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In this supplementary material, we first present qualitative and quantitative comparisons with addi-
tional baseline approaches in Section A. We then show the experiment results on the more complex
real world datasets in Section B and additional dataset details in Section C. More details of our
proposed approach and baselines are shown in Section D and Section E, respectively. We provide the
model architecture details of various approaches and their implementation details in Section F and
Section G, respectively. Finally, we show the psuedocode for our algorithm in Section H.

A Additional Results

Comparison with more baseline approaches. We provide more results of additional baselines in
Table 1. We use the same evaluation metrics as in Table 1 of the main paper. The details of baselines
are described in Section E of this supplement. As shown in Table 1 of this supplement, our approach
achieves the highest accuracy among all the methods for both image generation and image editing.
In Table 1, as noted in the main paper, directly encoding a relational scene description such as “a
large blue rubber cube to the left of a small red metal cube” utilizing CLIP to train an EBM (“EBM
(CLIP) (Full Sentence)”) performs much worse than the proposed method “Ours (CLIP)” and “Ours
(Learned Embed)”.

Additional evaluation metric. In addition to comparing the binary classification accuracy of
different methods as we used in Table 1 of the main paper, we provide an additional evaluation
metric for image generation. We investigate the performance of utilizing the graph-based relational
similarity metric proposed by [2] for image generation. A graph-based relational similarity score is
used to test the correct placement of objects, without requiring the model to draw the objects exactly
in the same locations as the ground truth. Such a metric can construct scene graphs for both the
generated and ground truth images without telling the model to precisely draw objects at the exact
locations. However, it heavily relies on the pre-trained object detector and localizer. The pre-trained
object detector or localizer could generate false predictions on both real images and generated images,
especially when the generated images are out of the training distribution.

As the evaluation metric used in [2] focuses more on the local matching while our binary classification
focuses on the global matching, in this supplement, we further report the results for two baselines
and our approach using the evaluation metric proposed by [2]. The image generation results on
the CLEVR dataset are listed in Table 2. The conclusion obtained by using this new metric is
coherent with using our binary classification metric (Table 1 of the main paper): our proposed method
outperforms the baselines.

∗indicates equal contribution
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Table 1: Evaluation of the accuracy of object relations in the generated images or edited images on the CLEVR
and iGibson datasets. We compare our method with baselines on three test sets, i.e. 1R, 2R, and 3R. In Table
1 of the main paper, we had two baselines, i.e. StyleGAN2 and StyleGAN2 (CLIP). Here we add another 3
baselines, i.e. Scene Graph GAN [3], EBM (CLIP) (Full Sentence), and StyleGAN2 (CLIP) (Multi-Relations),
for comparison.

Dataset Model Image Generation (%)
1R Acc 2R Acc 3R Acc

CLEVR

StyleGAN2 10.68 2.46 0.54
StyleGAN2 (CLIP) 65.98 9.56 1.78

StyleGAN2 (CLIP) (Multi-Relations) 66.62 9.60 1.68
Scene Graph GAN 83.72 14.18 4.48

EBM (CLIP) (Full Sentence) 16.24 1.46 0.11
Ours (CLIP) 94.79 48.42 18.00

Ours (Learned Embed) 97.79 69.55 37.60

iGibson

StyleGAN2 12.46 2.24 0.60
StyleGAN2 (CLIP) 49.20 17.06 5.10

StyleGAN2 (CLIP) (Multi-Relations) 36.94 13.42 6.86
Scene Graph GAN 54.64 0.02 0.00

EBM (CLIP) (Full Sentence) 36.92 12.72 4.63
Ours (CLIP) 74.02 43.04 19.59

Ours (Learned Embed) 78.27 45.03 19.39

Table 2: Comparison of different methods on the CLEVR dataset. The accuracy of graph-based relational
similarity proposed by [2] is reported.

Model Relational Similarity (%)
1R Acc 2R Acc 3R Acc

StyleGAN2 22.37 19.75 17.13
StyleGAN2 (CLIP) 37.50 28.62 28.75
Ours (Learned Emb) 50.77 36.87 42.50

Additional qualitative results. We show more qualitative results of image generation in Figure 1
and Figure 2. Our approach can generate images with correct relations, and can even generalize to
relational scene descriptions that are out of the training distribution.

B Image Generation Results on Real World Datasets

In terms of image generation on real scenes, we train and evaluate our model on two real-world
datasets, the Blocks dataset [7] and the Visual Genome dataset [6].

The Blocks dataset is from [7] and we train our model using the object relations, e.g. “above” and
“below”. We show the images generated conditioned on two relational descriptions and three relational
descriptions in Figure 3.

For the Visual Genome dataset [6], we train our models on a subset that consists of common objects
and relations for computational efficiency. As shown in Figure 4, we find that the CLIP text encoder
performs better, as it has seen large-scale image-text pairs that cover a wide range of relations,
attributes and objects.

Our approach is able to generate images (objects and their relations) matching the given language
descriptions on the real-world Blocks dataset and the Visual Genome dataset. The quality of generated
images on the Blocks dataset is great. However, the quality of results on the Visual Genome dataset
is a bit worse. We believe that the generation quality could be further improved.
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Figure 1: Image generation results on the CLEVR dataset. Image are generated based on 2 relational descriptions.
Note that the models are trained on a single relational description and the two composed scene relations are
outside the training distribution. Our approaches “Ours (CLIP)” and “Ours (Learned Embed)” are able to
generate images accurately based on the input scene descriptions.

C Datasets Details

CLEVR. On the CLEVR dataset, each image contains 1 ∼ 5 objects and each object consists of
five different attributes, including color, shape, material, size, and its relation to another object in the
same image. There are 9 types of colors, 4 types of shapes, 3 types of materials, 3 types of sizes, and
6 types of relations. The objects are randomly placed in the scenes.

iGibson. On the iGibson dataset, each image contains 1 ∼ 3 objects and each object consists of the
same five different types of attributes as the CLEVR dataset. There are 6 types of colors, 5 types
of shapes, 4 types of materials, 2 types of sizes, and 4 types of relations. The objects are randomly
placed in the scenes.

Blocks. On the real-world Blocks dataset, each image contains 1 ∼ 4 cubes and each cube only
differs in color. Objects in the images are placed vertically in the form of towers.

There are 50,000, 30,000 and 3,000 training images on the CLEVR, iGibson and Blocks datasets,
respectively, and 5,000 testing images on both the CLEVR and iGibson datasets. We test the zero-shot
generalization across datasets using the blender data. There are three types of objects, including
trucks, toys, and boots. We generated 5,000 testing images with each image contains 1 ∼ 3 objects
for the Blocks dataset. There is no overlap between the training and testing data on each dataset.

D Details of Our Approaches

Ours (CLIP). In our EBM setting, we use the pre-trained CLIP model to encode objects and a
learned embedding layer to encode their relations. Taking the scene description of “a large blue
rubber cube to the left of a small red metal cube” as an example, we use the pre-trained CLIP model
to encode the two objects seperately, i.e. o1 for “a large blue rubber cube” and o2 for “a small red
metal cube”. We then use an embedding layer to encode their relation, i.e. r′ for “to the left”. The
features of the first and second objects and their relations are concatenated and used as the feature of
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Figure 2: Image generation results on the iGibson dataset. Image are generated based on 2 relational descriptions.
Note that the models are trained on a single relational description and the two composed scene relations are
outside the training distribution. Our approaches “Ours (CLIP)” and “Ours (Learned Embed)” are able to
generate images accurately based on the input scene descriptions.

the relational scene description which is further send to the relational energy functions Eθ for image
generation or image editting.

Ours (Learned Embed). Different from “Ours (CLIP)”, “Ours (Learned Embed)” uses the learned
embedding layers for both objects and their relations. To encode an object, we use 6 different
embedding layers to learn its color, size, material, shape, relation and position, seperately. The
embedded features of objects and their relations are concatenated and used as the feature of the
relational scene description which is further sent to the relational energy functions Eθ for image
generation or image editting.

E Details of Baselines

StyleGAN2. In Section 4.2 of the main paper, we used the unconditional StyleGAN2 [4] as one of
the baselines. We train the unconditional StyleGAN2 and the ResNet-18 classifier separately on each
dataset. For training, we use the default setting provided by [4]. To generate an image with respect to
a particular relation, we optimize the underlying latent code to minimize the loss from the classifier.

StyleGAN2 (CLIP). StyleGAN2 (CLIP) is the same as StyleGAN2 except that StyleGAN2 (CLIP)
uses the text encoder of the CLIP model [8] to encode relational scene descriptions. We follow the
same configuration as the StyleGAN2 to train StyleGAN2 (CLIP).

StyleGAN2 (CLIP) (Multi-Relations). StyleGAN2 (CLIP) (Multi-Relations) has the same model
architecture as StyleGAN2 (CLIP) but is trained with more scene relations. In StyleGAN2 (CLIP),
we only use a single scene relation during training while StyleGAN2 (CLIP) (Multi-Relations) uses
1 ∼ 3 scene relations.

Scene Graph GAN. We apply the models from [3] and utilize the extracted scene graphs as input
to train a conditional StyleGAN2. As there is no object bounding boxes available in our setting, we
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A green cube below a red cube
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Figure 3: Image generation results on the Blocks dataset. Image are generated based on 2 or 3 relational
descriptions. Note that the models are trained on a single relational description and the composed scene relations
(2 or 3 relational descriptions) are outside the training distribution. Our approach “Ours (Learned Embed)” is
able to generate images accurately based on the input scene descriptions.
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Figure 4: Image generation results on the Visual Genome dataset. “EBM (CLIP) (Full Sentence)” performs
better than our approach “Ours (Learned Emb)” on generating more complex natural images because pretrained
CLIP text encoder has seen large-scale image-text pairs that cover a wide range of relations and objects.

set the input bounding box to be the whole image frame and our input scene graphs only consist of
two objects and their relation.

EBM (CLIP) (Full Sentence). In this setting, we use the text encoder of CLIP to encode every
word in the relational scene descriptions. Such a holistic encoder has a bad performance as shown in
Table 1, Figure 1, Figure 2 and Figure 3.

F Model Architecture Details

We follow the implementation of EBMs from [1] in our experiments. Similar to [1], we use the
multi-scale model architecture to compute energies as shown in Table 3. Each model generates an
energy value and the final energy Eθ(x) is the sum of energies from all the models listed in Table 3.
Given relational scene descriptions, we generate or edit images based on the final energy.
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Table 3: We use the multi-scale model architecture to compute energies as in [1].

3x3 Conv2d 128

CondResBlock 128

CondResBlock Down 128

CondResBlock 128

CondResBlock Down 256

Self-Attention 256

CondResBlock 256

CondResBlock Down 256

CondResBlock 512

CondResBlock Down 512

Global Mean Pooling

Dense→ 1

3x3 Conv2d 128

CondResBlock 128

CondResBlock Down 128

CondResBlock 128

CondResBlock Down 128

Self-Attention 256

CondResBlock 256

CondResBlock Down 256

Global Mean Pooling

Dense→ 1

3x3 Conv2d 128

CondResBlock 128

CondResBlock Down 128

Self-Attention 128

CondResBlock 128

CondResBlock Down 128

Global Mean Pooling

Dense→ 1

G Implementation Details
StyleGAN2. It takes 2 days to train the StyleGAN2 model and 2 hours to train the classifier using a
single Tesla 32GB GPU on each dataset. We use the Adam optimizer [5] with β1 = 0, β2 = 0.99,
and ϵ = 10−8 to train the model.

StyleGAN2 (CLIP). For StyleGAN2 (CLIP) and StyleGAN2 (CLIP) (Multi-Relations), it takes
around 2 days to train each of them on each dataset using a single Tesla 32GB GPU. We use the
Adam optimizer [5] with β1 = 0, β2 = 0.99, and ϵ = 10−8 to train them.

Scene Graph GAN. We train the model on each dataset with the default training configuration
provided in the codebase from [3] for 2 days using a single Tesla 32GB GPU. We use the Adam
optimizer [5] with β1 = 0.9, β2 = 0.999, and ϵ = 10−4 to train the model.

EBMs (i.e., Ours (CLIP), Ours (Learned Embed), EBM (CLIP) (Full Sentence)). In our
experiments, we use the same setting to train models using EBMs, i.e., Ours (CLIP), Ours (Learned
Embed), and EBM (CLIP) (Full Sentence), for fair comparison. We use the Adam optimizer [5] with
learning rates of 10−4 and 2× 10−4 on the CLEVR and iGibson datasets, respectively. For MCMC
sampling, we use a step size of 300 on the CLEVR dataset, 750 on the iGibson dataset and 300 on
the Blocks dataset. On each dataset, the model is trained for 3 days on a single Tesla 32GB GPU.

To generate images at test time, we initialize an image sample from random noise. We then iteratively
apply data augmentation on the image sample followed by 20 steps of Langevin sampling. To
generate the final image, we run 80 additional steps of Langevin sampling on the image sample.

To edit images at test time, we run 80 steps of Langevin sampling on the image to edit. The step
size of Langevin sampling is inversely proportional to the number of scene relations, i.e. more scene
relations leads to a lower Langevin sampling step size.

H Algorithms

We provide the algorithms of the proposed method, including training, image generation, image
editing, and image-to-text retrieval, in Algorithm 1, 2, 3 and 4, respectively.
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Algorithm 1 Conditional EBM training algorithm
Input: data dist pD(x), relational scene descriptions RD(r), step size λ, number of steps M , data augmenta-
tion D(·), stop gradient operator Ω(·), EBM Eθ(·), Encoder Enc(·)
B ← ∅
while not converged do

x+
i ∼ pD

Ri ∼ RD

x̃0
i ∼ B with 99.9% probability and U otherwise

X ∼ B for nearest neighbor entropy calculation

▷ Split a relational scene description into individual scene relations:
{r1, . . . rK} ← Ri

▷ Apply data augmentation to sample:
x̃0

i = D(x̃0
i )

▷ Generate sample using Langevin dynamics:
for sample step m = 1 to M do

x̃m−1
i = Ω(x̃m−1

i )

x̃m ← x̃m−1 −∇x

∑K
k=1

λ
K
· Eθ(x̃

m−1 | Enc(rk)) + ωm, ωm ∼ N (0, σ)
end for

▷ Generate two variants of x− with and without gradient propagation:
x−

i = Ω(x̃m
i )

x̂−
i = x̃m

i

▷ Optimize objective LCD + LKL wrt θ:
LCD = 1

N

∑
i

∑K
k=1(Eθ(x

+
i | Enc(rk)− Eθ(x

−
i | Enc(rk))

LKL =
∑K

k=1 EΩ(θ)(x̂
−
i | Enc(rk))− log(NN(x̂−

i , X)

▷ Optimize objective LCD + LKL wrt θ:
∆θ ← ∇θ(LCD + LKL)
Update θ based on ∆θ using Adam optimizer

▷ Update replay buffer B
B ← B ∪ x̃−

i

end while

Algorithm 2 Image generation during testing
Input: Relational scene description Ri, number of data augmentation applications N , step size λ, number of
steps M , data augmentation D(·), EBM Eθ(·), Encoder Enc(·)
x̃0 ∼ U

▷ Split a relational scene description into individual scene relations:
{r1, . . . rK} ← Ri

▷ Generate samples through N iterative steps of data augmentation/Langevin dynamics:
for sample step n = 1 to N do

▷ Apply data augmentation to samples:
x̃0 = D(x̃0

i )

▷ Run M steps of Langevin dynamics:
for sample step m = 1 to M do

x̃m ← x̃m−1 −
∑K

k=1
λ
K
· ∇xEθ(x̃

m−1 | Enc(rk)) + ωm, ωm ∼ N (0, σ)
end for

▷ Iteratively refine samples:
x̃0 = x̃m

end for

▷ Run S = 80 steps of Langevin dynamics:
for sample step s = 1 to S do

x̃s ← x̃s−1 −
∑K

k=1
λ
K
· ∇xEθ(x̃

s−1 | Enc(rk)) + ωs, ωs ∼ N (0, σ)
end for

x̃0 = x̃s

▷ Final output:
x = x̃0
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Algorithm 3 Image editing during testing
Input: input image x̃0, relational scene description R, number of data augmentation applications N , step
size λ, number of steps M , data augmentation D(·), EBM Eθ(·) Encoder Enc(·)
▷ Split a relational scene description into individual scene relations:
{r1, . . . rK} ← R

▷ Generate samples through N iterative steps of data augmentation/Langevin dynamics:
for sample step n = 1 to N do

▷ Run M steps of Langevin dynamics:
for sample step m = 1 to M do

x̃m ← x̃m−1 −
∑K

k=1
λ
K
· ∇xEθ(x̃

m−1 | Enc(rk)) + ωm, ωm ∼ N (0, σ)
end for

▷ Iteratively refine samples:
x̃0 = x̃m

end for

▷ Final output:
x = x̃0

Algorithm 4 Image-to-text retrieval during testing
Input: input image x, relational scene descriptions {R1, . . . , Rn}, EBM Eθ(·), Encoder Enc(·), output
energy list O, caption prediction C
O ← []

▷ Generate image-caption matching energies iteratively
for number of scene relations descriptions i = 1 to n do

▷ Split a relational scene description into individual scene relations:
{r1, . . . rK} ← Ri

ei =
∑K

k=1 Eθ(x | Enc(rk))

▷ output energy list O
O.append(ei)

end for

▷ Final output:
C = argminO
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