
Meta-Learning to Improve Pre-Training

Aniruddh Raghu
Massachusetts Institute of Technology

araghu@mit.edu

Jonathan Lorraine
University of Toronto

Simon Kornblith
Google Research

Matthew McDermott
Massachusetts Institute of Technology

David Duvenaud
Google Research & University of Toronto

Abstract

Pre-training (PT) followed by fine-tuning (FT) is an effective method for training
neural networks, and has led to significant performance improvements in many do-
mains. PT can incorporate various design choices such as task and data reweighting
strategies, augmentation policies, and noise models, all of which can significantly
impact the quality of representations learned. The hyperparameters introduced by
these strategies therefore must be tuned appropriately. However, setting the values
of these hyperparameters is challenging. Most existing methods either struggle to
scale to high dimensions, are too slow and memory-intensive, or cannot be directly
applied to the two-stage PT and FT learning process. In this work, we propose
an efficient, gradient-based algorithm to meta-learn PT hyperparameters. We for-
malize the PT hyperparameter optimization problem and propose a novel method
to obtain PT hyperparameter gradients by combining implicit differentiation and
backpropagation through unrolled optimization. We demonstrate that our method
improves predictive performance on two real-world domains. First, we optimize
high-dimensional task weighting hyperparameters for multitask pre-training on
protein-protein interaction graphs and improve AUROC by up to 3.9%. Second, we
optimize a data augmentation neural network for self-supervised PT with SimCLR
on electrocardiography data and improve AUROC by up to 1.9%.

1 Introduction

A popular and important learning paradigm for neural networks is pre-training (PT) followed by fine-
tuning (FT), an approach commonly used in transfer learning [13, 59, 19, 27, 52, 11, 37, 74, 35, 28],
and semi-supervised learning [9, 8, 24]. This paradigm has led to performance improvements in
many domains, including computer vision [13, 59, 19, 37, 74, 35], natural language processing
[27, 52, 11, 40, 34], graph structured prediction [28], and clinical machine learning [45, 46, 2, 48],
and is especially helpful in settings where downstream tasks have limited training data.

The PT & FT paradigm introduces high-dimensional, complex PT hyperparameters, such as pa-
rameterized data augmentation policies used in contrastive representation learning [8, 22] or the
use of task, class, or instance weighting variables in multi-task PT to avoid negative transfer [70].
These hyperparameters can significantly affect the quality of pre-trained models [8], and thus finding
techniques to set their values optimally is an important area of research.

Choosing optimal PT hyperparameter values is challenging, and existing methods do not work well.
Simple approaches such as random or grid search are inefficient since evaluating a hyperparameter
setting requires performing the full, two-stage PT & FT optimization, which may be prohibitively
computationally expensive. Gradient-free approaches, such as Bayesian optimization or evolutionary
algorithms [33, 61, 47], are also limited in how well they scale to this setting. Gradient-based

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

approaches [44, 41, 43, 42] can be used online to jointly learn hyperparameters and model parameters
and can scale to millions of hyperparameters [42], but typically deal with a standard single-stage
learning problem (e.g., normal supervised learning) and are therefore not directly applicable to the
two-stage PT & FT learning problem.

In this work, we address this gap and propose a method for high-dimensional PT hyperparameter op-
timization. We first formalize a variant of the PT & FT paradigm, which we call meta-parameterized
pre-training (Figure 1), where meta-parameters refer to arbitrary PT hyperparameters or parameteriz-
able architectural choices that can be optimized to improve the learned representations.1 We outline a
meta-learning problem characterizing the optimal meta-parameters propose a gradient-based method
to learn meta-parameters. Our contributions are:

• We formalize meta-parameterized pre-training, a variant of the pre-training and fine-tuning (PT &
FT) paradigm where PT is augmented to incorporate meta-parameters: arbitrary structures that can
be optimized to improve learned representations.

• We propose a scalable gradient-based algorithm to learn meta-parameters using a novel method to
obtain meta-parameter gradients through the two-stage PT & FT process. Our gradient estimator
composes a constant-memory implicit differentiation approximation for the longer PT stage and
exact backpropagation through training for the shorter FT stage.

• We show that our algorithm recovers optimal meta-parameters in toy experiments on synthetic data.
• In two real-world experimental domains, we demonstrate our algorithm improves performance.

Firstly, on a multitask PT benchmark over biological graph-structured data [28], using our method
to optimize meta-parameters representing task weights improves performance by up to 3.9%
AUROC. Secondly, for semi-supervised learning using SimCLR [8] over electrocardiography data,
using our algorithm to optimize meta-parameters representing the weights of a data augmentation
neural network improves performance by up to 1.9% AUROC.

2 Problem Setup and Preliminaries

In this section, we define the meta-parameterized pre-training meta-learning problem, and compare it
to traditional fine-tuning and pre-training. A full glossary of notation is in Appendix B, Table 3.

Notation. Let the subscript • be a placeholder for either PT (pre-training) or FT (fine-tuning),
X ⊆ Rd be our input domain, Y• and Ŷ• be the true and predicted output spaces for some model
respectively, and Θ,Ψ•,Φ be spaces of parameters for models. We will use f• : X ; (Θ,Ψ•)→ Ŷ•
to refer to a parametric model, with the semicolon separating the input space from the parameter
spaces. We then define f• = f

(head)
• ◦ f (feat), such that f (feat)(·;θ ∈ Θ) is a feature extractor that

is transferable across learning stages (e.g., pre-training to fine-tuning), and f (head)
• (·;ψ ∈ Ψ•) is a

stage-specific head that is not transferable. Given a data distribution x•, y• ∼ D•, parametric model
f•, and loss function L• : Ŷ• × Y• → R, we will also define for convenience a corresponding
expected loss L• : Θ,Ψ• → R via L•(θ,ψ•;D•) = ED• [L•(f•(x•;θ,ψ•), y•)]. We also adopt
the convention that the output of the argmin operator is any arbitrary minimum, rather than the set of
possible minima, to avoid complications in notation.

2.1 Problem Formulation

Supervised Learning (Fig. 1A). In a fully-supervised setting (our fine-tuning domain), we are given
a data distribution DFT, model f , and loss LFT. Using a learning algorithm AlgFT (e.g., SGD) that
takes as input initial parameters θ(0)

FT ,ψ
(0)
FT , our goal is to approximate the LFT-optimal parameters:

θ∗FT,ψ
∗
FT = AlgFT(θ

(0)
FT ,ψ

(0)
FT ;DFT) ≈ argminθ∈Θ,ψ∈ΨFT

LFT(θ,ψ;DFT)

Pre-training (Fig. 1B). For tasks where data is scarce, we can additionally incorporate a pre-
training step and approximate the optimal initial parameters for FT (i.e., the final pre-trained weights
are used as initialization weights of the FT stage), again via an optimization algorithm AlgPT:
θ∗PT = AlgPT(θ

(0)
PT ,ψ

(0)
PT ;DPT) ≈ argminθ∈Θ LFT(AlgFT(θ,ψ

(0)
FT ;DFT);DFT). 2

1We use the term meta-parameter since these structures do not directly affect inference of the final model
after FT, but instead inform the process of learning this model (by modulating the PT process).

2Note that we discard the PT head ψ∗PT here as only the PT feature extractor θ∗PT is transferred.

2

Figure (1) Meta-Parameterized Pre-Training. A paradigm where meta-parameters — rich, potentially high
dimensional structures that generalize PT hyperparameters — are incorporated in PT to improve the learned
representations. Meta-parameters are optimized in a meta-PT phase, using data from FT task(s) in a meta-FT
dataset. The FT and meta-FT datasets are (potentially overlapping) samples from the FT data distribution.

Meta-Parameterized PT (Fig. 1C). In Meta-Parameterized PT, we recognize that, in addition to
taking as input the PT parameters θ, AlgPT is itself parameterized by a set of meta-parameters φ ∈ Φ:
arbitrary, potentially high dimensional quantities that inform the structure of the algorithm directly.
These could represent weighting strategies, data augmentation policies, or sampling processes. The
optimal meta-parameters φ(opt) are the solution to the following meta-PT optimization problem:

φ(opt) = argmin
φ∈Φ

LFT

(
AlgFT

(
AlgPT

(
θ

(0)
PT ,ψ

(0)
PT ;DPT,φ

)
,ψ

(0)
FT ;DFT

)
;DFT

)
.

2.2 Example: Multitask Meta-Parameterized Pre-Training

To make our notation concrete, here we instantiate our setup for a multitask pre-training problem.

Problem: Suppose we have a multitask classification dataset, (X × Y)N such that
Y = Y1 × · · · × YK consists of labels for K distinct tasks. Of this full set of tasks, we are in-
terested only in a subset of M tasks, S = {t1, . . . , tM} ⊆ {1, . . . ,K}.
Supervised FT: Under supervised FT alone, we can directly average a cross-entropy loss LCE over
only the tasks in S, LFT(ŷ,y) = 1

M

∑M
j=1 LCE(ŷ(tj), y(tj)), and then solve this problem via SGD.

PT: If we assume that S is a random subset of the full set of tasks, we can introduce a PT stage over
all tasks: LPT(ŷ,y) = 1

K

∑K
i=1 LCE(ŷ(i), y(i)), followed by FT on S alone. As S is a random subset,

leveraging all tasks for PT is well motivated and may improve performance.
Meta-Parameterized PT: In the case where T is not a random subset, the PT strategy described
above is no longer well-motivated. However, using meta-parameterized PT, we can still effectively
pre-train by introducing the meta-parameters that weight the tasks φ = [φ1 . . . φK] and modulate
the loss function LPT: LPT(ŷ,y;φ) =

∑K
i=1 φiLCE(ŷ(i), yi). With optimal meta-parameters φ(opt),

the PT stage will leverage only that subset of tasks that best informs the final FT performance. This
setting mirrors our real-world experiment in Section 5.

3 Methods: Optimizing Meta-Parameters for Two-Stage Training

We now introduce our gradient-based algorithm to optimize meta-parameters. We first describe how
to efficiently approximate meta-parameter gradients through the two-stage PT and FT optimization.
We then present our algorithm, and outline practical considerations when using it.

3.1 Efficient Computation of Meta-Parameter Gradients

We begin by defining:

g(φ;θ
(0)
PT ,ψ

(0)
PT ,ψ

(0)
FT) = LFT

(
AlgFT

(Parameter θPT︷ ︸︸ ︷
AlgPT(θ

(0)
PT ,ψ

(0)
PT ;DPT,φ),ψ

(0)
FT ;DFT

)︸ ︷︷ ︸
Parameters θFT,ψFT

;DFT

)
, (1)

so that φ(opt) = argminφ∈Φ g(φ).

3

We also define two best-response values:

θ∗PT(φ) = AlgPT(θ
(0)
PT ,ψ

(0)
PT ;DPT,φ),

θ∗FT(φ), ψ∗FT(φ) = AlgFT(θ∗PT(φ),ψ
(0)
FT ;DFT).

We do not explicitly include the dependence of the best responses on the initialization values for
notational convenience.

With these defined, we now consider the desired gradient term, ∂g
∂φ . Under our definitions, the direct

partial derivatives ∂LFT
∂φ and ∂AlgFT

∂φ are zero, so ∂g
∂φ reduces to a simple expression of the chain rule:

∂g

∂φ

∣∣∣∣
φ′

=
∂LFT

∂ [θFT, ψFT]

∣∣∣∣
θ∗FT(φ′),ψ∗FT(φ′)︸ ︷︷ ︸

FT Loss Gradient

×

FT Best Response Jacobian︷ ︸︸ ︷
∂AlgFT

∂θPT

∣∣∣∣
θ∗PT(φ′)

× ∂AlgPT

∂φ

∣∣∣∣
φ′︸ ︷︷ ︸

PT Best Response Jacobian

. (2)

The FT Loss Gradient term on the RHS of (2) is easily computed using backpropagation. Computing
the other two terms is more involved, and we detail each below, beginning with the PT best response
Jacobian. The full algorithm with both gradient estimation terms is provided in Algorithm 1.

PT Best Response Jacobian ∂AlgPT
∂φ . Using recent work in hyperparameter optimization with implicit

differentiation [42], we re-express this term using the implicit function theorem (IFT). If we assume
that θ∗PT(φ) = AlgPT

(
θ

(0)
PT ;DPT,φ

)
is a good approximation of argminθ∈Θ LPT (θ;DPT,φ) (i.e.,

the PT model converges to LPT-optimal parameters), then under certain smoothness and regularity
assumptions on the PT parameters and meta-parameters, the IFT allows us to re-express ∂AlgPT

∂φ as:

∂AlgPT

∂φ

∣∣∣∣
φ′

= −
[

∂2LPT
∂θPT ∂θ>PT

]−1

× ∂2LPT

∂θPT ∂φ
>

∣∣∣∣
θ∗PT(φ′),φ′

, (3)

which is the product of the inverse Hessian and a matrix of mixed partial derivatives. Following [42],
the inverse can be efficiently approximated using a truncated Neumann series.

FT Best Response Jacobian ∂AlgFT
∂θPT

. First, note that without additional constraints on AlgFT, the
FT best response Jacobian may be zero. This is because LFT has no functional dependence on the
variable θPT and, if we assume the convergence point θ∗FT is stable (as we did for the PT best response
Jacobian), this implies that the gradient of θ∗FT with respect to θPT would be zero. To enable effective
learning, we must therefore either (1) impose restrictions on AlgFT to ensure there is a dependence
between the initialization point and the final loss value (e.g., proximal regularization [55]) or (2)
leverage methods that do not differentiate through AlgFT through convergence, as at non-converged
points we will still observe nonzero LFT-gradients [29, 51]. Given that the FT phase often involves
shorter optimization horizons than PT, we take approach 2 here, and iteratively update θFT for K
steps. We first initialize the FT head ψ(0)

FT and then compute:

θ
(0)
FT = copy(θ∗PT) (init with PT solution, implicitly performing stop gradient)

θ
(k)
FT ,ψ

(k)
FT =

[
θ

(k−1)
FT , ψ

(k−1)
FT

]
− ηFT

∂LFT

∂ [θFT, ψFT]

∣∣∣∣
θ
(k−1)
FT ,ψ

(k−1)
FT

k = 1, . . . ,K

θ∗FT,ψ
∗
FT ≈ θ

(K)
FT ,ψ

(K)
FT ,

(4)

and compute the gradient ∂AlgFT
∂θPT

∣∣∣
θ∗PT(φ′)

by differentiating through this optimization.3

We can also choose to freeze the feature extractor parameters θFT and update only the head parameters
ψFT during truncated FT, and use this to obtain meta-parameter gradients. This resembles linear
evaluation, where a linear classifier is trained on top of fixed, pre-trained feature extractors [50, 3, 63].

Together, these two approximations allow for efficient computation of meta-parameter gradients.
3While Equation 4 uses standard gradient descent, we could use other differentiable optimizers (e.g., Adam).

4

Algorithm 1 Gradient-based algorithm to learn meta-parameters. Notation defined in Appendix B,
Table 3. Vector-Jacobian products (VJPs) can be efficiently computed by standard autodifferentiation.

1: Initialize PT parameters θ(init)
PT ,ψ

(init)
PT ,ψ

(0)
FT and meta-parameters φ(0)

2: for n = 1, . . . , N iterations do
3: Initialize θ(0)

PT = θ
(init)
PT and ψ(0)

PT = ψ
(init)
PT .

4: for p = 1, . . . , P PT iterations do

5:
[
θ

(p)
PT ,ψ

(p)
PT

]
=
[
θ

(p−1)
PT ,ψ

(p−1)
PT

]
− ηPT

∂LPT

∂[θPT,ψPT]

∣∣∣∣
θ
(p−1)
PT ,ψ

(p−1)
PT

6: end for
7: Initialize FT encoder with PT solution: θ(0)

FT = copy(θ
(P)
PT).

8: Approximate θ∗FT,ψ
∗
FT using Eq. 4.

9: Compute g1 = ∂LFT

∂[θFT, ψFT]

∣∣∣∣
θ∗FT,ψ

∗
FT

10: Compute VJP g2 = g1
∂AlgFT
∂θPT

∣∣∣
θ
(P)
PT ,ψ

(0)
FT

using the unrolled learning step from line 8.

11: Approximate VJP ∂g
∂φ

∣∣∣
φ(n−1)

= g2
∂AlgPT
∂φ

∣∣∣
φ(n−1)

using the IFT (Eq. 3).

12: φ(n) = φ(n−1) − ηV
∂g
∂φ

∣∣∣
φ(n−1)

13: Update PT initialization by setting: θ(init)
PT = θ

(P)
PT and ψ(init)

PT = ψ
(P)
PT .

14: end for

3.2 Our Algorithm and Practical Considerations

By leveraging the above approximations, we obtain Algorithm 1 to optimize meta-parameters φ
online during PT & FT of the base model. Note that AlgPT is explicitly written out as a sequence of
gradient updates (lines 4-6 in Algorithm 1). We now discuss practical considerations when using this
algorithm, with further details given in Appendix C.

(1) Access to DFT and generalizing to new FT tasks: Solving the meta-PT problem requires avail-
ability of: the model f•, the PT data DPT, and the FT data DFT. In this work, we assume availability
of the model and PT dataset, but since assuming access to the complete FT dataset at meta-PT time
is more restrictive, we study two scenarios: Full FT Access, where all FT data that we expect to
encounter is available at meta-PT time, and Partial FT Access, where the FT data available at meta-PT
time is only a sample from a distribution of FT data that we may encounter later.

Full FT Access occurs in settings like semi-supervised learning, where we are given a large unlabelled
PT dataset and a small labelled FT dataset and our goal is to achieve the best possible performance
by leveraging these two fixed datasets [68, 73, 25, 24, 8, 9].

Partial FT Access occurs when our goal is to learn transferable representations: at meta-PT time,
we might have limited knowledge of FT tasks or data. In evaluating this scenario, we examine
generalizability to new FT tasks, given only small amounts of FT data/task availability at meta-PT
time, demonstrating that even very limited FT access can be sufficient for effective meta-parameter
optimization [11, 45, 56, 28].

(2) DFT splits: In practice, we have access to finite datasets and use minibatches, rather than true data-
generating processes. Following standard convention, we splitDFT into two subsets for meta-learning:
D(tr)

FT and D(val)
FT (independent of any held-out DFT testing split), and define the FT data available at

meta-PT time as D(Meta)
FT = D(tr)

FT ∪ D
(val)
FT . We use D(tr)

FT for the computation of ∂AlgFT
∂θPT

∣∣∣
θ
(P)
PT ,ψ

(0)
FT

and

∂AlgPT
∂φ

∣∣∣
φ(n−1)

and D(val)
FT for the computation of ∂LFT

∂[θFT, ψFT]

∣∣∣∣
θ∗FT,ψ

∗
FT

in Algorithm 1.

(3) Online updates: Given that PT phases often involve long optimization horizons, for computa-
tional efficiency, we update θPT andψPT online rather than re-initializing them at every meta-iteration
(see Algorithm 1). FT phases are often shorter so we could in theory re-initialize ψFT at each

5

meta-iteration, as is presented in Algorithm 1. However, it is more computationally efficient to also
optimize this online, and we follow this approach in our experiments. A description of the algorithm
with these details in Appendix C.

Note that prior work [67] has suggested that online optimization of certain hyperparameters (e.g.,
learning rates) using short horizons may yield suboptimal solutions. We comment on this in Ap-
pendix C, study this effect for our algorithm in synthetic experiments in Appendix E, and in real-world
experiments on self-supervised learning in Appendix G, revealing it is not a significant concern.

(4) Computational tractability: Our method can scale to large encoder models and high-
dimensional meta-parameters, despite the complexity of the two-stage PT & FT process. This
is because: (i) meta-parameters are optimized jointly with the base model parameters; (ii) using
the IFT to obtain gradients has similar time and memory complexity to one iteration of training
[42]; (iii) the FT best response Jacobian can be approximated efficiently using a small number of
unrolled optimization steps K, and by only unrolling the FT head of the network. In our real-world
experiments (Sections 5 and 6), meta-parameterized PT has less than twice the time cost of standard
PT. Further details on time and memory cost are provided in Appendices F and G.

(5) Setting optimizer parameters: Learning rates and momentum values can impact the efficacy of
the algorithm. A discussion on how to set them in practice is provided in Appendix D.

4 Synthetic Experiments

We validate that our algorithm recovers optimal low and high dimensional meta-parameters in two
synthetic MNIST experiments with Full FT Access. Further details and results are provided in
Appendix E, including a study of how our method performs comparably to differentiating exactly
through the entire learning process of PT & FT, without approximations.

First, we optimize low dimensional meta-parameters characterizing a data augmentation scheme.
We tune a 1-D meta-parameter φ representing the mean of a Normal distribution N (φ, 12) from
which we sample rotation augmentations to apply to PT images. FT images undergo rotations from a
Normal distribution N (µFT, 1

2) with µFT = 90◦; we therefore expect that φ should converge to near
µFT. Using Algorithm 1 to optimize φ we find that the mean error in the optimized meta-parameter
over 10 different initializations is small: 7.2± 1.5◦, indicating efficacy of the algorithm.

Next, we consider learning high dimensional meta-parameters that characterize a PT per-example
weighting scheme. The PT dataset contains some examples that have noisy labels, and FT examples
all have clean labels. The meta-parameters are the parameters of a neural network that assigns
importance weights to each PT example, which is used to weight the loss on that example during PT.
We use Algorithm 1 again to optimize φ, over 10 random initializations, finding the ratio of assigned
importance weights between clean label PT examples and noisy label PT examples is greater than
102. This is expected since the noisy label classes may worsen the quality of the PT model and so
should be down-weighted.

5 Meta-Parameterized Multitask Pre-Training for Graph Neural Networks

We consider optimizing PT task weights for a multitask PT & FT problem of predicting the presence
of protein functions (multitask binary classification) given graph-structured biological data as input.
We have two experimental goals: first, in the Full FT Access setting, where methods are given
access to all FT data at PT time, we evaluate whether optimizing task weighting meta-parameters
can improve predictive performance on the FT tasks. Second, motivated by how in typical transfer
learning problems, new tasks or labels not available at PT time may become available at FT time, we
study the Partial FT Access setting, investigating how our method performs when it only sees limited
FT tasks at PT time. In both settings, our method outperforms baselines.

5.1 Problem Setup

Dataset and Task. We consider the transfer learning benchmark introduced in [28], where the pre-
diction problem at both PT and FT is multitask binary classification: predicting the presence/absence
of specific protein functions (y) given a Protein-Protein Interaction (PPI) network as input (rep-

6

resented as a graph x). The PT dataset has pairs DPT = {(xi, yi)}|DPT|
i=1 , where y ∈ {0, 1}5000

characterizes the presence/absence of 5000 particular protein functions. The FT dataset has pairs
DFT = {(xi, yi)}|DFT|

i=1 , where y ∈ {0, 1}40 now characterizes the presence/absence of 40 different
protein functions. Further dataset details in Appendix F.

Meta-Parameterized Multitask PT. To define a meta-parameterized PT scheme, we let meta-
parameters φ ∈ R5000 be weights for the binary PT tasks. Then, we define a PT loss incorporating
the weights: LPT = 1

5000

∑5000
i=1 2 σ(φi) LCE(fPT(x;θPT,ψPT)i, yi),with i indexing the tasks, σ(·)

representing the sigmoid function (to ensure non-negativity and clamp the range of the weights), and
LCE denoting the binary cross-entropy loss. With this loss defined, we use Algorithm 1 (with P = 10
PT steps and K = 1 truncated FT steps) to jointly learn φ and the feature extractor parameters θPT.
For computational efficiency, we only update the FT head when computing the FT best response
Jacobian and keep the feature extractor of the model fixed. We use the training and validation splits of
the FT dataset DFT proposed by the dataset creators [28] for computing the relevant gradient terms.

Baselines. Motivated by our goals, we compare with the following PT baselines:

• No PT: Do not perform PT (i.e., feature extractor parameters are randomly initialized).
• Graph Supervised PT: As explored in prior work on this domain [28], perform multitask super-

vised PT with DPT. This corresponds to setting all task weights to 1: φi = 1, i = 1, . . . , 5000.
• CoTrain: A common baseline that makes use of the FT data available during PT [70] (like meta-

parameterized PT). We PT a model with 5000+40 outputs (covering the space of PT and FT labels)
jointly on both DPT and DFT. We do so by alternating gradient updates on batches sampled from
each dataset in turn. Further details are in Appendix F.

• CoTrain + PCGrad: An extension of CoTrain, where we leverage the method PCGrad [72] to
perform gradient projection and prevent destructive gradient interference between updates from
DPT and DFT. Further details and variants we tried are in Appendix F.

Experimental Details. We use a standardized setup to facilitate comparisons. Following [28], all
methods use the Graph Isomorphism Network architecture [69], undergo PT for 100 epochs, and
FT for 50 epochs, over 5 random seeds, using early stopping based on validation set performance.
During FT, we initialize a new FT network head and either FT the whole network or freeze the PT
feature extractor and learn the FT head alone (Linear Evaluation [50]). We report results for the
strategy that performed best (full results in the appendix). We consider two experimental scenarios:
(1) Full FT Access: Provide methods full access to DPT and DFT at PT time (D(Meta)

FT = DFT) and
evaluate on the full set of 40 FT tasks; (2) Partial FT Access: Limit the number of FT tasks seen at
PT time, by letting D(Meta)

FT include only 30 of the 40 FT tasks. At FT time, models are fine-tuned on
the held-out 10 tasks not in D(Meta)

FT . We use a 4-fold approach where we leave out 10 of the 40 FT
tasks in turn, and examine performance across these 10 held-out tasks, over the folds.

5.2 Results

Key Findings. By optimizing PT task weights, meta-parameterized multitask PT improves perfor-
mance on the FT problem of predicting presence/absence of protein functions given a protein-protein
interaction graph as input. Performance improvements are also seen when generalizing to new FT
tasks (protein functions), unseen at meta-PT time.

Table 1 presents quantitative results for the two experimental settings described. For the No PT and
Graph Supervised PT baselines, we re-implement the methods from [28], obtaining improved results
(full comparison in Appendix Table 5). In both full and partial FT access settings, meta-parameterized
PT improves significantly on other methods, indicating that optimizing meta-parameters can improve
predictive performance generally, and be effective even when new, related tasks are considered at
evaluation time. Interestingly, we observe that CoTrain and CoTrain + PCGrad obtain relatively poor
performance compared to other baselines; this could be because the methods overfit to the FT data
during PT. Further analysis of this is presented in Appendix F.

Further experiments. In Appendix F, we study another partial FT access scenario with smaller
D(Meta)

FT , setting
∣∣∣D(Meta)

FT

∣∣∣ = 0.5 |DFT|, and find that meta-parameterized PT again outperforms other
methods. (Table 7). We also examine another meta-parameter learning baseline, namely a version of
CoTrain where we optimize task weights using a traditional hyperparameter optimization algorithm
[42] jointly with the main model. We find that our method outperforms this baseline also (Table 5).

7

Method AUC (D(Meta)
FT = DFT) AUC (D(Meta)

FT excludes tasks)

No PT 66.6 ± 0.7 65.8 ± 2.5
Graph Supervised PT 74.7 ± 0.1 74.8 ± 1.8
CoTrain 70.2 ± 0.3 69.3 ± 1.8
CoTrain + PCGrad 69.4 ± 0.2 68.1 ± 2.3
Meta-Parameterized PT 78.6 ± 0.1 77.0 ± 1.3

Table (1) Meta-Parameterized PT improves predictive performance over baselines. Table showing mean
AUC and standard error for two evaluation settings. When provided all FT data at PT time (first results column),
meta-parameterized PT significantly improves predictive performance. In a more challenging setting when
D(Meta)

FT excludes FT tasks (10 of the 40 available tasks are held-out), evaluating mean AUC/standard error
across four folds with each set of 10 FT tasks held out in turn, meta-parameterized PT again obtains the best
performance: it is effective even with partial information about the downstream FT tasks.

Analysis of learned structures. In Appendix F, we conduct further analysis and study the effect
of various PT strategies on the pre-trained representations (Figure 3), finding intuitive patterns of
similarity between different methods. We also examine the learned task weights (Figure 4), and
examine performance on a per-FT task basis with/without meta-parameterized PT (Figure 5), finding
little evidence of negative transfer.

6 Meta-Parameterized SimCLR for Semi-Supervised Learning with ECGs

We now explore a second real-world application of our method: optimizing a data augmentation
policy for self-supervised PT with SimCLR [8, 9] on electrocardiograms (ECGs). SimCLR is a
popular self-supervised PT method that leverages data augmentations to define a contrastive PT
objective (details in Appendix G.1). The choice/strength of the augmentations used significantly
impacts the effectiveness of the algorithm [8]. In settings where relevant augmentations are known
(e.g., natural images), SimCLR is readily applicable; however, for ECGs, effective augmentations are
less clear, motivating the use of our algorithm to optimize the augmentation pipeline.

We have two experimental goals. Firstly, we examine the typical semi-supervised learning setting
of Full FT Access: we explore whether optimizing the augmentations in SimCLR PT can improve
performance on the supervised FT task of detecting pathologies from ECGs, given access to all FT
data at meta-PT time. Secondly, to study the data efficiency of our method, we consider the Partial
FT Access setting and explore performance given access to limited FT data at meta-PT time. We find
that our method improves the performance of SimCLR, and that it is effective even with very limited
amounts of FT data provided at meta-PT time.

6.1 Problem Setup

Dataset and Task. We construct a semi-supervised learning (SSL) problem using PTB-XL [64, 20],
an open-source dataset of electrocardiogram (ECG) data. Let the model input at both PT and FT time
be denoted by x, which represents a 12-lead (or channel) ECG sampled at 100 Hz for 10 seconds
resulting in a 1000 × 12 signal. Our goal is to pre-train a model fPT on an unlabeled PT dataset
of ECGs DPT = {xi}|DPT|

i=1 using SimCLR PT [8], and then fine-tune it on the labeled FT dataset
DFT = {(xi, yi)}|DFT|

i=1 , where the FT labels y ∈ {0, 1}5 encode whether the signal contains certain
features indicative of particular diseases/pathologies. Further dataset details in Appendix G.

ECG Data Augmentations. To augment each ECG for SimCLR (example in Appendix G, Figure 6),
we apply three transformations in turn (based on prior work in time series augmentation [30, 66]):

1. Random cropping: A randomly selected portion of the signal is zeroed out.
2. Random jittering: IID Gaussian noise is added to the signal.
3. Random temporal warping: The signal is warped with a random, diffeomorphic temporal

transformation. This is formed by sampling from a zero mean, fixed variance Gaussian at each
temporal location in the signal to obtain a velocity field, and then integrating and smoothing
(following [4, 5]) to generate a temporal displacement field, which is applied to the signal.

8

Test AUC at different FT dataset sizes |DFT|
FT dataset size |DFT| 100 250 500 1000 2500

No PT 71.5 ± 0.7 76.1 ± 0.3 78.7 ± 0.3 82.0 ± 0.2 84.5 ± 0.2
SimCLR 74.6 ± 0.4 76.5 ± 0.3 79.8 ± 0.3 82.2 ± 0.3 85.8 ± 0.1
Meta-Parameterized SimCLR 76.1 ± 0.5 77.8 ± 0.4 81.7 ± 0.2 84.0 ± 0.3 86.7 ± 0.1

Table (2) Meta-Parameterized SimCLR obtains improved semi-supervised learning performance. Ta-
ble showing mean AUC/standard error over seeds across 5 FT binary classification tasks for baselines and
meta-parameterized SimCLR at different sizes of DFT, with D(Meta)

FT = DFT. We observe improvements in
performance with meta-parameterized SimCLR, which optimizes the augmentation pipeline.

Meta-Parameterized SimCLR. To construct a meta-parameterized SimCLR PT scheme, we instan-
tiate meta-parameters φ as the weights of a neural network w(x;φ) that takes in an input signal
and outputs the warp strength: the variance of the Gaussian that is used to obtain the velocity field
for temporal warping. This parameterization permits signals to be warped more/less aggressively
depending on their individual structure. With this definition, the SimCLR PT loss is directly a
function of the meta-parameters, and we can use Algorithm 1 (with P = 10 PT steps and K = 1
truncated FT steps) to jointly learn φ and the feature extractor parameters θPT. For computational
efficiency, we only update the FT head when computing the FT best response Jacobian and keep the
feature extractor of the model fixed. We use the training and validation splits of the FT dataset DFT
proposed by the dataset creators [64] for computing the relevant gradient terms.

Baselines. Our experimental goals suggest the following PT baselines:

• No PT: Do not perform PT (i.e., feature extractor parameters are randomly initialized).
• SimCLR: Pre-train a model using SimCLR with the above three augmentations without learning

per-example temporal warping strengths.

Experimental Details. We standardize the experimental setup to facilitate comparisons. All methods
use a 1D CNN based on a ResNet-18 [23] architecture. The temporal warping network w(x;φ) is a
four layer 1D CNN. SimCLR PT takes place for 50 epochs for all methods, over three PT seeds. At
evaluation time, for all methods, we initialize a new FT network head over the PT network feature
extractor and FT the whole network for 200 epochs, over five FT seeds. Validation set AUC is used for
early stopping. We consider two experimental settings: (1) Full FT Access, standard SSL: consider
different sizes of the labelled FT dataset DFT and make all the FT data available at meta-PT time,
D(Meta)

FT = DFT; and (2) Partial FT Access, examining data efficiency of our algorithm: SSL when
only limited FT data is available at meta-PT time: D(Meta)

FT ⊆ DFT. We evaluate performance across
the 5 binary classification tasks in both settings. Further details are provided in Appendix G.

6.2 Results
Key Findings. By optimizing the data augmentation policy used in SimCLR PT, meta-parameterized
SimCLR improves performance on the FT problem of detecting pathologies from ECG data. Even a
small amount of FT data provided at meta-PT time can lead to improved FT performance.

Table 2 shows results for the Full FT Access setting, D(Meta)
FT = DFT: mean AUC/standard error

over seeds across the 5 FT binary classification tasks at different sizes of DFT. We observe that
meta-parameterized SimCLR improves on other baselines in all settings. Note that while these gains
are modest, they are obtained with simple augmentation policies; our method may yield further
improvements if applied to policies with more scope to specialize the augmentations.

Next, we consider the Partial FT Access scenario where D(Meta)
FT ⊆ DFT, which is relevant when we

only have a small amount of FT data at meta-PT time. Fixing |DFT| = 500, we find that with |D(Meta)
FT |

as small as 50, we obtain test AUC of 81.3 ± 0.5, compared to 79.8 ± 0.3 with no optimization
of augmentations: this shows that even small |D(Meta)

FT | appear to be sufficient for meta-parameter
learning. Further results showing performance curves varying |D(Meta)

FT | are in Appendix G.

Further experiments. In Appendix G, we study other aspects of our method on this domain,
including: (1) Exploring different values of K, the number of FT steps differentiated through when
obtaining meta-parameter gradients; and (2) Examining a meta-parameter learning baseline where

9

augmentations are optimized for supervised learning, using the method in [42], and then applied
to semi-supervised learning (to compare how optimizing augmentations for supervised learning
compares to optimizing them for semi-supervised learning). We find that our method is not very
sensitive to the value of K (provided K > 0), and that it outperforms this additional baseline.

7 Related Work

Gradient-based hyperparameter optimization (HO): Gradient-based HO roughly falls into two
camps. The simpler and less scalable approach differentiates through training [12, 44]. The other
approach assumes that optimization reaches a fixed point, and approximates the best-response
Jacobian [7, 41, 43, 42]. Neither of these approaches can be straightforwardly applied to scalably
differentiate through two stages of optimization (PT & FT). Direct differentiation through both stages
would be too memory-intensive. Approximating the best-response Jacobian using the IFT as in [42]
twice is feasible, but requires changing the FT objective to include a proximal term [55], and tuning
two sets of interacting approximations. Instead, we compose a constant-memory IFT approximation
for the lengthy PT stage with an exact backprop-through-training for the shorter FT stage.

Applications of Nested Optimization: Many prior works frame learning as nested optimization,
including few-shot learning [16, 1, 17, 55, 21, 58, 53, 75, 31, 38], neural network teaching [14, 15,
62, 54], learning data augmentation and reweighting strategies [32, 22, 57, 60, 29], and auxiliary task
learning [49, 51, 39]. The majority of this work studies nested optimization in the standard one-stage
supervised learning paradigm, unlike our setting: the two-stage PT & FT problem. The most closely
related works to ours are [70], where PT task weights are learned for a multitask PT problem using
electronic health record data, and [71], where a masking policy is learned for masked language
modelling PT. In contrast to our work, which introduces the more general framing of meta-parameter
optimization, [70] and [71] are focused only on specific instantiations of meta-parameters as task
weights and masking policies. The learning algorithms in these works either: differentiate directly
through truncated PT & FT [71] (which may not be scalable to longer PT/large encoder models), or
leverage extensive first-order approximations [70], unlike our more generally applicable approach.

8 Scope and Limitations

Our gradient-based algorithm applies in situations where we want to optimize (potentially high-
dimensional) PT hyperparameters, or meta-parameters, and have access to a model, PT data, and
FT data. We demonstrated that even limited FT data availability can be sufficient to guide meta-
parameter learning; however, our method would not apply when no FT data at all is available at
meta-PT time, or if the model or PT data were not available. Our algorithm requires meta-parameters
to be differentiable, and cannot directly be used to optimize meta-parameters that do not affect the PT
optimization landscape (e.g., PT learning rates).

9 Conclusion

In this work, we studied the problem of optimizing high-dimensional pre-training (PT) hyperparame-
ters, or meta-parameters. We formalized Meta-Parameterized Pre-Training, a variant of standard PT
incorporating these meta-parameters, and proposed a gradient-based algorithm to efficiently learn
meta-parameters by approximately differentiating through the two-stage PT & FT learning process.
In experiments, we used our algorithm to improve predictive performance on two real-world PT tasks:
multitask PT with graph structured data [28], and self-supervised contrastive PT on electrocardiogram
signals using SimCLR [8]. Future work could apply our method to learn other potential instantiations
of meta-parameters, such as learned auxiliary tasks and noise models.

Societal Impact. Our contribution in this work is methodological, namely a new algorithm to
optimize high-dimensional pre-training hyperparameters. We do not expect there to be direct negative
societal impacts of this contribution. However, to evaluate our method, we considered an experimental
domain using healthcare data. Given the high risk nature of this domain, before use in real-world
settings, the method should be validated in retrospective and prospective studies. This is to detect any
failure modes and identify potential harm that may come from deploying it.

10

Acknowledgements

This work was supported in part by funds from Quanta Computer, Inc. The authors thank the members
of the Clinical and Applied Machine Learning group at MIT and Paul Vicol for helpful feedback.

References
[1] A. Antoniou, H. Edwards, and A. Storkey. How to train your MAML. arXiv preprint

arXiv:1810.09502, 2018.
[2] S. Azizi, B. Mustafa, F. Ryan, Z. Beaver, J. Freyberg, J. Deaton, A. Loh, A. Karthikesalingam,

S. Kornblith, T. Chen, et al. Big self-supervised models advance medical image classification.
arXiv preprint arXiv:2101.05224, 2021.

[3] P. Bachman, R. D. Hjelm, and W. Buchwalter. Learning representations by maximizing mutual
information across views. arXiv preprint arXiv:1906.00910, 2019.

[4] G. Balakrishnan, A. Zhao, M. Sabuncu, J. Guttag, and A. V. Dalca. An unsupervised learn-
ing model for deformable medical image registration. CVPR: Computer Vision and Pattern
Recognition, pages 9252–9260, 2018.

[5] G. Balakrishnan, A. Zhao, M. Sabuncu, J. Guttag, and A. V. Dalca. Voxelmorph: A learning
framework for deformable medical image registration. IEEE TMI: Transactions on Medical
Imaging, 38:1788–1800, 2019.

[6] A. Beatson and R. P. Adams. Efficient optimization of loops and limits with randomized
telescoping sums. In International Conference on Machine Learning, pages 534–543. PMLR,
2019.

[7] Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):
1889–1900, 2000.

[8] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[9] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton. Big self-supervised models are
strong semi-supervised learners. arXiv preprint arXiv:2006.10029, 2020.

[10] C. Cortes, M. Mohri, and A. Rostamizadeh. Algorithms for learning kernels based on centered
alignment. The Journal of Machine Learning Research, 13(1):795–828, 2012.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[12] J. Domke. Generic methods for optimization-based modeling. In Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2012, JMLR Pro-
ceedings. JMLR.org, 2012. URL http://proceedings.mlr.press/v22/domke12.html.

[13] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep
convolutional activation feature for generic visual recognition. In International conference on
machine learning, pages 647–655. PMLR, 2014.

[14] Y. Fan, F. Tian, T. Qin, X.-Y. Li, and T.-Y. Liu. Learning to teach. arXiv preprint
arXiv:1805.03643, 2018.

[15] Y. Fan, Y. Xia, L. Wu, S. Xie, W. Liu, J. Bian, T. Qin, X.-Y. Li, and T.-Y. Liu. Learning to teach
with deep interactions. arXiv preprint arXiv:2007.04649, 2020.

[16] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International Conference on Machine Learning, pages 1126–1135, 2017.

[17] C. Finn, K. Xu, and S. Levine. Probabilistic model-agnostic meta-learning. In Advances in
Neural Information Processing Systems, pages 9516–9527, 2018.

[18] G. Gidel, R. A. Hemmat, M. Pezeshki, R. Le Priol, G. Huang, S. Lacoste-Julien, and
I. Mitliagkas. Negative momentum for improved game dynamics. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1802–1811. PMLR, 2019.

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object
detection and semantic segmentation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 580–587, 2014.

11

http://proceedings.mlr.press/v22/domke12.html

[20] A. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. Ivanov, R. Mark, J. Mietus, G. Moody,
C. Peng, and H. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new
research resource for complex physiologic signals. Circulation, 101 23:E215–20, 2000.

[21] E. Grant, C. Finn, S. Levine, T. Darrell, and T. Griffiths. Recasting gradient-based meta-learning
as hierarchical bayes. arXiv preprint arXiv:1801.08930, 2018.

[22] R. Hataya, J. Zdenek, K. Yoshizoe, and H. Nakayama. Meta approach to data augmentation
optimization. arXiv preprint arXiv:2006.07965, 2020.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

[24] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9729–9738, 2020.

[25] O. Henaff. Data-efficient image recognition with contrastive predictive coding. In H. D. III
and A. Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 4182–4192. PMLR, 13–18
Jul 2020. URL http://proceedings.mlr.press/v119/henaff20a.html.

[26] R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and
Y. Bengio. Learning deep representations by mutual information estimation and maximization.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=Bklr3j0cKX.

[27] J. Howard and S. Ruder. Universal language model fine-tuning for text classification. arXiv
preprint arXiv:1801.06146, 2018.

[28] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec. Strategies for
pre-training graph neural networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=HJlWWJSFDH.

[29] Z. Hu, B. Tan, R. R. Salakhutdinov, T. M. Mitchell, and E. P. Xing. Learning data manipulation
for augmentation and weighting. In Advances in Neural Information Processing Systems,
volume 32, 2019.

[30] B. K. Iwana and S. Uchida. An empirical survey of data augmentation for time series classifica-
tion with neural networks. arXiv preprint arXiv:2007.15951, 2020.

[31] K. Javed and M. White. Meta-learning representations for continual learning. arXiv preprint
arXiv:1905.12588, 2019.

[32] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. Mentornet: Learning data-driven curriculum
for very deep neural networks on corrupted labels. In International Conference on Machine
Learning, pages 2304–2313, 2018.

[33] K. Kandasamy, K. R. Vysyaraju, W. Neiswanger, B. Paria, C. R. Collins, J. Schneider, B. Poczos,
and E. P. Xing. Tuning hyperparameters without grad students: Scalable and robust Bayesian
optimisation with Dragonfly. arXiv preprint arXiv:1903.06694, 2019.

[34] M. Kang, M. Han, and S. J. Hwang. Neural mask generator: Learning to generate adaptive word
maskings for language model adaptation. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 6102–6120, 2020.

[35] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big transfer
(bit): General visual representation learning. arXiv preprint arXiv:1912.11370, 6(2):8, 2019.

[36] S. Kornblith, M. Norouzi, H. Lee, and G. Hinton. Similarity of neural network representations
revisited. In International Conference on Machine Learning, pages 3519–3529. PMLR, 2019.

[37] S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet models transfer better? In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2661–2671,
2019.

[38] K. Lee, S. Maji, A. Ravichandran, and S. Soatto. Meta-learning with differentiable convex opti-
mization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 10657–10665, 2019.

[39] S. Liu, A. Davison, and E. Johns. Self-supervised generalisation with meta auxiliary learning.
In Advances in Neural Information Processing Systems, pages 1679–1689, 2019.

12

http://proceedings.mlr.press/v119/henaff20a.html
https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=HJlWWJSFDH

[40] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. Roberta: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

[41] J. Lorraine and D. Duvenaud. Stochastic hyperparameter optimization through hypernetworks.
arXiv preprint arXiv:1802.09419, 2018.

[42] J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing millions of hyperparameters by implicit
differentiation. In International Conference on Artificial Intelligence and Statistics, pages
1540–1552. PMLR, 2020.

[43] M. MacKay, P. Vicol, J. Lorraine, D. Duvenaud, and R. Grosse. Self-tuning networks: Bilevel
optimization of hyperparameters using structured best-response functions. In International
Conference on Learning Representations, 2019.

[44] D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based hyperparameter optimization
through reversible learning. In International Conference on Machine Learning, pages 2113–
2122, 2015.

[45] M. McDermott, B. Nestor, E. Kim, W. Zhang, A. Goldenberg, P. Szolovits, and M. Ghassemi. A
comprehensive evaluation of multi-task learning and multi-task pre-training on ehr time-series
data. arXiv preprint arXiv:2007.10185, 2020.

[46] M. McDermott, B. Nestor, E. Kim, W. Zhang, A. Goldenberg, P. Szolovits, and M. Ghassemi.
A comprehensive ehr timeseries pre-training benchmark. In Proceedings of the Conference on
Health, Inference, and Learning, pages 257–278, 2021.

[47] J. Močkus. On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP
Technical Conference, pages 400–404, 1975.

[48] B. Mustafa, A. Loh, J. Freyberg, P. MacWilliams, A. Karthikesalingam, N. Houlsby, and
V. Natarajan. Supervised transfer learning at scale for medical imaging. arXiv preprint
arXiv:2101.05913, 2021.

[49] A. Navon, I. Achituve, H. Maron, G. Chechik, and E. Fetaya. Auxiliary learning by implicit
differentiation. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=n7wIfYPdVet.

[50] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

[51] H. Pham, Z. Dai, Q. Xie, M.-T. Luong, and Q. V. Le. Meta pseudo labels. arXiv preprint
arXiv:2003.10580, 2020.

[52] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding
by generative pre-training. OpenAI blog, 2018.

[53] A. Raghu, M. Raghu, S. Bengio, and O. Vinyals. Rapid learning or feature reuse? towards under-
standing the effectiveness of maml. In International Conference on Learning Representations,
2019.

[54] A. Raghu, M. Raghu, S. Kornblith, D. Duvenaud, and G. Hinton. Teaching with commentaries.
arXiv preprint arXiv:2011.03037, 2020.

[55] A. Rajeswaran, C. Finn, S. Kakade, and S. Levine. Meta-learning with implicit gradients.
Advances in neural information processing systems, 2019.

[56] R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, X. Chen, J. Canny, P. Abbeel, and Y. S. Song.
Evaluating protein transfer learning with tape. Advances in Neural Information Processing
Systems, 32:9689, 2019.

[57] M. Ren, W. Zeng, B. Yang, and R. Urtasun. Learning to reweight examples for robust deep
learning. In International Conference on Machine Learning, pages 4331–4340, 2018.

[58] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, and R. Hadsell.
Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960, 2018.

[59] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: an
astounding baseline for recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 806–813, 2014.

13

https://openreview.net/forum?id=n7wIfYPdVet
https://openreview.net/forum?id=n7wIfYPdVet

[60] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng. Meta-weight-net: Learning an
explicit mapping for sample weighting. In Advances in Neural Information Processing Systems,
pages 1919–1930, 2019.

[61] J. Snoek, H. Larochelle, and R. Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems, pages 2951–2959, 2012.

[62] F. P. Such, A. Rawal, J. Lehman, K. Stanley, and J. Clune. Generative teaching networks:
Accelerating neural architecture search by learning to generate synthetic training data. In
International Conference on Machine Learning, pages 9206–9216. PMLR, 2020.

[63] Y. Tian, D. Krishnan, and P. Isola. Contrastive multiview coding. arXiv preprint
arXiv:1906.05849, 2019.

[64] P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, and T. Schaeffter.
PTB-XL, a large publicly available electrocardiography dataset. Scientific data, 7(1):1–15,
2020.

[65] X. Wang and A. Gupta. Unsupervised learning of visual representations using videos. In
Proceedings of the IEEE international conference on computer vision, pages 2794–2802, 2015.

[66] Q. Wen, L. Sun, X. Song, J. Gao, X. Wang, and H. Xu. Time series data augmentation for deep
learning: A survey. arXiv preprint arXiv:2002.12478, 2020.

[67] Y. Wu, M. Ren, R. Liao, and R. Grosse. Understanding short-horizon bias in stochastic
meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

[68] Z. Wu, Y. Xiong, S. X. Yu, and D. Lin. Unsupervised feature learning via non-parametric
instance discrimination. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3733–3742, 2018.

[69] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ryGs6iA5Km.

[70] Y. Xue, N. Du, A. Mottram, M. Seneviratne, and A. M. Dai. Learning to select best forecast
tasks for clinical outcome prediction. Advances in Neural Information Processing Systems, 33,
2020.

[71] Q. Ye, B. Z. Li, S. Wang, B. Bolte, H. Ma, W. tau Yih, X. Ren, and M. Khabsa. On the influence
of masking policies in intermediate pre-training. arXiv preprint arXiv:1801.06146, 2021.

[72] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Gradient surgery for multi-task
learning. arXiv preprint arXiv:2001.06782, 2020.

[73] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer. S4l: Self-supervised semi-supervised learning.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 1476–
1485, 2019.

[74] X. Zhai, J. Puigcerver, A. Kolesnikov, P. Ruyssen, C. Riquelme, M. Lucic, J. Djolonga, A. S.
Pinto, M. Neumann, A. Dosovitskiy, et al. A large-scale study of representation learning with
the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

[75] L. M. Zintgraf, K. Shiarlis, V. Kurin, K. Hofmann, and S. Whiteson. Fast context adaptation via
meta-learning. arXiv preprint arXiv:1810.03642, 2018.

14

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km

