
A Related Work

The literature on CPD is vast. Here, we provide an overview of two very closely related topics to the current
work. First, CPD methods that are based on singular spectrum analysis and its extension for multivariate
time series. Second, the cumulative sum (CUSUM) approach for change point detection and sequential
hypothesis testing.

Singular Spectrum Analysis. Singular spectrum analysis (SSA) is a subspace-based method for time
series analysis that has a well developed theory and solves a wide array of problems, including CPD. It
overcomes many limitations of time series analysis, such as nonlinearity and nonstationarity of the signal.
The main steps of the original SSA method are: (1) embedding the time series into a Hankel matrix, (2)
singular value decomposition of the Hankel matrix, (3) grouping the singular triplets to separate the different
components of the time series. The key idea behind using SSA for CPD is that the subspace spanned
by the columns of the Hankel matrix constructed from a subsequence of the time series is approximately
equivalent to the one spanned by the later subsequences of the time series. A comprehensive introduction to
the theoretical basis of the SSA method for CPD can be found in [13]. An algorithm for CPD based on the
original SSA was proposed by Moskvina and Zhigljavsky [31]. The theoretical analysis of this algorithm
focused on the probability of error in the asymptotic setting where the signal and noise are assumed to be
separable. A modification to this algorithm was proposed by Mohammad and Nishida [30] to increase
robustness under very noisy conditions. Following this work, several applications of SSA for CPD has
emerged [18, 41].

Multivariate singular spectrum analysis (mSSA) is an extension of the original SSA for simultaneous
analysis of multiple time series that share a common structure [17]. The steps of mSSA are the same as
those of the original SSA except that the first step is done by stacking the Hankel matrices of the individual
time series. Despite the empirical success of mSSA in the tasks of forecasting and imputation, variants of
this algorithm for CPD are very limited and lack theoretical analysis [11]. A variant of the mSSA algorithm
was introduced by Agarwal et al. [1] for performing the tasks of forecasting and imputation. It utilizes the
Page matrix representation instead of the Hankel matrix in step (1). This variant is a lot simpler compared
to the original mSSA, has stronger theoretical guarantees, and as good or better empirical performance for
time series imputation and forecasting [2, 1]. In the present work, we develop an algorithm based on this
variant of mSSA to characterize and track changes in multivariate time series.

CUSUM Tests & Sequential Hypothesis Testing. Extending ideas from sequential hypothesis testing to
address the problem of CPD emerged in the 1940s. The classical setup was that of quickest detection
of an unknown point of change from one parametric probability distribution to another in a stream of
i.i.d. data. The aim is to detect the change-point with minimal delay under constraints on false detections.
This classical setting of the problem has been considered by Shewhart [38], Girshick & Rubin [12] and
Page [34].

The cumulative sum (CUSUM) test proposed by Page [34] is particularly ubiquitous in the literature of
CPD, due to its simplicity and strong theoretical guarantees. Performance of the CUSUM test is often
evaluated using the average running length (ARL), which captures a trade-off between the false alarm
rate and the delay in detecting a change point. While optimality results of the CUSUM approach for
the classical setting of CPD were established by Moustakides [32] in the 1980s, further variants of the
CUSUM test have been proposed and analyzed for various settings of the CPD problem. For example,
several recent works, including that of Lee et al. [24], propose CUSUM-based methods to tackle change
points in observations generated from well-known time series models, including ARMA-GARCH models.
While the work of Lee et al. [24] proves the consistency of the proposed estimator, it does not provide
finite-sample analysis of the ARL, and it makes restrictive parametric assumptions about the data generating
process. Another recent study by Jiao et al. [19] proposes a CUSUM-based algorithm for detecting changes
while assuming a low-dimensional latent structure of a stream of high-dimensional data. This work derives
finite-sample performance bounds in terms of the ARL. However, these results are based on the assumption
that the observations are i.i.d.. In the present work, we utilize a spatio-temporal model for multivariate
time series data, and we use the mSSA algorithm within the CUSUM framework for addressing the CPD
problem. We analyze the performance of our proposed algorithm in terms of the ARL under the assumed
spatio-temporal model.

14

B Proofs of Results in Section 4

B.1 Definitions and Helper Lemmas

Multivariate Gaussian random vectors. We introduce the definition and some known results on multi-
variate Gaussian vectors.
Definition B.1 (Multivariate Gaussian vectors [14]). A random vector x2Rn has a multivariate Gaussian
distribution if it can be expressed in the form

x=Dz+µ

for some matrix D 2 Rn⇥n and some real vector µ 2 Rn where z 2 Rn is a random vector whose
components are independent standard normal random variables.
Lemma B.1 ([14]). The components of a multivariate Gaussian vector are uncorrelated if and only if they
are independent.

Lemma B.2 ([28]). If A2Rn⇥n is a real symmetric matrix, X2Rn is a multivariate Gaussian with
mean vecotr µ2Rn and covariance matrix ⌃2Rn⇥n > 0 and B2Rn is a constant vector, then for
Q=XTAX+BTX and any x2R

gQ(x)=IE[exp(x Q)]= |I�2xA⌃|�1
2 exp

✓
�1
2

�
µT⌃�1µ

�
+
1

2
(µ+x⌃B)T (I�2xA⌃)�1⌃�1(µ+x⌃B)

◆
.

Moment generating functions (MGFs). We introduce a property of the logarithm of the MGF of a
random variable.
Lemma B.3 ([14]). Let gX(x)=IE[exp(xX)] be the moment generating function of a random variable
X2R defined on a set D⇢R such that 02D. Then ln(gX(x)) is convex in x2D and hence gX(x) is
continuous in the interior of D.

Sub-Gaussian and sub-exponential random variables. We introduce the definitions and some classic
properties of sub-Gaussian and sub-exponential random variables.
Definition B.2 (Sub-Gaussian random variable [44]). A random variable X2R is said to be sub-Gaussian
with variance proxy �2 (denoted as X ⇠ subG(�2)) if E[X] = 0 and its moment generating function
satisfies

gX(x)=IE[exp(xX)]exp
✓
�2x2

2

◆
8x2R

Definition B.3 (Sub-exponential random variable [44]). A random variable Y 2 R is said to be sub-
exponential with parameter ⌫ (denoted as Y ⇠subE(⌫)) if E[X]=0 and its moment generating function
satisfies

gX(x)=IE[exp(xX)]exp
✓
⌫2x2

2

◆
8|x| 1

⌫

Lemma B.4 ([43, 44]). Let X⇠subG(�2
s) and Z⇠N(0,�2

g). For i2 [N], let Yi⇠subE(⌫i). Then:

1. Z⇠subG(�2
g)

2. Z⇠subE(�g)

3. X2�E[X2]⇠subE(16�2
s)

4.
PN

i=1Yi⇠subE(
PN

i=1⌫i)

If Yi are independent:

5.
PN

i=1Yi⇠subE((
PN

i=1⌫
2
i)

1/2)

Concentration inequalities. We introduce some known concentration inequalities for scalar random
variables and random matrices.

15

Lemma B.5 ([43]). Let A 2 Rn⇥n be a real matrix whose entries are independent standard normal
random variables. Then for every b�0, with probability at least 1�2exp(�b2/2)

�max(A)
p
n+
p
m+b,

where �max(A) is the largest singular value of A.
Lemma B.6 ([22]). Let X1,X2,...,XN 2R be independent non-negative random variables with E[Xi]
1 8i2 [N], then for any ✏>0

P

NY

i=1

Xi�✏
!
 1

✏

Lemma B.7 (Bernstein inequality [44]). Let Yi⇠subE(⌫i). If Yi are independent and ⌫1= ···=⌫N =⌫
then

P

NX

i

Yi>✏

!
exp

✓
�1
2

✓
✏2

N⌫2
^ ✏

⌫

◆◆

16

B.2 Proof of Proposition 4.1

By direct application of Wedin’s sin(✓) Theorem (see [9, 45]), we can bound ✏ as follows. Recall that Zf

is the stacked Page matrix of f0(1:T0) and that rank(Zf)=k, then

✏ kEkop
�k(Zf)

, (18)

where E is the stacked Page matrix of the additive noise e(1 : T0). For simplicity and without loss of
generality5, let us assume that

p
min(N,T0)⇥T02Z+. By helper Lemma B.5 we have

kEkop�(
p
M̄+
p
L+2(N⇥T0)1/4)

�(2
p
M̄+2(N⇥T0)1/4)

=2�
h
(max(N,T0)⇥N)1/4+(N⇥T0)1/4

i
, (19)

with probability at least 1�2exp(�2
p
NT0), where the second inequality follows from the assumption

L=
p
min(N,T0)⇥T0M̄ , and the last equality follows from

M̄=N
T0
L

=N
T0p

min(N,T0)⇥T0

=

⇢p
N⇥T0 if N<T0

N if N�T0
=
p
max(N,T0)⇥N.

Next, and as a direct consequence of Assumption 4.3, we have

�k(Zf)�
K
p
N⇥T0p

R0⇥G0
. (20)

By plugging (19) and (20) in (18) we get

✏ 2�
p
R0⇥G0(max(N,T0)⇥N)1/4

K
p
N⇥T0

+
2�
p
R0⇥G0(N⇥T0)1/4

K
p
N⇥T0

=
2�
p
R0⇥G0

K

1p

min(T0,
p
N⇥T0)

+
1

(N⇥T0)1/4

!

=
2�
p
R0⇥G0

K
p
min(T0,

p
N⇥T0)

0

@1+

s
min(T0,

p
N⇥T0)p

N⇥T0

1

A

=

8
><

>:

4�
p
R0⇥G0

K(N⇥T0)
1
4

if N<T0

2�
p
R0⇥G0

K
p
T0

✓
1+
q

T0
N

◆
if N�T0

 4�
p
R0⇥G0

K(min(T0,N)⇥T0)1/4
=:q, (21)

with probability at least 1�2exp(�2
p
NT0).

5We can always adjust the choice of T0 to make this true.

17

B.3 Proof of Theorem 4.1

Recall from Proposition 4.1 the definition of the event E and that P(E)�1�2exp(�2
p
NT0). Then, by

definition of the ARL0, we can write
ARL0=IE[⌧̂�T0 |⌧=1]

=IE[⌧̂�T0 |⌧=1, E]P(E)+IE[⌧̂�T0 |⌧=1, Ec]P(Ec)

�IE[⌧̂�T0 |⌧=1, E]P(E)

�IE[⌧̂�T0 |⌧=1, E]
⇣
1�2exp

⇣
�2
p
NT0

⌘⌘
. (22)

For the rest of the proof we will find a lower bound on IE[⌧̂�T0 |⌧=1, E] using the following steps.

Step I. Moment generation function of the detection score. As a first step, we derive an analytical
expression of the moment generating function (MGF) of D(t) at each time step t>T0.

First, recall that ui for i2 [L] denote the left singular vectors of the base matrix ZX sorted as per associated
singular values in the decreasing order. Also recall that Û?=[uk+1,...,uL]2RL⇥(L�k). Recall that the
detection score is defined as:

D(t)=kÛT
?X(t�L+1:t)k2F�c

=kÛT
?f(t�L+1:t)+ÛT

?e(t�L+1:t))k2F�c,

where the second equality follows from (1). For ease of exposition, we introduce the notation B(t) :=
ÛT

?e(t�L+1:t) and

A(t):=

⇢
ÛT

?f0(t�L+1:t) for t<⌧,

ÛT
?f1(t�L+1:t) for t�⌧+L�1. (23)

Further, let An(t)2R(L�k) and Bn(t)2R(L�k) for n2 [N] denote the n-th column of A(t)2R(L�k)⇥N

and B(t)2R(L�k)⇥N , respectively. With that, we can rewrite the detection score as follows:
D(t)=kA(t)+B(t)k2F�c

=kA(t)k2F+kB(t)k2F+2 Trace
�
A(t)TB(t)

�
�c

=
X

n2[N]

An(t)
TAn(t)+

X

n2[N]

BT
n(t)Bn(t)+2

X

n2[N]

AT
n(t)Bn(t)�c.

To characterize the distribution of the detection score, we start with the random vector Bn(t). Note that
the components of this vector are uT

i en(t�L+1:t) for i=k+1,...,L and thus are the weighted sum of
independent Gaussian random variables. Hence, each component is distributed as N(0,kuik22�2). But
recall that kuik2=1 8i2 [L], and hence, the components are distributed as N(0,�2).

Further for each i 6=j, cov
�
uT
i en(t�L+1:t),uT

j en(t�L+1:t)
�
=0 since components of en(t�L+1:t)

are independent,E[en(·)]=0, anduT
i uj=0. According to definition B.1, the vectorBn(t) is a multivariate

Gaussian with mean vector µ=0 and covariance matrix ⌃=diag(�2) . Note that An is a deterministic
quantity for all n2 [N], as it is based on a fixed realization of the base matrix.

Now, consider the random variable Dn(t)=BT
n(t)Bn(t)+2AT

n(t)Bn(t). By helper Lemma B.2, the
MGF of Dn(t) is

gDn(t)(x)=
�
1�2x�2

��L�k
2 exp

✓
2x2�2

1�2x�2
kAn(t)k22

◆

Going back to the detection score, we can write it in terms of Dn(t) as:

D(t)=
X

n2[N]

kAn(t)k22+
X

n2[N]

Dn(t)�c.

By utilizing the independence of Dn(t) across n, which follows from the independence of the additive
noise en(·) across n, we derive the MGF of D(t) as:

gD(t)(x)=exp

0

@
X

n2[N]

kAn(t)k22x�cx

1

A
Y

n2[N]

gDn(t)(x)

18

=(1�2x�2)�
N(L�k)

2 exp

✓
x

1�2�2x
kA(t)k2F�cx

◆
, (24)

which is defined for x2(�1,1/2�2).

Step II. Expectation of the detection score. We can directly obtain the expectation of D(t) as the first
derivative of the MGF in (24) evaluated at x=0, which gives

IE[D(t)]=N(L�k)�2+kA(t)k2F�c. (25)

Step III. Detection score has negative expectation. Here we show that for any choice of c as indicated
in the theorem statement, IE[D(t) |E]<0 8t>T0.

To do so, let us begin by finding an upper bound on IE[D(t) |E] 8t>T0 by bounding maxt>T0kA(t)kF .
Recall that for t<⌧ , f0,n(t�L+1:t)2L0 8n. Let U0 be a matrix whose columns are orthonormal basis
of L0. Then for some matrix S(t)2Rk⇥N we can write the lagged vectors and the expression of A(t) in
(23) as:

A(t)=ÛT
?f0(t�L+1:t)

=ÛT
?U0S(t),

for all T0 < t < ⌧ . Notice that kS(t)kF = kf0(t�L+1 : t)kF . Now we give an upper bound on
maxt>T0kA(t)k2F

max
t>T0

kÛT
?U0S(t)k2F kÛT

?U0k2opmax
t>T0

kS(t)k2F

=kÛT
?U0k2opmax

t>T0

kf0(t�L+1:t)k2F

kÛT
?U0kopR0max

t>T0

�21(f0(t�L+1:t))

=kÛT
?U0kopR0�

max,0
1 ,

where the third line follows by the fact that kÛT
?U0kop1 and that each column in f0(t�L+1:t) is a

linear combination of R0 fundamental time series (Property 2.1), thus rank(f0(t�L+1:t))R0. In the
last line we use the notation from (6). Notice that kÛT

?U0kop=✏, so conditioned on E we have

max
t>T0

kÛT
?U0S(t)k2F qR0�

max,0
1 . (26)

Thus, by plugging (26) in the (25) we get

IE[D(t) |E]N(L�k)�2+qR0�
max,0
1 �c

So any choice of c as described in the theorem statement will make IE[D(t) |E]<0 8t>T0.

Step IV. Bound on the tail probability of the CUSUM statistic. Define the notation of the probability
P1(·):=P(· |⌧=1, E). Recall from Definition 3.1 and for any t>T0

y(t)= max
T0<jt

0

@
tX

i=j

D(i)

1

A.

Let t⇤=argmaxT0<jt

⇣Pt
i=jD(i)

⌘
, then

P1(y(t)�h)=P1

tX

i=t⇤

D(i)�h
!

=P1

0

@
LX

`=1

I(`)�1X

j=0

D(t⇤�1+j⇥L+`)�h

1

A

19

In the last equality, we grouped the detection scores into L independent groups, where I(`) for `2 [L]
denotes the number of observations in the `-th group. Specifically, I(`) is defined as follows:

I(`)=

⇢
b(t�t⇤)/Lc+1 if `(t�t⇤+1) (mod L)
b(t�t⇤)/Lc if `>(t�t⇤+1) (mod L).

Note that the event
Pt

i=t⇤D(i)>h implies at least one of the events
PI(`)�1

j=0 D(t⇤�1+j⇥L+`)�h/L
for some `2 [L]. That is,

P1(y(t)�h)P1

0

@
L[

`=1

0

@
I(`)�1X

j=0

D(t⇤�1+j⇥L+`)�h/L

1

A

1

A

LX

`=1

P1

0

@
I(`)�1X

j=0

D(t⇤�1+j⇥L+`)�h/L

1

A

=
LX

`=1

P1

0

@
I(`)�1Y

j=0

exp(xD(t⇤�1+j⇥L+`))�exp(xh/L)

1

A

for any x>0. If x is selected such that E[exp(xD(i))]=gD(t)(x)1 8i2 [t⇤,t], then by helper lemma
B.6 we can show that

P1(y(t)�h)L exp(�xh
L
). (27)

Step V. Find x⇤>0 such that gD(t)(x
⇤)1 for all t. Define the logarithm of the MGF

MD(t)(x)=ln(gD(t)(x)). (28)

Then the condition gD(t)(x) 1 is equivalent to MD(t)(x) 0. Let us highlight the following two
properties of MD(t)(·):

• It is convex in the interval x2(�1,1/2�2) by helper Lemma B.3.

• Its derivative satisfies d
dxMD(t)(0)=

d
dxgD(t)(0), which can be easily verified.

Note that when conditioned on E, d
dxgD(t)(0)=IE[D(t) |E]<0 for all t>T0. Thus, we can find x⇤>0

such that MD(t)(x
⇤)0 for all t>T0 by solving the following optimization problem:

min maxt>T0MD(t)(x)
s.t. x>0

x< 1
2�2 .

(29)

We solve this problem by finding a minima of the function maxtMD(t)(x) then showing that it is in the
interval (0,1/2�2). We begin by solving for the roots of

d

dx
max

t
MD(t)(x)=

N(L�k)�2(1�2�2x)+maxt>T0kA(t)k2F�c(1�2�2x)2

(1�2�2x)2
.

Note that the numerator is a polynomial in x and has a root at

x0=
2c�N(L�k)�2�

p
N2(L�k)2�4+4cmaxt>T0kA(t)k2F

4c�2
.

We now show that this x0 satisfies the constraints in (29). First, we show that x0>0, which requires

2c�N(L�k)�2>
r
N2(L�k)2�4+4cmax

t>T0

kA(t)k2F ,

20

or equivalently, by squaring both sides of the inequality,

N(L�k)�2+max
t>T0

kA(t)k2F�c<0

Recall that for our choice of c, IE[D(t)|E]=N(L�k)�2+maxtkA(t)k2F�c<0. The second constraint
requires

x0=
1

2�2
�N(L�k)

4c
�
p
N2(L�k)2�4+4cmaxt>T0kA(t)k2F

4c�2
<

1

2�2
,

which follows by the fact that the second and third terms on the left hand side are strictly positive. Now let
us replace maxt>T0kA(t)k2F with its bound derived in (26) and define

x⇤=
2c�N(L�k)�2�

p
N2(L�k)2�4+4cqR0maxt�21(f0(t�L+1:t))

4c�2
, (30)

such that x⇤x0. So it is sufficient to show that x⇤>0 for it to be a valid choice that satisfies gD(t)(x
⇤)1.

For this we require

2c�N(L�k)�2>
q
N2(L�k)2�4+4cqR0max

t
�21(f0(t�L+1:t)),

or equivalently, by squaring both sides of the inequality,

c>N(L�k)�2+qR0max
t

�21(f0(t�L+1:t)),

which is satisfied by the condition on the choice of c in the theorem statement.

Step VI. Bound on IE[⌧̂�T0 |⌧=1, E]. For any T 0, we have

IE[⌧̂�T0 |⌧=1, E]=
1X

t0=1

t0P1(⌧̂�T0=t0)

�T 0
1X

t0=dT 0e+1

P1(⌧̂�T0=t0)

=T 0

0

@1�
dT 0eX

t0=1

P1(⌧̂�T0=t0)

1

A. (31)

Further, we can bound
PdT 0e

t0=1P1(⌧̂�T0=t0) as follows:

dT 0eX

t0=1

P1(⌧̂�T0=t0)
dT 0eX

t0=1

P1(y(T0+t0)�h)

dT 0eX

t0=1

L exp

✓
�x

⇤h

L

◆

=dT 0eL exp

✓
�x

⇤h

L

◆

(T 0+1)L exp

✓
�x

⇤h

L

◆
, (32)

where the first inequality follows from the definition of ⌧̂ in (11) and the second follows from (27). By
plugging (32) in (31) we get

IE[⌧̂�T0 |⌧=1, E]�T 0
✓
1�(T 0+1)L exp

✓
�x

⇤h

L

◆◆
. (33)

Recall that this is valid for any T 0. By choosing T 0= 1
2Lexp(

x⇤h
L)�1 in (33) we get

IE[⌧̂�T0 |⌧=1,E]� 1

4L
exp

✓
x⇤h

L

◆
� 1

2
(34)

21

Finally, by plugging (34) back in (22) we get

ARL0�
1

4L
exp

✓
x⇤h

L

◆⇣
1�2exp

⇣
�2
p
NT0

⌘⌘
� 1

2

Note that ARL0�1, and by appropriate choice of constants C0,C1, the�1
2 term can be subsumed in the

following lower bound,

ARL0�C0 exp(C1h),

which completes the proof.

22

B.4 Proof of Theorem 4.2

Step I. Distribution of the centered detection score. As a first step in the proof we show that at each
t > T0+L, the detection score D(t), after centering, has a sub-exponential distribution and derive its
parameter.

First, recall that ui for i2 [L] denote the left singular vectors of the base matrix ZX sorted as per associated
singular values in the decreasing order. Also recall that Û?=[uk+1,...,uL]2RL⇥(L�k). Recall that the
detection score is defined as:

D(t)=kÛT
?X(t�L+1:t)k2F�c

=kÛT
?f(t�L+1:t)+ÛT

?e(t�L+1:t))k2F�c,

where the second equality follows from (1). As was done in Appendix B.3, we use the notation B(t) and
A(t) to simplify the exposition. Recall that B(t):=ÛT

?e(t�L+1:t) and

A(t):=

⇢
ÛT

?f0(t�L+1:t) for t<⌧,

ÛT
?f1(t�L+1:t) for t�⌧+L�1. (35)

And recall that An(t) 2 R(L�k) and Bn(t) 2 R(L�k) for n 2 [N] denote the n-th column of A(t) 2
R(L�k)⇥N and B(t)2R(L�k)⇥N , respectively. With that, we can rewrite the detection score as follows:

D(t)=kA(t)+B(t)k2F�c
=kA(t)k2F+kB(t)k2F+2 Trace

�
A(t)TB(t)

�
�c.

Recall the expectation of the detection score derived in (25). Now we consider the centered random variable

D0(t)=D(t)�IE[D(t)] (36)

=
�
kA(t)k2F+kB(t)k2F+2 Trace

�
A(t)TB(t)

�
�c
�
�
�
N(L�k)�2+kA(t)k2F�c

�

=kB(t)k2F+2 Trace
�
A(t)TB(t)

�
�N(L�k)�2

=
X

n2[N]

�
kBn(t)k22+2An(t)

TBn(t)�(L�k)�2
�
⌘
X

n2[N]

D0
n(t),

such that D0
n(t), 8n2 [N] is defined as

D0
n(t)=kBn(t)k22+2An(t)

TBn(t)�(L�k)�2.

We aim to show that D0(t) follows a sub-exponential distribution and derive its parameter. To do so, we
first show that each D0

n(t) is a sub-exponential random variable by the following steps:

• Let Bi
n(t) for i2 [L�k] denote the i-th component of Bn(t). Note that Bi

n(t)=uT
i+ken(t�L+

1:t) and recall from Step I in Appendix B.3 that Bi
n(t)⇠N(0,�2).

• Recall also from Step I in Appendix B.3 that the components of Bn(t) are uncorrelated, thus, by
helper Lemma B.1, they are independent.

• Then, by parts (1) and (3) of Lemma B.4, we have that Bi
n(t)

2��2⇠subE(16�2)

• Then, by part (5) of Lemma B.4, we have that the sum of these components is also sub-exponential.
That is, kBn(t)k22�(L�k)�2⇠subE(16�2

p
L�k).

• The random variable 2AT
n(t)Bn(t)⇠N(0,4kAn(t)k22�2).

• Then, by part (2) of Lemma B.4, we have 2AT
n(t)Bn(t)⇠subE(2kAn(t)k2�).

• By part (4) of Lemma B.4 we have D0
n(t)⇠subE(16�2

p
L�k+2kAn(t)k�).

Finally, we can apply part (4) of Lemma B.4 again to show that

D0(t)=
X

n2[N]

D0
n(t)⇠subE(16�2N

p
L�k+2�

X

n2[N]

kAn(t)k2).

23

Herein, we use ⌫t :=16�2N
p
L�k+2�

P
n2[N]kAn(t)k2, to denote the sub-exponential parameter of

D0(t).

Step II. Expectation of the detection score is bounded below. Here we want to show that for any choice
of c as indicated in the theorem statement, IE[D(t) |E]>0 8t�T0+L.

To do so, let us begin by finding a lower bound on IE[D(t) | E] 8t � T0 + L by bounding
mint�T0+LkA(t)kF . Recall that for t � T0 +L, f1,n(t�L+1 : t) 2 L1 8n. Let U1 be a matrix
whose columns are orthonormal basis of L1. Then for some matrix S(t)2Rk⇥N we can write the lagged
vectors and the expression of A(t) in (35) as

A(t)=ÛT
?f1(t�L+1:t)

=ÛT
?U1S(t),

for all t � T0 + L. Notice that kS(t)kF = kf1(t� L+ 1 : t)kF . Now we give a lower bound on
mint�T0+LkA(t)k2F

min
t�T0+L

kÛT
?U1S(t)k2F = min

t�T0+L

h
kU1S(t)k2F�kÛT

0U1S(t)k2F
i

� min
t�T0+L

h
kU1S(t)k2F�kÛT

0U1k2opkS(t)k2F
i

=(1�kÛT
0U1k2op) min

t�T0+L
kf1(t�L+1:t)k2F

�(1�kÛT
0U1kop) min

t�T0+L
�21(f1(t�L+1:t))

=(1�kÛT
0U1kop)�min,1

1 (37)

where the fourth line follows by the fact that kÛT
0U1kop1, and in the last line we use the analogous

notation to that in (6) for f1(·).

Let �̂ := kÛT
0U1kop, note that �̂ describes the similarity between the post-change subspace and the

estimated pre-change subspace. Recall that � denotes the similarity between the post-change subspace
and the true pre-change subspace, and that ✏ denotes the distance between the true pre-change subspace
and its estimation. Now we aim to show that �̂ �+✏. To do so let us define the projection matrices
as ⇧0 =U0UT

0 and ⇧? =U?UT
?, where the columns of U0 and U? are orthonormal basis of the

pre-change subspace L0 and its orthogonal complement L?, respectively. Using the projection matrices
we can write Û0=⇧0Û0+⇧?Û0. Then using the definition of �̂

�̂=k(⇧0Û0+⇧?Û0)
TU1kop

k(⇧0Û0)
TU1kop+k(⇧?Û0)

TU1kop
=kÛT

0U0U
T
0U1kop+kÛT

0U?U
T
?U1kop

kÛT
0U0kopkUT

0U1kop+kÛT
0U?kopkUT

?U1kop
�+✏, (38)

where the last inequality follows because kÛT
0U0kop and kUT

?U1kop1. Recall from Proposition 4.1
the definition of the event E={✏<q}. Using this and plugging (38) in (37) we get

min
t�T0+L

kÛT
?U1S(t)k2F �(1���q)�

min,1
1 . (39)

Thus, by plugging the bound in (39) in the expression of IE[D(t)] in (25), we get

IE[D(t) |E]>N(L�k)�2+(1���q)�min,1
1 �c. (40)

So any choice of c as described in the theorem statement will make IE[D(t) |E]>0 8t�T0+L. Let us
define this positive quantity as:

! :=N(L�k)�2+(1���q)�min,1
1 �c. (41)

Step III. Bound on the tail probability of the CUSUM statistic. Define the notation of the probability
PT1(·):=P(· |⌧=T1,E). Recall from Definition 3.1, and for any t>T0

y(t)= max
T0<jt

0

@
tX

i=j

D(i)

1

A.

24

Let us now bound maxt�T0+L⌫t as follows:

max
t�T0+L

⌫t= max
t�T0+L

16�2N
p
L�k+2�

X

n2[N]

kAn(t)k2

=16�2N
p
L�k+2� max

t�T0+L

X

n2[N]

kÛT
?f1,n(t�L+1:t)k2

16�2N
p
L�k+2�

p
LNR1�↵1�W 1

2�N
p
L(�+R1�↵1�W 1):=⌫⇤

Where R1,�↵1 and �W 1 are properties of the function f1(·) defined as in Properties 2.1 and 2.2. Notice
that ⌫⇤ is a valid parameter for each of the sub-exponential random variables D0(t) for t�T0+L. With
this we can write

PT1(y(t)h)PT1

0

@ max
T0+Ljt

0

@
tX

i=j

D(i)

1

Ah

1

A

PT1

tX

i=T0+L

D(i)h
!

=PT1

0

@
LX

`=1

I(`)�1X

j=0

D(T0+L�1+j⇥L+`)h

1

A.

In the last equality, we grouped the observations into L groups of independent detection scores, where I(`)
for `2 [L] denotes the number of observations in the `-th group. Let the shifted index t0 :=t�(T0+L) and
let tL :=bt0/Lc, then I(`) is defined as follows:

I(`)=

⇢
tL+1 if `(t0+1) (mod L)
tL if `>(t0+1) (mod L).

Note that the event
Pt

i=T0+LD(i)h implies at least one of the events
PI(`)�1

j=0 D(T0+L�1+j⇥L+
`)h/L for some `2 [L]. That is,

PT1(y(t)h)PT1

0

@
L[

`=1

0

@
I(`)�1X

j=0

D(T0+L�1+j⇥L+`)h/L

1

A

1

A

LX

`=1

PT1

0

@
I(`)�1X

j=0

�
D0(T0+L�1+j⇥L+`)+IE[D(T0+L�1+j⇥L+`) |E]

�
h/L

1

A

=
LX

`=1

PT1

0

@
I(`)�1X

j=0

D0(T0+L�1+j⇥L+`)h/L�
I(`)�1X

j=0

IE[D(T0+L�1+j⇥L+`) |E]

1

A

LX

`=1

PT1

0

@
I(`)�1X

j=0

D0(T0+L�1+j⇥L+`) h

L
�I(`)!

1

A

(t0+1) (mod L)X

`=1

exp

�1
2

((tL+1)!�h/L)2

(tL+1)⌫⇤2
^ ((tL+1)!�h/L)

⌫⇤

!!

+
LX

`=(t0+1) (mod L)+1

exp

✓
�1
2

✓
(tL!�h/L)2

tL⌫⇤2
^ tL!�h/L

⌫⇤

◆◆

L exp

�1
2

(tL!�h/L)2

(tL+1)⌫⇤2
^ tL!�h/L

⌫⇤

!!

25

where the second line follows from the union bound and (36), the fourth line from the fact the IE[D(t) |
E]>! 8t>T0+L, and the fifth line by direct application of Bernstein’s inequality (helper Lemma B.7).
Finally, for t0�L, i.e., t�T0+2L, we have tL�1 and we can write following inequality:

PT1(y(t)h)L exp

�1
2

(tL!�h/L)2

(tL+1)⌫⇤2
^ tL!�h/L

⌫⇤

!!

L exp

�1
4L

(t0!�2h)2

4t0⌫⇤2
^ t0!�2h

⌫⇤

!!
(42)

Step IV. Bound on the ARL1 For any time index T 0>0, and conditioned on E, we can express the ARL1

as

ARL1=ET1[⌧̂�T0 |⌧=T1, E]

=
1X

t0=1

t0PT1(⌧̂�T0=t0)

=
T 0+LX

t0=1

t0PT1(⌧̂�T0=t0)+
1X

t0=T 0+L+1

t0PT1(⌧̂�T0=t0). (43)

The first term on the right hand side of (43) can be bounded as

T 0+LX

t0=1

t0PT1(⌧̂�T0=t0)
T 0+LX

t0=1

(T 0+L)PT1(⌧̂�T0=t0)

T 0+L. (44)

The second term in the right hand side of (43) can be bounded as
1X

t0=T 0+L+1

t0PT1(⌧̂�T0=t0)=(T 0+L+1)PT1(⌧̂�T0=T 0+L+1)+(T 0+L+2)PT1(⌧̂�T0=T 0+L+2)+...

=(T 0+L)PT1(⌧̂�T0�T 0+L+1)+
1X

t0=T 0+L+1

PT1(⌧̂�T0�t0)

(T 0+L)PT1(y(T0+T 0+L)h)+
1X

t0=T 0+L

PT1(y(T0+t0)h) (45)

Where the last line follows from the definition of ⌧̂ which indicates thatPT1(⌧̂�T0>t0)PT1(y(T0+t0)
h). By plugging (44) and (45) back in (43) we get

ARL1T 0+L+(T 0+L)PT1(y(T0+T 0+L)h)+
1X

t0=T 0+L

PT1(y(T0+t0)h)

=(T 0+L)(1+PT1(y(T0+T 0+L))h))+
1X

t0=T 0+L

PT1(y(T0+t0)h). (46)

Step V. Choice of T 0. Since (46) is valid for any choice of T 0>L, let us pick a value of the time index as

T 0 :=

⇠
2h

!

✓
!+2⌫⇤

!+⌫⇤

◆⇡
+L�1. (47)

We can show that for any t0�T 0 i.e. t�T 0+T0+L,

(t0!�2h)2

4t⌫⇤2
=
t0!�2h
4t0⌫⇤

t0!�2h
⌫⇤

26

� T 0!�2h
4T 0⌫⇤

t0!�2h
⌫⇤

�
2h
!

⇣
!+2⌫⇤

!+⌫⇤

⌘
!�2h

42h
!

⇣
!+2⌫⇤

!+⌫⇤

⌘
⌫⇤

t0!�2h
⌫⇤

=
!

4!+8⌫⇤
t0!�2h

⌫⇤
.

Notice that !
4!+8⌫⇤ <1, thus !

4!+8⌫⇤
t!�2h
⌫⇤ t0!�h

⌫⇤ . Recall that t0 := t�(T0+L) and thus, using both
inequalities, and the Bernstein bound in (42) we have:

PT1(y(t)h)L exp

✓
�1
4L

✓
((t�(T0+L))!�2h)2

4t0⌫⇤2
^ (t�(T0+L))!�2h

⌫⇤

◆◆

L exp

✓
�1
16L

✓
!

!+2⌫⇤
(t�(T0+L))!�2h

⌫⇤

◆◆
. (48)

Using this and the choice of T 0 in (47) we can give bounds on each term in (46). For the first and second
term, we have:

T 0 2h

!

✓
!+2⌫⇤

!+⌫⇤

◆
+L (49)

PT1(y(T
0+T0+L)h)L exp

✓
�1
16L

✓
!

!+2⌫⇤
T 0!�2h

⌫⇤

◆◆

L exp

0

@ �1
16L

0

@ !

!+2⌫⇤

2h
!

⇣
!+2⌫⇤

!+⌫⇤

⌘
!�2h

⌫⇤

1

A

1

A

=L exp

✓
�2!h

16L(!+2⌫⇤)(!+⌫⇤)

◆

L exp

✓
�2!h

16L(!+2⌫⇤)2

◆
(50)

For the third term, we have:
1X

t0=T 0+L

PT1(y(T0+t0)h)L
1X

t0=T 0+L

exp

✓
�1
16L

✓
!

!+2⌫⇤
(T0+t0�T0�L)!�2h

⌫⇤

◆◆

=L
1X

t0=T 0+L

exp

✓
�1
16L

✓
!

!+2⌫⇤
(t0�L)!�2h

⌫⇤

◆◆

=L
1X

t0=T 0+L

exp

✓
�1
16L

✓
!

!+2⌫⇤
(t0�L�T 0)!+T 0!�2h

⌫⇤

◆◆

L
1X

t0=T 0+L

exp

✓
�2!h

16L(!+2⌫⇤)2
+
�!2(t�L�T 0)

16L⌫⇤(!+2⌫⇤)

◆

=L exp

✓
�2!h

16L(!+2⌫⇤)2

◆ 1X

t0=T 0+L

exp

✓
�!2

16L⌫⇤(!+2⌫⇤)

◆t0�L�T 0

=L exp

✓
�2!h

16L(!+2⌫⇤)2

◆ 1X

t00=0

exp

✓
�!2

16L⌫⇤(!+2⌫⇤)

◆t00

=L exp

✓
�2!h

16L(!+2⌫⇤)2

◆
1

1�exp
⇣

�!2

16L⌫⇤(!+2⌫⇤)

⌘

27

L exp

⇣
�2!h

16L(!+2⌫⇤)2

⌘

1�exp
⇣

�!2

2⌫⇤(!+16L⌫⇤)

⌘ (51)

Bringing all these terms together, we have the following bound on the ARL1,

ARL1
✓
2h
!

✓
!+2⌫⇤

!+⌫⇤

◆
+2L

◆✓
1+L exp

✓
�2!h

16L(!+2⌫⇤)2

◆◆
+

L exp
⇣

�2!h

16L(!+2⌫⇤)2

⌘

1�exp
⇣

�!2

16L⌫⇤(!+2⌫⇤)

⌘ (52)

2L+
4hL
!

✓
!+2⌫⇤

!+⌫⇤

◆
+L exp

✓
�!h

16L(!+2⌫⇤)2

◆0

@2L+
1

1�exp
⇣

�!2

16L⌫⇤(!+2⌫⇤)

⌘

1

A (53)

C0+C1h+C2exp(�C3h) (54)

Where C0, C1, C2, and C3 are constants that depend only on �,c,N,L,R1,�↵1,�W 1.

28

B.5 Proof of Theorem 4.3

Proof. For a feasible choice of c that satisfy the conditions (14) and (15), we need to select c in the range

N(L�k)�2+qR0�
max,0
1 <c<N(L�k)�2+(1���q)�min,1

1 . (55)

For this range to be non-empty it is required that

qR0�
max,0
1 <(1���q)�min,1

1 (56)

or equivalently

�<1�
✓
1+R0

�max,0
1

�min,1
1

◆
q

Which completes the proof.

29

C Algorithms Pseudocode

In this section, we provide the pseudocode for the two variants of our proposed algorithm.

Algorithm 1: mSSA Change Point Detection Algorithm

Parameters: T0, L, k̂, c, h
Data: Multivariate time series X(t)2RN

Result: Estimated change point ⌧̂
Initialize: y(T0)=0
Use the segment X(1:T0) to construct the stacked Page matrix ZX as in (4);
Compute the SVD of ZX to get the left singular vectors ui 8i2 [L];
Construct the matrix Û?=[uk̂+1,...,uL];
for t T0+1, T0+2, T0+3..., do

Construct the matrix X(t�L+1:t) as in (5);
Compute D(t) as in (10);
Compute y(t) as in (8);
if y(t)�h then

⌧̂=t;
Break;

end
end

Algorithm 2: mSSA-MW Change Point Detection Algorithm

Parameters: T0, L, k̂, c, h
Data: Multivariate time series X(t)2RN

Result: Estimated change point ⌧̂
Initialize: y(T0)=0
TL T0+L;
for t TL, TL+1, TL+2,..., do

Use the segment X(t�TL+1:t�L) to construct the stacked Page matrix ZX as in (4);
Compute the SVD of ZX to get the left singular vectors ui 8i2 [L];
Construct the matrix Û?=[uk̂+1,...,uL];
Construct the matrix X(t�L+1:t) as in (5);
Compute D(t) as in (10);
Compute y(t) as in (8);
if y(t)�h then

⌧̂=t;
Break;

end
end

30

D Experiment Details

D.1 Parameter Configuration

In this section, we give details of the implementation and parameter configurations used for each of the algorithms in
the comparative experiments in Sections 5 and 6. We provide the following statistics about each dataset to be utilized
by all algorithms (if applicable): (1) total number of change points in the dataset TC (2) number of time series in the
dataset TS (3) average interval length between two consecutive change points in the entire dataset I. Note that in
real-world applications, such knowledge can be obtained from historical data or knowledge of the nature of the change
points.

mSSA and mSSA-MW.

• T0 : we set T0=0.6⇥I.

• L : we select L=bL⇥
p
T0c where we consider L=1 (default),0.7, and 0.3.

• k̂: We follow the thresholding rule

k̂=min
�
i
��

iX

j=1

�2
j(ZX)�k

LX

j=1

�2
j(ZX)

, (57)

where �j(ZX) is the jth largest singular value of ZX, and k < 1 is a constant. We consider k =
0.95 (default), and 0.5, and we also consider constant low orders of k̂=3 and 5.

• c : the choice of the parameter c must be done such that the detection score satisfies Property 3.1. Concretely,
it requires selecting c > 0 such that N(L� k)�2 + kA(t)k2F � c < 0 for all t < ⌧ where A(t) :=
ÛT

?f0(t�L+1: t). To do so, we first estimate �2 (as �̂2) from the noise component of the base matrix
obtained in the thresholding step of mSSA. Secondly, we estimate the maximum distance maxt<⌧kA(t)k2F
(as kÂ(t)k2F,max) by cross validation. That is, we use 90% of the L-lagged vectors in the base matrix
to estimate the pre-change subspace and we compute the detection score for the remaining 10% of the
L-lagged vectors and take the maximum. Finally, we use our estimation of the time series order k̂ and set c
to be slightly larger than N(L�k̂)�̂2+kÂ(t)k2F,max.

• h : the choice of the detection threshold is also based on the estimation of the maximum distance
maxt<⌧kA(t)k2F . We take h=hkÂ(t)k2F,max where we consider h=1,5 (default), and 10.

BinSeg. We use the implementation in the R package changepoint [21] and consider the following parameter variations
in the grid search:

• Function: cpt.mean (default), cpt.var, cpt.meanvar.

• Penalty: None, SIC, MBIC (default), AIC, Hannan-Quinn, Asymptotic (with p-value = 0.05).

• Test Statistic: Normal (default), CUSUM, CSS.

• Maximum number of CP: TC , TC/TS (defulat).

Microsoft SSA. We use the implementation in the Python module NimbusML which provides access to the ML.NET
framework [29]. We consider the following parameter variations in the grid search:

• Training window size: 0.6⇥I.

• Seasonal window size: b
p
0.6⇥Ic (default), b0.7

p
0.6⇥Ic, b0.3

p
0.6⇥Ic.

• Change history length: 10 (default), 30 , 50

• Error function: SignedDifference (default), AbsoluteDifference, SignedProportion, AbsoluteProportion,
SquaredDifference.

• Martingale: Power (default), Mixture

• ✏ (for power martingale): 0.1 (default), 0.5

• Confidence: 95.0

KL-CPD. We use the Python implementation provided by the authors of the paper [7]. We follow the authors’
recommendation for setting the parameters and consider the following parameter variations in the grid search:

• Real MMD loss coefficient: 0.001, 0.1 (default),1 ,10

• Reconstruction loss coefficient: 0.001 (default), 0.1, 1, 10

31

• Window size: 25

BOCPDMS. We use the Python implementation provided by the authors of the paper [23] and consider the following
parameter variations in the grid search:

• intensity: 50, 100 (default), 200

• prior_on_a: 0.01, 1.0 (default), 100

• Prior_on_b: 0.01, 1.0(default), 100

D.2 Benchmark Datasets

In this section we give details of the benchmark datasets used in the experiments in Section 5:

Beedance.6 The trajectory of bee movements while it performs what is known is the waggle dance. The three
dimensions of the time series represent the pixel locations in x and y axes, and the change in angle extracted from
a video clip of the moving bee. The change points represent switching between three states in the bee dance: left
turn, right turn, and waggle. The dataset is generated by [33] and it has been considered in other CPD work such as
[7, 37, 23].

HASC.7 Human activity data collected using a portable three-axis accelerometer. The three dimensions of the time
series represent the acceleration recorded by the device along the x, y, and z axes. The change points represent
switching between six activities: staying, walking, jogging, skipping, climbing up the stairs, and climbing down the
stairs. This is a sample dataset provided by the 2011 Human Activity Sensing Consortium challenge. This dataset has
been considered in other CPD work such as [7, 27, 3].

Occupancy.8 This dataset is used for the task of detecting the occupancy of office space using various measurements of
the room condition. The four dimensions of the time series represent the temperature, relative humidity, light intensity,
and CO2 levels in the room. The change points represent changes in the occupancy level in the room. The dataset is
generated by [6] and it has been considered in other CPD work such as [42].

Yahoo.9 This is the A4Benchmark dataset provided as part of Yahoo’s S5 datasets for anomaly detection. It contains
univariate synthetic time series with artificially introduced change points. This dataset is commonly used as a benchmark
in time series anomaly detection [15].

D.3 Synthetic Data Generation

To generate a time series X(t)2RN with t2 [T], we start by generating RN fundamental time series Wr(t),
r2 [R]. Each fundamental time series is a mixture of H harmonics and polynomial trend component and is generated
as

Wr(t)=t↵r+
HX

i=1

�r,isin

✓
!r,it
T

◆
+Cr, (58)

with parameters ↵r, �r,i, !r,i, and Cr for r 2 [R] ans i2 [H]. Each latent time series fn(t) for n2 [N] is then
constructed as a linear combination of the fundamental time series

fn(t)=Vn
TW(t), (59)

where W(t) :=[W1(t),...,WR(t)], and Vn2RR is a random vector whose components are selected form U(0,1).
Finally, the observations Xn(t) are generated by adding i.i.d. Gaussian noise with zero mean and variance �2. Change
points are artificially introduced into the data by changing one or more of the parameters in the construction of the
fundamental time series. Using this data generation process, we construct the following four datasets:

Jumping mean. We generate 20 time series for this dataset. Each time series is univariate (N=1, R=1) with length
T=5000. A change point is inserted every 1000 time steps by changing the value of the parameter C1. The rest of
the parameters are kept constant across the time series. The time series is generated as the sum of three harmonics
(H=3) and no trend component (↵1=0). The noise is distributed as e1(t)⇠N(0,0.01). The rest of the parameters
are selected randomly from the following ranges:

• !1,i⇠U(5,105)

• �1,i⇠U(0,7)

6Obtained from: https://www.cc.gatech.edu/~borg/ijcv_psslds/
7Obtained from: http://hasc.jp/hc2011/download.html
8Obtained from: https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+/
9Obtained from: https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

32

https://www.cc.gatech.edu/~borg/ijcv_psslds/
http://hasc.jp/hc2011/download.html
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

• C1⇠U(0,10) (varying parameter)

Scaling signal energy. We generate 20 time series for this dataset. Each time series in this dataset is univariate
(N=1, R=1) with length T =5000. A change point is inserted every 1000 time steps by changing the values of
the parameters �1,i for i2 [H]. The rest of the parameters are kept constant across the time series. The time series
is generated as the sum of three harmonics (H=3) and no trend component (↵1 =0). The noise is distributed as
e1(t)⇠N(0,0.01). The rest of the parameters are selected randomly from the following ranges:

• !1,i⇠U(5,105)

• �1,i⇠U(0,u) where u alternates between 5 and 7 after each change point (varying parameter)
• C1=0

Changing frequency. We generate 20 time series for this dataset. Each time series is univariate (N=1, R=1) with
length T=5000. A change point is inserted every 1000 time steps by changing the values of the parameters !1,i for
i2 [H]. The rest of the parameters are kept constant across the time series. The time series is generated as the sum of
three harmonics (H=3) and no trend component (↵1=0). The noise is distributed as e1(t)⇠N(0,0.01). The rest of
the parameters are selected randomly from the following ranges:

• !1,i⇠U(5,u) where u alternates between 35 and 75 after each change point (varying parameter)
• �1,i⇠U(0,7)

• C1=0

Mixed changes. We generate 5 time series for this dataset. Each time series in this dataset is multivariate (N=100,
R= 10) with length T = 1000. A change point is inserted every 200 time steps by changing the values for the
parameters !r,i and �r,i for r 2 [R], i2 [H]. The parameters Cr and ↵r are kept constant across the time series.
The time seires is generated as the sum of three harmonics (H=3) and linear trend component (↵r=1 8r2 [10]).
The noise is distributed as en(t)⇠N(0,49) 8n2 [100]. The rest of the parameters are selected randomly from the
following ranges:

• !1,i⇠U(5,u) where u alternate between 35 and 75 after each change point (varying parameter)
• �1,i⇠U(0,7) (varying parameter)
• Cr=0

D.4 Multivariate Data Helps: Experiments Details

In this experiments, we start by constructing ten fundamental time series, as described in (58). The time series are
generated as the sum of three harmonics (H=3) and no trend component (↵r=0 8r2 [10]). The noise is distributed
as en(t)⇠N(0,0.5) 8n2 [N]. The rest of the parameters are selected randomly from the following ranges:

• !1,i⇠U(5,u)where u is 3005 before the change point and 4005 after the change point (changing parameter)
• �1,i⇠U(0,1) (changing parameter)
• Cr=0

We then construct each of the 25 latent time series as described in (59). In each of the 10 trial, the latent time series
remain the same and only the noise is re-sampled in each trial.

The parameters used in this algorithm are T0=800, L=
p
N⇥T0, and k̂ is selected according the rule in (57) with

k=0.95. The thresholds h are chosen between the 40th and 100th quantiles of the CUSUM score in the no change
run.

D.5 CPD in Multivariate Time Series with Univariate Methods

Recall that the BinSeg and Microsoft SSA methods only support univariate time series. In Section 5, we report their
performance on multivariate datasets by reducing the data to univariate time series through taking the L2 norm of the
the multidimensional observations. Here, we explore two other approaches for detecting changes in multivariate time
series using univariate methods.

• Majority vote: in this approach, we run the CPD algorithm on each individual time series (i.e., dimensions).
Then, we take a majority vote (among the different dimensions) to decide whether a point is designated as
a change point or not. More precisely, a true detection is counted if the algorithm detects a change point,
within a margin of ⌘=10 points from the labeled change point, in half or more of the individual time series.

33

• At least one: in this approach, we again run the CPD algorithm on each individual time series, but we
consider all change points triggered by the algorithm across all time series. More precisely, a true detection
is counted if the algorithm detects a change point within a margin of ⌘=10 points from the labeled change
point in any of the individual time series, without double counting.

In Table 4, we compare the performance of the BinSeg and Microsoft SSA algorithms using these two detection
approaches to the norm approach presented in Section 5. We find that taking the norm is better than the majority vote
approach, while the at least one approach is slightly better. We note that our proposed mSSA method outperforms the
best of the three.

Table 4: Mean of F1-scores for different approaches of applying the BinSeg and Microsoft SSA algorithms
to multivariate time series.

Real-world Datasets

Beedance HASC Occupancy
Default Best Default Best Default Best

BinSeg (norm) 0.597 0.097 0.304 0.161 0.308 0.308
BinSeg (majority vote) 0.371 0.096 0.192 0.023 0.143 0.050
BinSeg (at least one) 0.629 0.109 0.295 0.151 0.485 0.340

Microsoft SSA (norm) 0.583 0.279 0.265 0.049 0.462 0.375
Microsoft SSA (majority vote) 0.462 0.095 0.179 0.151 0.148 0.075
Microsoft SSA (at least one) 0.619 0.338 0.280 0.043 0.286 0.113

34

	Introduction
	Problem Setup
	Time Series Model
	Changes in the Spatio-Temporal Factor Model

	Algorithm
	CUSUM Procedure
	Algorithm Description
	Choice of Parameters

	Theoretical Analysis
	Evaluation on Benchmark Datasets
	Evaluation on Synthetic Data
	Limitations
	Related Work
	Proofs of Results in Section 4
	Definitions and Helper Lemmas
	Proof of Proposition 4.1
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Algorithms Pseudocode
	Experiment Details
	Parameter Configuration
	Benchmark Datasets
	Synthetic Data Generation
	 Multivariate Data Helps: Experiments Details
	CPD in Multivariate Time Series with Univariate Methods

