Supplementary Material for Learning Semantic Representations to Verify Hardware Designs

Vasudevan, Jiang, Bieber, Singh, Shajaei, Ho, Sutton, NeurIPS 2021

Appendix A Additional figures

A.1 RTL CDFGs

We show an example of RTL CDFG execution (simulation) over multiple cycles in Figure 4. In the example, at a given clock cycle t, the values of a and b from the previous clock cycle t-1 will be used for evaluating the condition a > b in the green always block and the corresponding branch will be executed in that cycle. In the other two always blocks, in cycle t, b and a will be assigned values based on values of c and d from previous cycle t-1. In the next cycle t+1, a and b will get values of a and b from cycle t.

The input stimulus and the branches covered by the simulation are shown in Figure 5.

Figure 4: RTL and CDFG execution (simulation) over three cycles t-1, t, t+1

Figure 5: Input stimulus and corresponding branches that are covered. Coverage is a path tracing through the CDFG.

Figure 6: Industrial verification flow with manually generated testbench, tests, constraints and coverage feedback. This flow takes multiple person-years of engineer productivity to converge

Figure 7: Value proposition of Design2Vec when integrated into the loop of an industrial verification flow. It learns about the design state space and generates tests to cover different uncovered cover points (holes). It can potentially be used to generate constraints.

A.2 Industrial verification flow

Figure 6 shows the context of our solution within the industrial verification flow. Figure 7 shows the Design2Vec solution inbuilt into the constrained random verification environment.

A.3 Sizes of designs

We show a comparison of the relative sizes of RTL CDFGs between IBEX and the TPU design in Table 6.

Table 6: Comparison of relative sizes of RTL CDFGs between IBEX and TPU design.

	IBEX v1	TPU block
# CDFG Nodes	5500	40000
# CDFG Edges	9300	58000
# Branch cover points	900	45000
# Number of gates	10028	1088343

Table 7: Example tests generated by Design2Vec for hard to cover points. Multiple cover points that are local neighbors of the target point are provided as input to Design2Vec, which helps the GNN-based architecture.

Cover points	Top test recommendations
$\{521, \dots 526, \dots, 531\}$	+instr_cnt=17600 +illegal_instr_ratio=35 +hint_instr_ratio=45 +enable_unaligned_load_store=0 +disable_compressed_instr=1 +randomize_csr=0 +no_wfi=1
{881, 882 ,,891}	+instr_cnt=17400 +illegal_instr_ratio=25 +hint_instr_ratio=35 +enable_unaligned_load_store=0 +disable_compressed_instr=1 +randomize_csr=0 +no_wfi=1

A.4 Examples of generated tests

Appendix B Experimental hyperparameters

The methods in Section 4 use the following hyperparameters: number of layers, learning rate, GNN embedding dimension, residual connection frequency, dropout rate, MLP embedding dimensions. We vary these parameters: number of layers $\in \{4, 8, 16, 32\}$, learning rate $\in \{1e-2, 1e-3, 3e-4, 1e-4\}$. We hole these parameters fixed: GNN embedding dimension = 16, residual connection frequency = 4, dropout rate = 0.1, MLP embedding dimensions = [256, 128, 64]. The IPA-GNN model only has one additional hyperparameter: normalization term $\in \{1, p_{t,n}\}$.

Number of layers describes the number of GNN layers in the Design2Vec model. GNN embedding dimension describes the embedding dimension of the intermediate and final node embeddings produced by the GNN. The residual connection frequency indicates where skip connections are added between layers of the GNN. The normalization term is used to normalize $h_{t,n}$ after each RTL IPA-GNN layer.

Our experiments were run on commodity GPUs in a commercial data center. In total, the experiments reported here required approximately five GPU-weeks of computation.

Appendix C Architectural ablation studies

In this section, we present more detailed comparison of different hyperparameter settings and ablations of Design2Vec. Since we hypothesize that propagating information across longer distances in the graph is important, we were especially interested in the effect of residual connections [21], but we also measure the effect of label smoothing [33]. See results in Table 8. Our default Design2Vec architecture (top row in table) uses residual connections that skip back 4 layers, and does not use label smoothing. In practice, we see that none of these variants have a large effect on performance.

Table 8: Comparison of training and validation accuracy across variants of the Design2Vec architecture on coverage prediction on the TPU design.

	Training	Validation
Design2Vec (GCN)	92.1	90.3
Design2Vec + no residual connections	92.1	90.7
Design2Vec + label smoothing	92.1	90.3
Design2Vec + residual (every 2 layers)	92.1	90.1

We further consider architectural ablations that vary the K-hop edges added to the input CDFG in Table 11, as well as the depth of the network in Table 10. We further test each setup in settings that vary the selection of training and validation splits in Tables 9.

Table 9: Comparing the train and validation accuracy across different split selection methods: whether to hide test parameters, and whether to sample the training set via every-k sampling or uniformly random cover points.

Hide test params Cover point hiding method			Training	Validation
FALSE	Deterministic		86.97	84.54
FALSE	Random cover point	123	87.41	76.86
FALSE	Deterministic		82.47	84.45
FALSE	Random cover point	123	80.09	75.93
FALSE	Deterministic		87.80	80.76
FALSE	Random cover point	123	87.73	80.51
FALSE	Deterministic		83.09	79.62
FALSE	Random cover point	123	83.18	78.80
FALSE	Deterministic		89.91	80.58
FALSE	Random cover point	123	89.53	78.06
FALSE	Deterministic		78.62	76.34
FALSE	Random cover point	123	83.39	75.08
TRUE	Deterministic		87.17	82.67
TRUE	Random cover point	123	87.51	75.92
TRUE	Deterministic		82.50	83.97
TRUE	Random cover point	123	82.83	78.51
TRUE	Deterministic		88.07	78.32
TRUE	Random cover point	123	87.96	75.98
TRUE	Deterministic		83.28	78.23
TRUE	Random cover point	123	83.40	78.06
TRUE	Deterministic		90.16	77.27
TRUE	Random cover point	123	89.78	73.84
TRUE	Deterministic	_	62.89	63.79
TRUE	Random cover point	123	83.51	73.63

Table 10: Comparing the train and validation accuracy on TPU while varying the numbers of GCN layers. We report the results across three seeds for each network depth.

Seed	GCN layers	Training	Validation
111	3	92.13	90.75
123	3	92.13	90.13
321	3	92.11	90.67
111	12	92.12	90.53
123	12	92.14	90.21
321	12	92.12	90.61
111	24	92.11	90.19
123	24	92.14	90.82
321	24	92.09	90.55

K-hop	nop Hide test params Cover point hiding method		Seed	Training	Validation
2	FALSE	Deterministic		86.88	83.48
2	FALSE	Random cover point	123	87.25	76.87
2	FALSE	Deterministic		65.07	69.14
2	FALSE	Random cover point	123	82.47	74.43
2	FALSE	Deterministic		87.62	79.08
2	FALSE	Random cover point	123	87.68	77.02
2	FALSE	Deterministic		82.66	78.34
2	FALSE	Random cover point	123	66.42	61.58
2	FALSE	Deterministic		89.81	78.92
2	FALSE	Random cover point	123	89.26	77.17
2	FALSE	Deterministic		84.25	79.11
2	FALSE	Random cover point	123	84.69	74.36
2	TRUE	Deterministic		87.00	82.30
2	TRUE	Random cover point	123	87.39	75.69
2	TRUE	Deterministic		83.15	83.04
2	TRUE	Random cover point	123	82.87	72.78
2	TRUE	Deterministic		87.74	76.93
2	TRUE	Random cover point	123	87.83	76.19
2	TRUE	Deterministic		82.83	75.75
2	TRUE	Random cover point	123	83.29	76.86
2	TRUE	Deterministic		90.04	76.16
2	TRUE	Random cover point	123	89.62	73.33
2	TRUE	Deterministic		84.86	76.69
2	TRUE	Random cover point	123	84.79	73.12
4	FALSE	Deterministic	_	86.86	85.30
4	FALSE	Random cover point	123	87.22	77.75
4	FALSE	Deterministic		65.03	69.03
4	FALSE	Random cover point	123	65.90	64.28
4	FALSE	Deterministic		87.63	80.32
4	FALSE	Random cover point	123	87.68	78.85
4	FALSE	Deterministic		82.83	79.74
4	FALSE	Random cover point	123	82.22	80.57
4	FALSE	Deterministic		89.75	79.98
4	FALSE	Random cover point	123	89.30	78.28
4	FALSE	Deterministic		84.65	80.27
4	FALSE	Random cover point	123	84.55	74.76
4	TRUE	Deterministic		87.03	80.18
4	TRUE	Random cover point	123	87.39	75.28
4	TRUE	Deterministic		82.75	83.00
4	TRUE	Random cover point	123	82.20	74.67
4	TRUE	Deterministic		87.94	76.56
4	TRUE	Random cover point	123	87.79	77.02
4	TRUE	Deterministic		83.05	76.05
4	TRUE	Random cover point	123	83.35	75.64
4	TRUE	Deterministic		90.01	77.08
4	TRUE	Random cover point	123	89.26	74.03
4	TRUE	Deterministic		81.17	77.00
4	TRUE	Random cover point	123	84.70	73.24
16	FALSE	Deterministic		86.97	84.39
16	FALSE	Random cover point	123	87.30	73.10
16	FALSE	Deterministic		64.92	68.95
16	FALSE	Random cover point	123	82.62	76.84
16	FALSE	Deterministic		87.67	79.56

Table 11: Comparing the training and validation accuracy of the Design2Vec model using a k-hop edge augmented graph ($k \in \{2, 4, 16\}$) across a variety of experimental setups.

16	FALSE	Random cover point	123	87.66	76.26
16	FALSE	Deterministic		64.94	65.32
16	FALSE	Random cover point	123	83.14	78.83
16	FALSE	Deterministic	_	89.79	79.80
16	FALSE	Random cover point	123	89.37	77.98
16	FALSE	Deterministic		84.95	77.44
16	FALSE	Random cover point	123	84.64	73.66
16	TRUE	Deterministic	—	87.04	79.44
16	TRUE	Random cover point	123	87.41	73.71
16	TRUE	Deterministic		64.57	66.58
16	TRUE	Random cover point	123	82.43	73.24
16	TRUE	Deterministic		87.85	75.15
16	TRUE	Random cover point	123	87.85	73.63
16	TRUE	Deterministic		83.45	77.44
16	TRUE	Random cover point	123	66.86	62.25
16	TRUE	Deterministic		90.16	76.61
16	TRUE	Random cover point	123	89.65	72.47
16	TRUE	Deterministic		84.25	77.18
16	TRUE	Random cover point	123	84.57	70.69

Appendix D Comparison of Design2Vec and black-box optimizer tests for covering overall cover points

Table 12: Comparison of Design2Vec and black-box optimizer tests for covering overall cover points in different cover probability buckets.

Cover C Prob. F Bucket	Cover Point ID	Cover Prob.	Covered by De- sign2Vec?	# De- sign2Vec tests	Covered by Vizier?	# Vizier tests	# D2V - # Vizier
[0.5.1.0] 0)7	00.04%	Vas	1	Vac	1	0
[0.5, 1.0) 5	112	99.9470 00.04%	Vas	1	Vas	1	1
[0.5, 1.0) 1	115	99.9470 97.95%	Vas	<u>_</u> 1	Vas	1	1
[0.5, 1.0) 1	150	52 2607	Vas	1	Vas	1	0
[0.5, 1.0) 1	104	00 7007	Tes Vac	3 1	Ves	1	2
[0.5, 1.0) 2	200	98.70%	Tes Vac	1	Tes Vac	1	0
[0.5, 1.0) 3	094 010	98.00%	ies Ver	1	Yee	1	0
[0.5, 1.0) 8	810	84.79%	res	1	res	1	0
[0.5, 1.0) 8	841	97.29%	Yes	1	Yes	1	0
[0.5, 1.0) 8	850	96.93%	Yes	1	Yes	1	0
[0.5, 1.0) 8	358	85.14%	Yes	1	Yes	1	0
[0.2, 0.5) 1	16	35.26%	Yes	1	Yes	2	-1
[0.2, 0.5) 4	17	24.12%	Yes	1	Yes	4	-3
[0.2, 0.5) 5	50	24.00%	Yes	1	Yes	4	-3
[0.2, 0.5) 1	185	34.43%	Yes	2	Yes	5	-3
[0.2, 0.5) 3	356	49.17%	Yes	2	Yes	3	-1
[0.2, 0.5) 4	422	49.17%	Yes	4	Yes	3	1
[0.2, 0.5) 8	313	48.58%	Yes	1	Yes	5	-4
[0.2, 0.5) 8	816	48.53%	Yes	1	Yes	5	-4
[0.2, 0.5) 8	817	28.83%	Yes	1	Yes	9	-8
[0.2, 0.5) 8	818	38.38%	Yes	1	Yes	5	-4
[0.05, 0.2) 4	400	9.38%	Yes	5	Yes	2	3
[0.05, 0.2) 5	506	7.72%	Yes	5	Yes	4	1
[0.05, 0.2) 6	524	10.02%	Yes	1	Yes	13	-12
[0.05, 0.2)	5 <u>4</u> 6	6 90%	Yes	1	Yes	45	-44
[0.05, 0.2)	549	6.72%	Yes	5	Yes	45	-40
[0.05, 0.2)	556	5 37%	Ves	1	No		NA
[0.05, 0.2)	667	19.16%	No	· 	Yes	20	NA

[0.05, 0.2) 677	6.43%	Yes	6	Yes	36	-30
[0.05, 0.2) 700	6.43%	Yes	5	Yes	36	-31
[0.05, 0.2) 708	8.37%	Yes	2	Yes	4	-2