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Appendix A Additional figures

A.1 RTL CDFGs

We show an example of RTL CDFG execution (simulation) over multiple cycles in Figure 4. In the
example, at a given clock cycle t, the values of a and b from the previous clock cycle t-1 will be
used for evaluating the condition a > b in the green always block and the corresponding branch will
be executed in that cycle. In the other two always blocks, in cycle t, b and a will be assigned values
based on values of c and d from previous cycle t-1. In the next cycle t+1, a and b will get values of
a and b from cycle t.

The input stimulus and the branches covered by the simulation are shown in Figure 5.

Figure 4: RTL and CDFG execution (simulation) over three cycles t-1, t, t+1

Figure 5: Input stimulus and corresponding branches that are covered. Coverage is a path tracing through the
CDFG.
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Figure 6: Industrial verification flow with manually generated testbench, tests, constraints and
coverage feedback. This flow takes multiple person-years of engineer productivity to converge

Figure 7: Value proposition of Design2Vec when integrated into the loop of an industrial verification
flow. It learns about the design state space and generates tests to cover different uncovered cover
points (holes). It can potentially be used to generate constraints.

A.2 Industrial verification flow

Figure 6 shows the context of our solution within the industrial verification flow. Figure 7 shows the
Design2Vec solution inbuilt into the constrained random verification environment.

A.3 Sizes of designs

We show a comparison of the relative sizes of RTL CDFGs between IBEX and the TPU design in
Table 6.
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Table 6: Comparison of relative sizes of RTL CDFGs between IBEX and TPU design.

IBEX v1 TPU block

# CDFG Nodes 5500 40000
# CDFG Edges 9300 58000
# Branch cover points 900 45000
# Number of gates 10028 1088343

Table 7: Example tests generated by Design2Vec for hard to cover points. Multiple cover points that are local
neighbors of the target point are provided as input to Design2Vec, which helps the GNN-based architecture.

Cover points Top test recommendations

{521, . . . 526, . . . , 531} +instr_cnt=17600 +illegal_instr_ratio=35 +hint_instr_ratio=45 ...
+enable_unaligned_load_store=0 +disable_compressed_instr=1 +randomize_csr=0 +no_wfi=1

{881, . . . 882, . . . , 891} +instr_cnt=17400 +illegal_instr_ratio=25 +hint_instr_ratio=35 ...
+enable_unaligned_load_store=0 +disable_compressed_instr=1 +randomize_csr=0 +no_wfi=1

A.4 Examples of generated tests

Appendix B Experimental hyperparameters

The methods in Section 4 use the following hyperparameters: number of layers, learning rate, GNN
embedding dimension, residual connection frequency, dropout rate, MLP embedding dimensions. We
vary these parameters: number of layers∈ {4, 8, 16, 32}, learning rate∈ {1e−2, 1e−3, 3e−4, 1e−4}.
We hole these parameters fixed: GNN embedding dimension = 16, residual connection frequency
= 4, dropout rate = 0.1, MLP embedding dimensions = [256, 128, 64]. The IPA-GNN model only
has one additional hyperparameter: normalization term ∈ {1, pt,n}.
Number of layers describes the number of GNN layers in the Design2Vec model. GNN embedding
dimension describes the embedding dimension of the intermediate and final node embeddings
produced by the GNN. The residual connection frequency indicates where skip connections are
added between layers of the GNN. The normalization term is used to normalize ht,n after each RTL
IPA-GNN layer.

Our experiments were run on commodity GPUs in a commercial data center. In total, the experiments
reported here required approximately five GPU-weeks of computation.

Appendix C Architectural ablation studies

In this section, we present more detailed comparison of different hyperparameter settings and ablations
of Design2Vec. Since we hypothesize that propagating information across longer distances in the
graph is important, we were especially interested in the effect of residual connections [21], but we
also measure the effect of label smoothing [33]. See results in Table 8. Our default Design2Vec
architecture (top row in table) uses residual connections that skip back 4 layers, and does not use
label smoothing. In practice, we see that none of these variants have a large effect on performance.

Table 8: Comparison of training and validation accuracy across variants of the Design2Vec architec-
ture on coverage prediction on the TPU design.

Training Validation

Design2Vec (GCN) 92.1 90.3
Design2Vec + no residual connections 92.1 90.7
Design2Vec + label smoothing 92.1 90.3
Design2Vec + residual (every 2 layers) 92.1 90.1

We further consider architectural ablations that vary the K-hop edges added to the input CDFG in
Table 11, as well as the depth of the network in Table 10. We further test each setup in settings that
vary the selection of training and validation splits in Tables 9.
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Table 9: Comparing the train and validation accuracy across different split selection methods: whether
to hide test parameters, and whether to sample the training set via every-k sampling or uniformly
random cover points.

Hide test params Cover point hiding method Seed Training Validation

FALSE Deterministic — 86.97 84.54
FALSE Random cover point 123 87.41 76.86
FALSE Deterministic — 82.47 84.45
FALSE Random cover point 123 80.09 75.93
FALSE Deterministic — 87.80 80.76
FALSE Random cover point 123 87.73 80.51
FALSE Deterministic — 83.09 79.62
FALSE Random cover point 123 83.18 78.80
FALSE Deterministic — 89.91 80.58
FALSE Random cover point 123 89.53 78.06
FALSE Deterministic — 78.62 76.34
FALSE Random cover point 123 83.39 75.08
TRUE Deterministic — 87.17 82.67
TRUE Random cover point 123 87.51 75.92
TRUE Deterministic — 82.50 83.97
TRUE Random cover point 123 82.83 78.51
TRUE Deterministic — 88.07 78.32
TRUE Random cover point 123 87.96 75.98
TRUE Deterministic — 83.28 78.23
TRUE Random cover point 123 83.40 78.06
TRUE Deterministic — 90.16 77.27
TRUE Random cover point 123 89.78 73.84
TRUE Deterministic — 62.89 63.79
TRUE Random cover point 123 83.51 73.63

Table 10: Comparing the train and validation accuracy on TPU while varying the numbers of GCN
layers. We report the results across three seeds for each network depth.

Seed GCN layers Training Validation

111 3 92.13 90.75
123 3 92.13 90.13
321 3 92.11 90.67
111 12 92.12 90.53
123 12 92.14 90.21
321 12 92.12 90.61
111 24 92.11 90.19
123 24 92.14 90.82
321 24 92.09 90.55
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Table 11: Comparing the training and validation accuracy of the De-
sign2Vec model using a k-hop edge augmented graph (k ∈ {2, 4, 16})
across a variety of experimental setups.

K-hop Hide test params Cover point hiding method Seed Training Validation

2 FALSE Deterministic — 86.88 83.48
2 FALSE Random cover point 123 87.25 76.87
2 FALSE Deterministic — 65.07 69.14
2 FALSE Random cover point 123 82.47 74.43
2 FALSE Deterministic — 87.62 79.08
2 FALSE Random cover point 123 87.68 77.02
2 FALSE Deterministic — 82.66 78.34
2 FALSE Random cover point 123 66.42 61.58
2 FALSE Deterministic — 89.81 78.92
2 FALSE Random cover point 123 89.26 77.17
2 FALSE Deterministic — 84.25 79.11
2 FALSE Random cover point 123 84.69 74.36
2 TRUE Deterministic — 87.00 82.30
2 TRUE Random cover point 123 87.39 75.69
2 TRUE Deterministic — 83.15 83.04
2 TRUE Random cover point 123 82.87 72.78
2 TRUE Deterministic — 87.74 76.93
2 TRUE Random cover point 123 87.83 76.19
2 TRUE Deterministic — 82.83 75.75
2 TRUE Random cover point 123 83.29 76.86
2 TRUE Deterministic — 90.04 76.16
2 TRUE Random cover point 123 89.62 73.33
2 TRUE Deterministic — 84.86 76.69
2 TRUE Random cover point 123 84.79 73.12
4 FALSE Deterministic — 86.86 85.30
4 FALSE Random cover point 123 87.22 77.75
4 FALSE Deterministic — 65.03 69.03
4 FALSE Random cover point 123 65.90 64.28
4 FALSE Deterministic — 87.63 80.32
4 FALSE Random cover point 123 87.68 78.85
4 FALSE Deterministic — 82.83 79.74
4 FALSE Random cover point 123 82.22 80.57
4 FALSE Deterministic — 89.75 79.98
4 FALSE Random cover point 123 89.30 78.28
4 FALSE Deterministic — 84.65 80.27
4 FALSE Random cover point 123 84.55 74.76
4 TRUE Deterministic — 87.03 80.18
4 TRUE Random cover point 123 87.39 75.28
4 TRUE Deterministic — 82.75 83.00
4 TRUE Random cover point 123 82.20 74.67
4 TRUE Deterministic — 87.94 76.56
4 TRUE Random cover point 123 87.79 77.02
4 TRUE Deterministic — 83.05 76.05
4 TRUE Random cover point 123 83.35 75.64
4 TRUE Deterministic — 90.01 77.08
4 TRUE Random cover point 123 89.26 74.03
4 TRUE Deterministic — 81.17 77.00
4 TRUE Random cover point 123 84.70 73.24
16 FALSE Deterministic — 86.97 84.39
16 FALSE Random cover point 123 87.30 73.10
16 FALSE Deterministic — 64.92 68.95
16 FALSE Random cover point 123 82.62 76.84
16 FALSE Deterministic — 87.67 79.56
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16 FALSE Random cover point 123 87.66 76.26
16 FALSE Deterministic — 64.94 65.32
16 FALSE Random cover point 123 83.14 78.83
16 FALSE Deterministic — 89.79 79.80
16 FALSE Random cover point 123 89.37 77.98
16 FALSE Deterministic — 84.95 77.44
16 FALSE Random cover point 123 84.64 73.66
16 TRUE Deterministic — 87.04 79.44
16 TRUE Random cover point 123 87.41 73.71
16 TRUE Deterministic — 64.57 66.58
16 TRUE Random cover point 123 82.43 73.24
16 TRUE Deterministic — 87.85 75.15
16 TRUE Random cover point 123 87.85 73.63
16 TRUE Deterministic — 83.45 77.44
16 TRUE Random cover point 123 66.86 62.25
16 TRUE Deterministic — 90.16 76.61
16 TRUE Random cover point 123 89.65 72.47
16 TRUE Deterministic — 84.25 77.18
16 TRUE Random cover point 123 84.57 70.69

Appendix D Comparison of Design2Vec and black-box optimizer tests for
covering overall cover points

Table 12: Comparison of Design2Vec and black-box optimizer tests for
covering overall cover points in different cover probability buckets.

Cover
Prob.
Bucket

Cover
Point ID

Cover
Prob.

Covered
by De-
sign2Vec?

# De-
sign2Vec
tests

Covered
by
Vizier?

# Vizier
tests

# D2V -
# Vizier

[0.5, 1.0) 97 99.94% Yes 1 Yes 1 0
[0.5, 1.0) 113 99.94% Yes 2 Yes 1 1
[0.5, 1.0) 158 87.85% Yes 1 Yes 1 0
[0.5, 1.0) 164 53.36% Yes 3 Yes 1 2
[0.5, 1.0) 266 98.70% Yes 1 Yes 1 0
[0.5, 1.0) 394 98.00% Yes 1 Yes 1 0
[0.5, 1.0) 810 84.79% Yes 1 Yes 1 0
[0.5, 1.0) 841 97.29% Yes 1 Yes 1 0
[0.5, 1.0) 850 96.93% Yes 1 Yes 1 0
[0.5, 1.0) 858 85.14% Yes 1 Yes 1 0
[0.2, 0.5) 16 35.26% Yes 1 Yes 2 -1
[0.2, 0.5) 47 24.12% Yes 1 Yes 4 -3
[0.2, 0.5) 50 24.00% Yes 1 Yes 4 -3
[0.2, 0.5) 185 34.43% Yes 2 Yes 5 -3
[0.2, 0.5) 356 49.17% Yes 2 Yes 3 -1
[0.2, 0.5) 422 49.17% Yes 4 Yes 3 1
[0.2, 0.5) 813 48.58% Yes 1 Yes 5 -4
[0.2, 0.5) 816 48.53% Yes 1 Yes 5 -4
[0.2, 0.5) 817 28.83% Yes 1 Yes 9 -8
[0.2, 0.5) 818 38.38% Yes 1 Yes 5 -4
[0.05, 0.2) 400 9.38% Yes 5 Yes 2 3
[0.05, 0.2) 506 7.72% Yes 5 Yes 4 1
[0.05, 0.2) 624 10.02% Yes 1 Yes 13 -12
[0.05, 0.2) 646 6.90% Yes 1 Yes 45 -44
[0.05, 0.2) 649 6.72% Yes 5 Yes 45 -40
[0.05, 0.2) 656 5.37% Yes 1 No — NA
[0.05, 0.2) 667 19.16% No — Yes 20 NA
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[0.05, 0.2) 677 6.43% Yes 6 Yes 36 -30
[0.05, 0.2) 700 6.43% Yes 5 Yes 36 -31
[0.05, 0.2) 708 8.37% Yes 2 Yes 4 -2
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