed based on our subjective experiences (and per-step,
heuristic validations) curating the corpus. While it isn’t computationally feasible ablate each stage of
this pipeline (and examine each decision’s effect on downstream performance), we seek to quantify
some basic of the properties of the corpus.

Validity Check We randomly sampled 100 videos from the corpus, and answered the following
basic questions for each of the videos: Q1: Does the video contain language utterances? Q2: If
so, is the language primarily English? Q3: Is the video an instructional video, i.e., is it an attempt
to teach the viewer how to undertake a task?8 Q4: What type of entity created the video: a small
youtuber (<10K subscribers); a medium youtuber (<100K, >10K subscribers); or a large youtuber
(>100K subscribers); a news station; or a media company. Q5: Is the video a music video? Q6: Is
the video a video game commentary?

Of the 100 examined videos, none were music videos or video game commentaries (Q5/Q6). The
videos were mostly not instructional (84%) (Q3) and mostly in English (86%) (Q2); non-English
videos nonetheless can have an English ASR track provided by the YouTube API if the spoken
language is transcribed by YouTube via its auto-translate feature. And while all contained language
utterances (Q1), at least one translated transcript had a very low quality transcription, which was only
loosely semantically related to the underlying content. Finally, the most common video creators were
news studios (29%; e.g., local news channels); big YouTubers (26%; e.g., popular vloggers), and
media companies (24%; e.g., Major League Baseball). Also included, but in lesser proportion, were
small YouTubers (8%), and TV studios (1%; e.g., official movie trailers).

Content Exploration What topics are covered by the corpus? We randomly sampled 55K video
transcripts, and ran an LDA topic model [16] implemented in MALLET [79] with 100 topics. We
used a vocab size of 25K word types that appear in at least 25 transcripts, but in no more than 10% of

8A similar definition was proposed in [47].
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Figure 4: TSNE of topic distri-
butions for 7K sampled docu-
ments.

Sports goal win match points ball games goals played players
Baking sugar mix cup butter recipe flour oven dough bowl
Legal court law justice judge investigation report prison
LifeVlog excited vlog tomorrow literally camera bed yesterday
Cooking sauce cook oil chicken salt garlic pepper cooking

Table 5: Several common topics, derived from the transcripts of YT-
Temporal-180M, represented by the most common words of those
topics.

transcripts. The topics suggest diverse coverage, e.g., topics about specific sports (boxing, soccer),
US and world politics, fashion, construction, fantasy settings, nail painting, etc. We use TSNE to
visualize the per-document topic distributions, and color a sample of documents according to their
top topic in Figure 4 (topic details in Table 5).

Overall, the topical coverage of YT-Temporal-180M, at least according to a topic model trained on the
transcripts of a sample of videos, is broader than comparable-in-size video corpora like HowTo100M
[80]. And, experiments in the main paper demonstrate that this diversity is apparently helpful for a
number of downstream tasks.

C Qualitative Analysis of Model Representations

In this section, we provide more qualitative analysis about the representations learned by MERLOT.

C.1 Analysis of the language-only encoder, and attention masking during pretraining

Early on in this project, when inspecting qualitative examples, we observed that using BERT-style
masked language modeling [27] – choosing 15% randomly selected BPE tokens as the prediction
targets, and replacing them with MASK 80% of the time, or a random token 10% of the time – produced
overly easy examples.

This has been observed by other work in the text-only setting: when long words get partially masked,
it is often easy to recover the missing BPE token from the context, which motivated Joshi et al. [54]’s
choice to mask out entire spans instead. However, our goal in multimodal pretraining is different.
We want the model to learn grounded representations of events, such that even when we scale up the
number of segments given to the model, the model has to construct a multimodal representation of
what happened. Thus, in our setup, we wanted to encourage masking out highly visual words, to
learn cross-modal representations.

Instead of masking randomly, recall that we used the attention weights produced by the language-only
encoder (trained to match a sequence of captions to individual frames) to inform which tokens to
mask. While we do not claim that these attention weights provide a full explanation of the model
behavior [51, 98], they do play some role in the model’s decision [116], and we find that our masking
strategy improves performance on downstream tasks by around 1% (Table 4), versus a SpanBERT
baseline [54].

We show qualitative examples that seem to back up our hypothesis in Figures 5 and 6. In Figure 5, for
instance, the video shows a VLOG of an adult playing with children and talking the camera. Tokens
flagged by our approach as having high attention weights (being in the top 20% of all tokens in the
sequence, in terms of other positions attending to that token) include concrete words like ‘scissors’
and ‘toys.’ Even though scissors are not shown in the selected frames, that word might be a good
prediction target, insofar as it might complete a picture of what is going on in the first few frames:
somehow, the adult is able to open the package with the child’s toy, which could require scissors.
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Figure 5: Attention masking for a video
of 16 frames. Our model’s image encoder
learns image representations independently
for each frame. A language-only encoder
model takes in the entire transcript (with 32
words at most per frame) and computes hid-
den representations for each segment. The
language encoder thus takes advantage of
the inherent contextuality over time; each
individual caption is not enough to under-
stand the frame in isolation.
We use the language encoder’s attention
weights to mask out words. Tokens that
are highly attended to (with the overall at-
tention weights in the middle column) are
shown in red and bolded. These tokens
tend to be more grounded, e.g. the word
‘toys’ in the second row. The final input
to the joint vision-and-language model is
shown in the third column. We mask out
highly attended-to words (except special to-
kens like ‘START’), 50% of the time, which
makes the pretraining objective much more
visual than masking out random words (of-
ten fillers like ‘on’ or ‘okay’).
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Figure 6: Another example of our mask-
ing approach, the same format as Figure 5.
This shows an instructional video. Note the
highly attended to tokens that get masked
out (like ‘ice’, ‘O-ring’ and ‘lid.’) Seeing
those objects in the image (not just through
reading about them) is key to understand
what the video is about – someone making
iced tea in a mason jar.
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Constant RSPNet [21] MERLOT-VizBranch CLIP ViT-B/16 [89]

UCF-101 [103] 1.1 61.8 74.9 87.1
HMDB-51 [61] 2.0 42.8 49.6 62.4

Table 6: Linear probing classification accuracy of a MERLOT’s intermediate visual representations
(higher=better).

Additionally, in Figure 6, showing an instructional video for both making iced tea and putting it in a
sealed mason jar, concrete nouns such as ‘o-rings’ get masked out.

Nevertheless, there are still several cases where the model seems to assign attention weights to
apparently non-visual tokens. The model places a lot of attention on the START token, a pattern
noticed by prior work as well [24], perhaps because we pool representations from those positions (for
matching with the video frames). However, we never select the START token for masking in our work,
so this might not highly affect the learning signal. Perhaps more strangely, language-only encoder
seems to attend highly to the final token in contractions (like ’t and ’s). It is not clear to us whether
these represent something important visually, or noise; we leave a more in-depth investigation of this
phenomenon to future work.

C.2 More qualitative examples for zero-shot story ordering

In this section, we show more examples of MERLOT unshuffling visual stories in SIND [50, 33].
We compare our model’s zero-shot results (using the logits from its temporal-ordering objective) to
CLIP’s [89] independent matching of each caption with each image (using the Hungarian algorithm
to find the best-scoring assignment [63]).

In Figures 7 and 8, we show expanded versions of Figure 3, comparing to CLIP. The examples
show that MERLOT has a strong understanding of events that transcends individual frames. Unlike
MERLOT, CLIP can only match captions independently to images, so in the first row it struggles to
connect ‘his kids’ with the middle-aged children of ‘the old man’ In the second row, it matches the
barn image with the caption ‘they also had a barn’, while it is unable to keep all the merry-go-round
images together (as MERLOT does).

We show additional examples in Figures 9 and 10. Our model provides a reasonable ordering to
the ‘kayaking’ example (Figure 9), which is evident of multimodal script knowledge: first, people
have to get ready to go kayaking (which they do on land!) and then they go out onto the water, and
finally come back. The ordering of the tennis match (Figure ??) seems reasonable as well. Unlike
CLIP, MERLOT groups together frames (3) and (4) – the players first serving the tennis ball, and
then awaiting the return.

C.3 Attention patterns

Finally, we show examples of the attention patterns produced by MERLOT, when it reasons over
both vision-and-language content at a video level. Plots are shown in Figure 11. Overall, the model
frequently links together visual regions with similar concepts in text, even when they get mentioned
far away in time.

Though these attention patterns should be taken with a grain of salt, as they are not necessarily
explanatory of the model’s decision [51, 98], we find it promising that the model attends globally
over all frames and captions – rather than ignoring one modality or ignoring the temporal dimension.
We leave further investigation of the model’s attention patterns and behavior to future work.

D Linear Probe of Intermediate Visual Representations

Our goal with MERLOT was to learn about situations expressed through videos and language.
However, as it includes a vision encoder that we trained from scratch, a reasonable question is how
this visual encoder compares to other encoders (e.g., that were trained through image captions). To
this end, we performed linear probing experiments over two activity recognition datasets: HMDB-51
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Figure 7: Zero-shot story unscrambling; continuation of Figure 3 with the CLIP baseline [89]. MER-

LOT successfully orders the story, performing cross-modal coreference over several images to note
that ‘He’ in image (2) refers to ‘the old man’ mentioned in (1). The narrative that MERLOT generated
also makes sense at an event level: people are riding the escalator, then they get to the top, then they
exit and do something else; maximizing caption-image similarity of all pairs independently misses
this event-level coherence.

Figure 8: An incorrect story unshuffling example – but for an interesting reason. Frames (1), (2), and
(4) all involve people riding a merry-go-round, and MERLOT keeps them together even though the
ground truth story labels have the ‘barn’ image, (3), in between.

27



Figure 9: A second zero-shot story ordering example. MERLOT unshuffles the frames, while
grouping together frames (1) and (2) – which make sense as they are in the stage of the event where
they are preparing to go. CLIP instead puts frame (4) first, which matches caption (1) indepedently,
but doesn’t make sense temporally in context.

Figure 10: A second zero-shot story ordering example. There are a variety of potential ‘reasonable’
orderings for this example; both models get this one ‘incorrect.’ MERLOT’s ordering suggests
someone first looking into the tennis match on the outside, and then cutting to watch the match more
closely. On the other hand, CLIP switches between a shot of someone serving, back to the outside
TV, and then inside again.
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[61] and UCF-101 [103]. These tasks are 51 and 101 class classification tasks, respectively: they
challenge algorithms to predict which human activity is present in a video clip. Following prior work,
for both datasets, we average over the three standard train/test splits. We evaluate in the linear probe
setup, where models represent video clips as a single fixed vector, and a linear maximum entropy
classifier is trained on top, freezing the rest of the model’s parameters.

In addition to a random prediction baseline, we compare against [21]’s RSPNet reported results (they
use a 3DResNet-18 backbone pretrained on Kinetics400), and CLIP ViT-B/16 [89]. For MERLOT

and CLIP, we extract a single central frame from each video, and extract a feature vector from it. For
MERLOT, we represent the frame as the concatenation of the two [CLS] tokens (one was for the
image-transcript alignment task, the other was for passing to the joint encoder).

The results, shown in Table 6, show that CLIP performs best in this setup – though MERLOT does
outperform an RSPNet baseline. At first, this might appear surprising, as MERLOT was trained on
web videos, which might be closer to activity recognition datasets (as opposed to image captions).
However, common benchmarks for activity recognition tend to have strong object and background
bias – for example, to recognize the UCF action ‘playing guitar,’ it is sufficient to detect a guitar in
an image (as guitars are unlikely to show up for the other activities like ‘playing basketball’) [70].
Temporal self-supervised learning from transcripts may not lead to as powerful zero-shot object
detectors because speakers in videos may be less likely to state the obvious [41, 39], e.g., in this case,
a speaker is probably unlikely to say ‘I will now play a guitar while sitting in a chair.’

E Experimental setup and hyperparameters

E.1 Hyperparameters used during pretraining

We used AdamW [73] with a learning rate of 3e � 4, weight decay with value 0.1, and set �2=0.98.
We used minimal data augmentation on the image frames. We randomly scale them between 1.125
and 1.5 times what would fit in our 192 ⇥ 352 resolution, and take a random crop. We use a random
resize algorithm when doing this scaling, to make the model robust to different ways of preprocessing
images [94]. Last, for 80% of images, we randomly jittered either their brightness or contrast to
between 0.7 and 1.3 their original values, which we suspect did not play a major role in performance.

On the text side, we note that we have both the original copies of each transcript – what was retrieved
from YouTube – and versions “cleaned up” by our denoisifier. We can use both kinds of transcript
as additional data augmentation. However, although the words are time aligned, there might be
inconsistencies if alternating between cleaned and noisy versions inside of a single video. Thus, for
each iteration, we randomly choose either the ‘clean’ or ‘noisy’ ASR transcript and use that one.

To slightly speed up convergence, we initialize the joint vision-and-language model, and the word
embeddings, with parameters from RoBERTa [72]. However, we suspect that due to the scale of our
dataset and pretraining time, this might not have been required.

E.1.1 Unsupervised Story Ordering

[20]

For the unsupervised scrambling of visual stories task, we did not do any finetuning on the SIND
dataset [33, 50, 2]. However, there is a slight mismatch between the model that we pretrained initially,
and the format of the task – the visual stories in the SIND dataset have 5 images and captions each,
whereas we initially pretrained with at most 4 segments. We handled this discrepancy by pretraining
MERLOT for 10 more epochs, using a peak learning rate of 2e-5, and a new resolution of 384 x 384.
This slightly bigger size was to account for the (not necessarily) widescreen images in SortStory, as
opposed to the (mostly) widescreen videos on YouTube.

Recall that MERLOT’s pairwise loss is defined over pairs of segments. However, how to best
combine these into a unified score for story ordering is an open question. To briefly explore this,
during this additional pretraining of MERLOT, we applied three variants of our temporal loss: one
over caption-caption pairs, one over caption-frame pairs, and one over frame-frame pairs. We also
experimented with randomly shuffling the captions as well, in the same way as the frames, we
found however that this did not boost downstream task performance (perhaps because using shuffled
captions as input incentivizes models to learn exclusively language-language interactions). The loss
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is computed the exact same way everywhere; the only differences is that for caption-frame pairs, we
have four options:

1. the caption (at ti) and frame (at tj) are of the same segment, so ti = tj ,
2. the caption precedes the frame, so ti < tj ,
3. the caption comes after the frame, so ti > tj ,
4. the caption comes from a different video as the frame, so comparing ti and tj is undefined.

The model learns to distinguish between those four options with a cross-entropy loss. We found that
using this version of the temporal loss over vision-language pairs produced slightly better results
on story ordering (as judged on the validation set) compared with the loss applied over the frames.
We hypothesize that this might be due to the additional ‘ti = tj’ option allowing models to assign a
probability to a frame-caption match, but are not sure. With this approach, to produce a unified score
for (length-N ) permutations �L over the captions, and �V over frames, we then sum over pairwise
log-probabilities:

score(�) =
NX

i=1

NX

j=1

log

8
<

:

p(�L(i) > �V (j)) if �L(i) > �V (j)
p(�L(i) = �V (j)) if �L(i) = �V (j)
p(�L(i) < �V (j)) if �L(i) < �V (j)

.

For story ordering, the order of the captions is always fixed: �L = (1, 2, 3, 4, 5) and N = 5; we
thus feed MERLOT captions with the correct order. However, the model should have no information
about the order of the frames.9 Recall that we handle this through position embeddings (3.3); e.g.
one possible ordering might be

[image_unk_3], [image_unk_2], [image_unk_4], [image_unk_1], [image_unk_5],

and those position embeddings would get added to each frame, respectively. This allows the network
to disambiguate between distinct frames even though no order is revealed. However, we found that
the model was sometimes sensitive to the exact order of these position embedding tokens, and so for
each example we randomly sampled two orderings and averaged the model’s pairwise probabilities.
We found no difference in performance when using more than two orderings. We hypothesize that
this could be an issue with how (absolute) position embeddings are handled by Transformers, but are
not fully confident; we leave a more thorough investigation for future work.

E.2 Per-downstream fine-tuning details.

In this section, we discuss implementation details for finetuning MERLOT on downstream tasks.
For each downstream task, given images I1:N and language context w, we first encode I1:N via the
image encoder. We concatenate this with word embeddings of w, apply position embeddings, and
feed the result into the joint vision-language encoder to extract joint representation. The input images
I1:N are either provided by the task or extracted from given video, where we uniformly select N
frames from the video clips (spaced evenly, so with an equal amount of time between sequential
frames). For supervised tasks, we use as the ‘head’ a two-layer MLP from random initialization on
top of the CLS token of the language context together with the rest of MERLOT.

For downstream tasks, we note that we found it effective to finetune on different resolutions than what
we used during pretrianing. Our default image resolution here was 384⇥ 704. To do this, we note that
all parameters in the model remain the same, except for position embeddings on the image patches.
We expanded the size of the position embedding matrix by initializing the upper-left-side 192x352
region from the pretrained model, and used random initialization for new position embeddings.

For all downstream tasks, we followed the standard training, validation, and test splits of the original
datasets. We used the AdamW [73] optimizer, with �2 = 0.98, and warmed up the learning rate
linearly for the first 10% of iterations, followed by a linear decay of the learning rate (down to 0) for
the remaining 90%. For regularization, we used L2 weight decay with a value of 0.01, and a dropout
rate of 10%. For tuning other hyperparameters, we first did a larger random hyperparameter search
over VCR, and used those hyperparameters as defaults for the other tasks. We used a batch size of

9Embarassingly, we found a slight leakage of this in the V1 of this arxiv paper which inflated the story
ordering performance by a few percentage points (of pairwise accuracy), which we have corrected in this version.
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64, and searched over learning rates in the range [1e-5, 2e-4] on VCR, we found that 1.2e-5 worked
well, so we used it as the default for other tasks. We also trained with early stopping, validating every
epoch and returning the best-performing model across epochs. Due to our choice of early stopping,
we trained for a slightly larger-than-typical number of epochs (18 by default for every tasks, as we
found training longer did not help on VCR).

We follow the standard evaluation metrics for these tasks, which is usually accuracy for QA-style
configurations. Alongside brief descriptions of each downstream task, we provide hyperparameter
and training details in the following section.

E.3 Static Image Reasoning Tasks

E.3.1 VCR

VCR [123]contains two different subtasks: question answering (Q!A) and answer justification
(QA!R), both of which are multiple choice questions over a given image. These subtasks are
combined in the joint Q!AR metric, which requires a model to both pick the right answer and the
right rationale for the model to get a question ‘right.’ VCR has 290k questions over 110k movie
scenes.

As mentioned in the main text, VCR provides bounding boxes around entities, with explicit groundings
between those entities and references in questions. We draw colored highlights around the referenced
entity directly in the image, with consistent mapping between color code and entity name (e.g.
person1 with red box, person2 with green box, etc). Though no text is written on the image, because
we always associate each string (e.g. person1) with a deterministic color, the model can learn through
finetuning to associate that color with the entity. Figure 12 illustrates one such example.

What is [person1] thinking?

[person2] is thinking she would rather have gone to the science museum of the beach.
She wants [person8] to sit back in [chair1] and let her take care of the cleanup
She can’t believe what she is seeing
[person1] is wondering if [person2] is going to kiss her

a)
b)
c)
d)

I think so because …

[person6] is leaning backwards and has an expression of confusion.
[person1] is staring at [person2] with a questioning expression.
They are dancing and they are looking intently at each other.
[person1] is unsure what will happen next.

a)
b)
c)
d)

Q ➜ A

Q A ➜ R

Figure 12: A VCR example with highlighted image. The image with the drawn-on boxes is what we
pass to models.

We jointly finetune MERLOT on Q!A and QA!R, with two separate MLP heads. We concatenate
the question (the question and the ground truth answer) and each answer (rationale) choice from
the four possible answer (rationale) candidates. On-top of the CLS token of the question, we train
the classifier to predict the confidence for each candidate to be correct with cross-entropy loss, and
take softmax over four possible candidates for each question. We used a widescreen resolution of
384⇥704 set the batch size as 64, and train for 60k training steps, which is roughly 18 epochs. We
started with this and then tuned the learning rate (from candidates chosen randomly); here, we found
that a learning rate of 1.2e-5 worked well. We then used this learning rate as a default for the other
tasks.

Note that our pretraining setup is different from other work. Previous works [22, 36, 119] conduct
what they call ‘second-stage pretraining’ with VCR training data. Here, they use a masked language
model objective over the VCR dataset (instead of answering the question correctly). In particular,
UNITER [22] reports 2.8 % point performance boost due to the second-stage pretraining. We suspect
that this might be because the caption data (that models like UNITER rely on) are quite different
from VCR. We tried performing secondary pretraining and found it did not help. One possible reason
might be that our large-scale pretraining corpus covers diverse and complex event space thus we
don’t need additional data domain adaptation.
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What (50K) Who (20K) How (2K) When (677) Where (250) Overall

AMU [117] 26.2 43.0 80.2 72.5 30.0 30.5
VQA-T [118] 35.5 51.1 - 81.0 43.5 41.5

MERLOT 37.0 52.9 85.3 79.2 42.8 43.0

Table 7: Per question-category results for MSRVTT-QA.

E.4 Video Reasoning Tasks

MSRVTT-QA [117]

MSRVTT-QA is a question-answering task with 244K questions posed over 10K videos. For each
video clip, we uniformly selected 5 image frames (spaced evenly through the video). We follow
the protocols of the original work and use an answer vocabulary containing the most common 1K
answers in the training set as answer candidates. The questions with out-of-vocabulary answer will
automatically get wrong. We encode the answers in a one-hot fashion, and train 2-layer MLP classifier
over all answer candidates with a binary cross-entropy loss on-top of the CLS token of the question.
We train for 60k training steps with batch size 16. A few additional fine-tuning runs were conducted
to examine the effect of changing the resolution from 384⇥704 to 704⇥704, a batch size of 16 vs.
32, and and using 1.5K answers instead of 1K, but none had much impact on validation accuracy.
We undertook a light hyperparameter optimization over the validation set, wherein we considered
3 possible learning rates (1.2e-5, 6e-5, 2.4e-6), but the default worked best. MSRVTT-QA splits
questions by type, and we report our per-type test set results in comparison to [117, 118] in Table 7.

TVQA [64]

TVQA is a multiple choice task with 152K questions posed over 21K video clips. For each clip,
we uniformly select 6 image frames. We concatenate the question and each answer choice from
the five possible answer candidates. On-top of the CLS token of the question, we train 2-layer MLP
classifier to predict the confidence for each candidate to be correct with cross-entropy loss, and take
softmax over five possible candidates for each question. We set the batch size as 64, and train for 35k
training steps (roughly 18 epochs over the corpus). We used the default learning rate of 1.2e-5, and a
resolution of 384⇥704.

TVQA+ [65]

TVQA+ is a subset of TVQA, where bounding boxes are provided in video clips, linking depicted
objects to visual concepts in questions and answers. TVQA+ contains 29.4K questions posed over
4.2K video clips. We uniformly select 6 image frames per video, and draw bounding boxes on each
frame following the same manner with VCR. We train the classifier in the same way with TVQA. We
trained with the same hyperparameters as TVQA, but for 16k steps (18 epochs still).

VLEP [66] VLEP is a binary choice task to infer which of the two events is more likely to happen
next following the given video. VLEP contains 28.7K questions posed over 10K video clips. For each
clip, we uniformly select 6 image frames. On-top of the CLS token of the event, we train 2-layer MLP
classifier to predict the confidence for each event to happen next with cross-entropy loss, and take
softmax over two possible events for each instance. We trained the model for 8k steps (18 epochs
over the dataset), and with otherwise default hyperparameters.

DramaQA [23]

DramaQA is a multiple choice task with 17.9K questions posed over 23.9K video clips. For each
clip, we uniformly select 6 image frames. We concatenate the question and each answer choice from
the five possible answer candidates. On-top of the CLS token of the question, we train 2-layer MLP
classifier to predict the confidence for each candidate to be correct with cross-entropy loss, and take
softmax over five possible candidates for each question. We trained for 3.5k steps (18 epochs) with
otherwise default hyperparameters. A few additional fine-tuning runs were conducted to examine the
effect of changing the resolution between 384⇥704, 512⇥512 and 704⇥704, and we found 512⇥512
works the best for this task.
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Common hyperparameters

Learning rate 1.2e-5
Weight Decay 0.01
�2 0.98
Warmup ratio 10%

Resolution Batch Size Max Epochs Training Steps

VCR 384x704 64 18 60k
MSRVTT-QA 384x704 16 18 35k
TVQA 384x704 64 18 35k
TVQA+ 384x704 64 18 35k
VLEP 384x704 64 18 18k
DramaQA 512x512 64 18 18k
TGIF-Action 384x704 16 56 70k
TGIF-Trans 384x704 16 22 70k
TGIF-FrameQA 384x704 16 56 70k
ActivityNetQA 384x704 16 10 34k
LSMDC-FIB 384x704 16 8 150k
LSMDC-MC 384x704 16 12 80k
MSRVTT-MC 384x704 16 12 80k

Table 8: Hyperparameters for finetuning on all downstream tasks. Common hyperparameters are
shown to the left, and task-specific hyperparameters are to the right.

Motion Spatial Temporal Yes-No Color Object Location Number Other All

VQA-T [118] 28.0 17.5 4.9 66.3 34.3 26.7 35.8 50.2 36.8 38.9
MERLOT 33.9 18.1 4.0 72.5 36.2 24.5 36.5 51.7 37.8 41.4

Table 9: Per question-category results for ActivityNetQA

TGIF-QA [52]

TGIF-QA is web GIF VQA, which requires spatio-temporal reasoning from visual frames to answer
questions correctly. We finetuned MERLOT on three tasks in TGIF-QA benchmark,

Action is defined as a multiple choice question about identifying an action that has been repeated in a
video.

Transition is asking about transitions of certain states. The benchmark provides a multiple choice
question about identifying the state before or after another state.

FrameQA is asking open-ended questions about the given video. The model selects answer from a
dictionary of words, given a question in a complete sentence.

For each video clip, we uniformly select 5 image frames. We serialized 5 candidate answers and
a question, where we put a special token QSEP between the candidate answers and question to
concatenate them into one question. On-top of the CLS token of the question, we trained 2-layer MLP
to predict the confidence of the five candidates with cross-entropy loss. We set the batch size as 16,
and train for 70k training steps (Action : 56 epoch, Transition : 22 epoch, FrameQA : 28 epoch) for
each task with 1.2e-5 learning rate. We used a longer training duration for each task as we found
that performance increased when we did so (and we used the same number of training steps for each
TGIF-QA task). All other hyperparameters were default.

ActivityNetQA [45, 122]

ActivityNetQA [122] is a question-answering with 58K questions posed over 5.8K videos. For each
video clip, we uniformly select 5 image frames. We use an answer vocabulary containing the most
common 1K answers in the training set as answer candidates. The questions with out-of-vocabulary
answer will automatically get wrong. We encode the answers in a one-hot fashion, and train 2-layer
MLP classifier over all answer candidates with a binary cross-entropy loss on-top of the CLS token of
the question. We set the batch size as 16, and train for 34K training steps for each task. We undertook
a light hyperparameter optimization over the validation set, wherein we considered 3 possible learning
rates (1.2e-5, 6e-5, 2.4e-6), but the default worked best. A few additional fine-tuning runs were
conducted to examine the effect of changing the resolution from 384⇥704 to 704⇥704, a batch size
of 16 vs. 32, and using 1.5K answers instead of 1K, but none had much impact on validation accuracy.
ActivityNetQA splits questions by type, and we report our per-type test set results in comparison to
[118] in Table 9.

LSMDC FiTB QA [76, 92]
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The Fill-in-the-blank (FiTB) task is, given a video clip and a sentence with a blank in it, to predict
a single correct word for the blank. The test set includes 30,000 examples from 10,000 clips
(i.e. 3 blanks for each description). For each clip, we uniformly select 5 image frames. We
constructed answer vocabulary containing the most common word for blank in the training set as
answer candidates. We replace the blank in the sentence with BLANK token, so the question query
should be a blanked sentence with the special token. On-top of the CLS token of the blanked sentence
query, we trained 2-layer MLP classifier to predict the word for the blank over answer vocabulary.
We set the batch size as 16, and train for 150k training steps (8 epoch) with 1.2e-5 learning rate.

LSMDC Multichoice [110]

Given a video query and 5 candidate captions, the task is to find the one that fits the query out of 5
possible candidates. The correct answer is the ground-truth (GT) caption, and four other negatives
are chosen from other captions that have different activity-phrase labels from the correct answer. We
randomly created 100,000 video and candidates pairs for training. For each video clip, we uniformly
select 5 image frames. We put a special token QSEP between the candidate captions to concatenate 5
candidates into one question. At the end of the 5 captions, we put CLS token as an end of the question.
On-top of the CLS token, we trained 2-layer MLP to predict the confidence of the five candidates with
cross-entropy loss. We set the batch size as 16, and train for 80k training steps (12 epoch) with 1.2e-5
learning rate.

MSRVTT Multichoice [121]

The task objective for the MSRVTT Multichoice benchmark is identical to those of corresponding
tasks in the LSMDC benchmark [110]. The benchmark has 2,990 questions in total for the multiple
choice test, using all the test video clips of MSR-VTT. For each test video. We finetuned our model
on MSR-VTT train split, and evaluated on the evaluation set. We trained the same model specification
as the LSMDC Multichoice task. For training, we set the batch size as 16, and train for 80k training
steps (12 epoch) with 1.2e-5 learning rate.

F Datasheet for YT-Temporal-180M

In this section, we present a DataSheet [37, 12] for YT-Temporal-180M, synthesizing many of the
other analyses we performed in this paper.

1. Motivation For Datasheet Creation
• Why was the dataset created? In order to investigate learning events from videos –

involving a collection of frames and captions over time, that together form a view about
the world.

• Has the dataset been used already? No.
• What (other) tasks could the dataset be used for? Possibly other types of represen-

tation learning, with or without ASR captions.
• Who funded dataset creation? This work was funded by DARPA MCS program

through NIWC Pacific (N66001-19-2-4031), and the Allen Institute for AI.
2. Data composition

• What are the instances? The instances that we consider in this work are videos,
paired with ASR transcripts aligned over time.

• How many instances are there? We include 6 million videos. The total length of
all the ASR transcripts is 5 billion BPE tokens. Altogether, we extracted 180 million
image frames from this data.

• What data does each instance consist of? The instances have ‘raw’ video frames and
text, which we preprocess through BPE tokenization and extracting frames for every
32 BPE tokens.

• Is there a label or target associated with each instance? We only use the ASR
captions as labels in this work, though it might be also possible to use auxiliary
information (like tags or video titles).

• Is any information missing from individual instances? No.
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• Are relationships between individual instances made explicit? Not applicable – we
do not study relations between different videos (e.g. made by the same creator), though
this is a possibility for future work

• Does the dataset contain all possible instances or is it a sample? Just a sample.
• Are there recommended data splits (e.g., training, development/validation, test-

ing)? We do not provide recommended data splits at this time, as this data was built
only for pretraining rather than evaluation. We suspect that the data is large enough
that overfitting is not a major concern.

• Are there any errors, sources of noise, or redundancies in the dataset? If so,
please provide a description. Yes. YouTube ASR is often noisy, and though we
presented a pipeline to correct some of these errors, there are many that we cannot fix.

• Is the dataset self-contained, or does it link to or otherwise rely on external re-
sources (e.g., websites, tweets, other datasets)? The dataset is self-contained. How-
ever, we plan to only release the video URLs, rather than the videos themselves, so as
to protect user privacy (allowing users to delete videos).

3. Collection Process
• What mechanisms or procedures were used to collect the data? We used the

YouTube API and the youtube-dl library.
• How was the data associated with each instance acquired? Was the data directly

observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey re-
sponses), or indirectly inferred/derived from other data? The data was directly
observable (from YouTube).

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)? We used a prob-
abilistic strategy with many heuristics, more details in Appendix A.

• Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdwork-
ers paid)? Data collection was primarily done by the first authors of this paper.

• Over what timeframe was the data collected? Does this timeframe match the
creation timeframe of the data associated with the instances (e.g., recent crawl
of old news articles)? If not, please describe the timeframe in which the data
associated with the instances was created. The data was collected from November
2020 to April 2021, even though the YouTube videos are often much older (dating back
to when the platform was first created).

4. Data Preprocessing
• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization

or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, re-
moval of instances, processing of missing values)? Yes, we discuss this in Ap-
pendix A: of note, we use a sequence-to-sequence model to ‘denoise’ ASR transcripts
(Appendix A.3), BPE-tokenize text, turn everything into segments, and extract the
middle image frame for each video segment.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data
(e.g., to support unanticipated future uses)? If so, please provide a link or other
access point to the ‘raw’ data. The raw data was saved, but at this time we do not
plan to release it directly due to copyright and privacy concerns.

• Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point. We will make our code public to support future
research.

• Does this dataset collection/processing procedure achieve the motivation for cre-
ating the dataset stated in the first section of this datasheet? If not, what are the
limitations? We believe our dataset does allow for study of our goal – indeed, it
covers grounded temporal situations from a variety of domains – but with significant
limitations. Some of the key ones we are aware of involve various biases on YouTube,
which we discuss in Section 5.

5. Dataset Distribution
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• How will the dataset be distributed? At this time, we plan to distribute all the
metadata (transcripts, etc) that we used, as well as links to the YouTube videos that we
used. We will do this on our website.

• When will the dataset be released/first distributed? What license (if any) is it
distributed under? We will release it as soon as possible, using a permissible license
for research-based use.

• Are there any copyrights on the data? We believe our use is ‘fair use,’ however, due
to an abundance of caution, we will not be releasing any of the videos themselves.

• Are there any fees or access restrictions? No.
6. Dataset Maintenance

• Who is supporting/hosting/maintaining the dataset? The first authors of this work.
• Will the dataset be updated? If so, how often and by whom? We do not plan to

update it at this time.
• Is there a repository to link to any/all papers/systems that use this dataset? Not

right now, but we encourage anyone who uses the dataset to cite our paper so it can be
easily found.

• If others want to extend/augment/build on this dataset, is there a mechanism for
them to do so? Not at this time.

7. Legal and Ethical Considerations
• Were any ethical review processes conducted (e.g., by an institutional review

board)? No official processes were done, as our research is not on human subjects, but
we had significant internal deliberation when choosing the scraping strategy.

• Does the dataset contain data that might be considered confidential? No, we only
use public videos.

• Does the dataset contain data that, if viewed directly, might be offensive, insult-
ing, threatening, or might otherwise cause anxiety? If so, please describe why Yes
– many of these videos exist on YouTube; we discuss this more in Section 5.

• Does the dataset relate to people? Yes.
• Does the dataset identify any subpopulations (e.g., by age, gender)? Not explicitly

(e.g. through labels)
• Is it possible to identify individuals (i.e., one or more natural persons), either

directly or indirectly (i.e., in combination with other data) from the dataset? Yes,
our data includes celebrities, or other YouTube-famous people. All of the videos that
we use are of publicly available data, following the Terms of Service that users agreed
to when uploading to YouTube.
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