
Stochastic Anderson Mixing for Nonconvex
Stochastic Optimization

Fuchao Wei1, Chenglong Bao3,4∗ , Yang Liu1,2

1Department of Computer Science and Technology, Tsinghua University
2Institute for AI Industry Research, Tsinghua University
3Yau Mathematical Sciences Center, Tsinghua University

4Yanqi Lake Beijing Institute of Mathematical Sciences and Applications

Abstract

Anderson mixing (AM) is an acceleration method for fixed-point iterations. Despite
its success and wide usage in scientific computing, the convergence theory of AM
remains unclear, and its applications to machine learning problems are not well ex-
plored. In this paper, by introducing damped projection and adaptive regularization
to the classical AM, we propose a Stochastic Anderson Mixing (SAM) scheme to
solve nonconvex stochastic optimization problems. Under mild assumptions, we
establish the convergence theory of SAM, including the almost sure convergence to
stationary points and the worst-case iteration complexity. Moreover, the complexity
bound can be improved when randomly choosing an iterate as the output. To further
accelerate the convergence, we incorporate a variance reduction technique into the
proposed SAM. We also propose a preconditioned mixing strategy for SAM which
can empirically achieve faster convergence or better generalization ability. Finally,
we apply the SAM method to train various neural networks including the vanilla
CNN, ResNets, WideResNet, ResNeXt, DenseNet and LSTM. Experimental results
on image classification and language model demonstrate the advantages of our
method.

1 Introduction

Stochastic optimization is important in various areas such as statistics [15], machine learning [4, 54]
and power systems [25]. In this paper, we consider the following stochastic optimization problem:

min
x∈Rd

f(x) = Eξ [F (x; ξ)] , (1)

where F : Rd × Ξ → R is continuously differentiable and possibly nonconvex and the random
variable ξ ∈ Ξ may follow an unknown probability distribution. It is assumed that only noisy
information about the gradient of f is available through calls to some stochastic first-order oracle
(SFO). One special case of (1) is the empirical risk minimization problem:

min
x∈Rd

f(x)
def
=

1

T

T∑
i=1

fξi(x), (2)

where fξi : Rd → R is the loss function corresponding to the i-th data sample and T denotes the
number of data samples. T can be extremely large such that it prohibits the computation of the full
gradient∇f . Thus designing efficient and effective numerical algorithms for solving problem (1) or
(2) with rigorous theoretical analysis is a challenging task.

∗Corresponding author. clbao@mail.tsinghua.edu.cn.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



One classical approach for solving (1) is the stochastic gradient descent (SGD) method [45]. It
mimics the gradient descent (GD) method with noisy gradients and exhibits optimal convergence
rate for some strongly convex stochastic problems [10, 48]. Some early related works of SGD in
convex optimization can be found in [38, 39, 40]. For nonconvex cases, Ghadimi and Lan [17]
proposed a randomized stochastic gradient (RSG) method that randomly selects a solution x̄ from
previous iterates. To ensure x̄ satisfying E [‖∇f(x̄)‖22] ≤ ε, the total number of SFO-calls2 needed
by RSG is O

(
ε−2
)
. For training neural networks, adaptive learning rate methods were proposed

to accelerate SGD, e.g. Adagrad [12], RMSprop [55] and Adam [29], though their theoretical
properties in nonconvex optimization were unknown until recently [9]. Regarding to second-order
optimization methods [49, 36, 37], one notable work is the framework of stochastic quasi-Newton
(SQN) methods proposed by Wang et al. [60], which covers a class of SQN methods and has
theoretical guarantees in nonconvex stochastic optimization. However, these second-order methods
usually demand more gradient evaluations in every iteration and less noisy gradient information
to achieve actual acceleration [4]. There are also some recent works inspired from the dynamics
perspective, such as the Langevin dynamics based algorithms [62, 33, 11], but many of them focus
on the theory and their applications in deep learning are still under-explored.

In practice, the choices of optimizers can vary for different applications [63] and their practical
performances are still unsatisfactory in terms of convergence rate or generalization ability [66]. For
these reasons, we develop a novel second-order method based on Anderson mixing (AM) [2]. Our
analysis and experiments show the proposed method is competent from both theoretical and practical
perspectives and performs well in training various neural networks in different tasks.

AM is a sequence acceleration method in scientific computing [5]. It is widely used to accelerate the
slow convergence of nonlinear fixed-point iterations arising in computational physics and quantum
chemistry, e.g. the self-consistent field iteration in electronic structure calculations [16, 8], where
the function evaluation is costly. It turns out that AM is closely related to multisecant quasi-Newton
methods in nonlinear problems [14, 5] or the GMRES method [46] in linear problems [59, 41].

Inspired by the great success of AM in accelerating fixed-point iterations, it is natural to ask whether
AM can be applied to accelerate nonlinear optimization since the gradient descent with constant
stepsize is a fixed-point iteration. This idea has been explored in [50, 51], but the proposed Regularized
Nonlinear Acceleration (RNA) method is built on the minimal polynomial extrapolation (MPE)
approach [5], a sequence transformation method that has subtle difference from AM. Also, their
methods rely heavily on the contraction assumption of the fixed-point map and the strong convexity.
For AM, although current research has proved local linear convergence of AM for fixed-point
iterations under some conditions [56, 57, 3], there exists no version of AM that guarantees convergence
for nonconvex optimization, let alone stochastic optimization.

In this paper, we develop a stochastic version of AM. Due to the nonconvexity and noise inside the
problems and lack of line search or trust-region, a straightforward migration of AM to nonconvex
stochastic optimization is infeasible. As a result, we make several fundamental modifications to AM.
We highlight the main contributions of our works as follows:

1. We develop a stochastic version of AM, namely Stochastic Anderson Mixing (SAM), by
introducing damped projection and adaptive regularization. We prove its almost sure
convergence to a stationary point and analyze its work complexity. When a randomly
chosen iterate xR is returned as the output of SAM, we prove that the worst-case SFO-calls
complexity to guarantee E

[
‖∇f(xR)‖22

]
≤ ε is O

(
ε−2
)
. (See Theorems 1-4.)

2. We give a variance reduced extension of SAM by borrowing the stochastic variance reduced
gradient (SVRG) [28] technique and analyze its SFO-calls complexity. (See Theorem 5.)
We also propose a preconditioned mixing strategy for AM and obtain the preconditioned
SAM method which can empirically converge faster or generalize better. (See Section 2.3.)

3. Extensive experiments on training Convolutional Neural Network (CNN), ResNet, WideRes-
Net, ResNeXt, DenseNet, and LSTM on different tasks and datasets show the faster con-
vergence or better generalization ability of our method compared with the state-of-the-art
methods. (See Section 4.)

2One call to the SFO in (1) or one evaluation of ∇fξi(x) in (2) is counted as one SFO-call.

2



2 Methodology

2.1 Anderson Mixing

AM is proposed for acceleration of fixed-point iterations. We assume the fixed-point iteration is
xk+1 = g(xk)

def
= xk + rk, where rk

def
= −∇f(xk). Then g(xk) − xk = rk. Here, we adopt the

description of AM in [14, 59]. Let ∆ denote the forward difference operator, say, ∆xk = xk+1 − xk.
Let Xk and Rk record the most recent m(m ≤ k) iterations:

Xk = [∆xk−m,∆xk−m+1, · · · ,∆xk−1], Rk = [∆rk−m,∆rk−m+1, · · · ,∆rk−1]. (3)

AM can be decoupled into two steps. We call them the projection step and the mixing step:

x̄k = xk −XkΓk, (Projection step) (4a)
xk+1 = x̄k + βkr̄k, (Mixing step) (4b)

where βk is the mixing parameter, and r̄k
def
= rk −RkΓk is reminiscent of extragradient [30]. Γk is

determined by solving
Γk = arg min

Γ∈Rm

‖rk −RkΓ‖2. (5)

Combining (4a) and (4b), we obtain the full form of AM [14, 59, 5, 42]:

xk+1 = xk + βkrk − (Xk + βkRk) Γk. (6)

Remark 1. To see the rationality of AM, we assume f is twice continuously differentiable. Then a
quadratic approximation of f implies∇2f(xk) (xj − xj−1) ≈ ∇f(xj)−∇f(xj−1) in a local small
region around xk, so it is reasonable to assume Rk ≈ −∇2f(xk)Xk. Thus we see ‖rk −RkΓ‖2 ≈
‖rk +∇2f(xk)XkΓ‖2. Hence, we can recognize (5) as solving ∇2f(xk)pk = ∇f(xk) in a least-
squares sense, where pk = XkΓk. When the quadratic approximation is exact, solving (5) is a
minimal residual procedure, thus being verified as a residual projection method [47]. Moreover, let
Hk be the solution to the constrained optimization problem [14]:

min
Hk

‖Hk − βkI‖F subject to HkRk = −Xk, (7)

then iterate (6) is xk+1 = xk+Hkrk, which is indeed a multisecant quasi-Newton method. Note that a
key simplification in AM is using differences of historical gradients Rk to approximate−∇2f(xk)Xk,
which reduces the heavy cost to compute Hessian-vector products [7, 19, 26].

2.2 Stochastic Anderson Mixing

We describe our method Stochastic Anderson Mixing (SAM) in this section. At the k-th iteration,
let Sk ⊆ [T ]

def
= {1, 2, . . . , T} be the sampled mini-batch and the corresponding objective function

value is fSk
(xk) = 1

|Sk|
∑
i∈Sk

fξi(xk). Then rk
def
= −∇fSk

(xk) and the noisy Rk is defined
correspondingly (cf. (3)). Due to the instability and inaccurate estimation of Rk, we stabilize the
projection step by proposing damped projection and adaptive regularization techniques. Algorithm 1
is a sketch of our method. Now, we elaborate the mechanism of this algorithm.

Damped projection. From Remark 1, we see the determination of Γk in (5) relies on the local
quadratic approximation of (2), which can be rather inexact in general nonlinear optimization. To
improve the stability, we propose a damped projection method for (4a). Let αk be the damping
parameter, we obtain x̄k via

x̄k = (1− αk)xk + αk(xk −XkΓk) = xk − αkXkΓk. (8)

Combining (8) and (4b) and noting that r̄k = rk − αkRkΓk, the new iterate xk+1 is given by

xk+1 = xk + βkrk − αk (Xk + βkRk) Γk. (9)

It is worth noting that βk and αk in (9) behave like stepsize or learning rate in SGD, and the extra
term (αkXk + αkβkRk) Γk can be viewed as a generalized momentum term.

3



Algorithm 1 Stochastic Anderson Mixing (SAM)
Input: x0 ∈ Rd,m = 10, αk = 1, βk = 1, µ ∈ (0, 1),max_iter > 0.
Output: x ∈ Rd

1: for k = 0, 1, . . . ,max_iter do
2: rk = −∇fSk

(xk)
3: if k = 0 then
4: xk+1 = xk + βkrk
5: else
6: mk = min{m, k}
7: Xk = [∆xk−mk

,∆xk−mk+1, · · · ,∆xk−1]
8: Rk = [∆rk−mk

,∆rk−mk+1, · · · ,∆rk−1]
9: Check Condition (14) and use smaller αk if (14) is violated.

10: xk+1 = xk + βkrk − (αkXk + αkβkRk)
(
RT
kRk + δkX

T
k Xk

)†
RT
k rk

11: end if
12: Apply learning rate schedule of αk, βk
13: end for
14: return xk

Adaptive regularization. Since Rk may be rank deficient and no safeguard method is used in AM,
the least squares problem (5) can be unstable. A remedy is to add regularization [6] to (5). One
well-known choice is the constant regularization introduced in [50, 53], which can be viewed as
forcing ‖Γk‖2 to be small [53], leading to a penalty term to (5):

Γk = arg min
Γ∈Rm

‖rk −RkΓ‖22 + δ‖Γ‖22, (10)

where δ ≥ 0 is the penalty constant. The solution of (10) is Γk =
(
RT
kRk + δI

)†
RT
k rk, where “†"

denotes the Penrose-Moore inverse. This regularized variant of AM is named as RAM and serves as
a baseline in the experiments.

Here, we propose a new regularization, namely adaptive regularization, to better suit the stochastic
optimization. Since −XkΓk = x̄k − xk denotes the update from xk to x̄k, a large magnitude of
‖XkΓk‖2 tends to make the intermediate step x̄k overshoot the trust region around xk. Thus it is
more reasonable to force ‖XkΓk‖2 rather than ‖Γk‖2 to be small. We formulate this idea as

min
Γ
‖rk −RkΓ‖22 + δk‖XkΓ‖22, (11)

where δk ≥ 0 is a variable determined in each iteration. Explicitly solving (11) leads to

Γk =
(
RT
kRk + δkX

T
k Xk

)†
RT
k rk. (12)

We call AM with this regularization and damped projection as SAM, i.e. the prototype algorithm
given in Algorithm 1.

Positive definiteness. From (9) and (12), the SAM update is xk+1 = xk + Hkrk, where Hk =

βkI − αkYkZ†kRT
k , Yk = Xk + βkRk, Zk = RT

kRk + δkX
T
k Xk. Hk is generally not symmetric. A

critical condition for the convergence analysis of SAM is the positive definiteness of Hk, i.e.

pT
kHkpk ≥ βkµ‖pk‖22, ∀pk ∈ Rd, (13)

where µ ∈ (0, 1) is a constant. Next, we give an approach to guarantee it.

Let λmin(·) denote the smallest eigenvalue, λmax(·) denote the largest eigenvalue. Since pT
kHkpk =

1
2p

T
k (Hk +HT

k )pk, Condition (13) is equivalent to λmin
(

1
2

(
Hk +HT

k

))
≥ βkµ. With some simple

algebraic operations, we obtain λmin
(

1
2

(
Hk +HT

k

))
= βk − 1

2αkλmax(YkZ
†
kR

T
k + RkZ

†
kY

T
k ).

Let λk
def
= λmax(YkZ

†
kR

T
k +RkZ

†
kY

T
k ), then Condition (13) is equivalent to
αkλk ≤ 2βk(1− µ). (14)

To check Condition (14), note that

λk = λmax

(
(Yk Rk)

(
0 Z†k
Z†k 0

)(
Y T
k

RT
k

))
= λmax

((
Y T
k

RT
k

)
(Yk Rk)

(
0 Z†k
Z†k 0

))
. (15)

4



Algorithm 2 Stochastic Anderson Mixing with variance reduction (SAM-VR)
Input: x̃0 ∈ Rd; βkt , α

k
t , δ

k
t for SAM_update(xkt , g

k
t ); Batch size n ≥ 1 .

Output: x ∈ Rd
1: for k = 0, . . . , N − 1 do
2: xk0 = x̃k
3: ∇f(x̃k) = 1

T

∑T
i=1∇fξi(x̃k)

4: for t = 0, . . . , q − 1 do
5: Sample a subset K ⊆ [T ] with |K| = n
6: gkt = ∇fK(xkt )−∇fK(x̃k) +∇f(x̃k) where∇fK(xkt ) = 1

|K|
∑
i∈K∇fξi(xkt )

7: xkt+1 = SAM_update(xkt , g
k
t )

8: end for
9: Set x̃k+1 = xkq

10: end for
11: return Iterate x chosen uniformly random from {{xkt }

q−1
t=0 }

N−1
k=0

Since
(
Y T
k

RT
k

)
(Yk Rk) ,

(
0 Z†k
Z†k 0

)
∈ R2m×2m, and m � d, λk can be computed efficiently,

say, using an eigenvalue decomposition algorithm with the time complexity of O(m3). This cost
is negligible compared with those to form XT

k Xk, R
T
kRk. After that, to guarantee the positive

definiteness, we check if αk satisfies (14) and use a smaller αk if necessary.

AdaSAM method. We choose the δk in (11) as

δk = max

{
c1‖rk‖22

‖xk − xk−1‖22 + ε
, c2β

−2
k

}
, (16)

where c1, c2, ε are constants. Such choice reflects the curvature change in the vicinity of xk. A large
‖rk‖2 indicates a potential dramatic change in landscape, suggesting using a precautious tiny stepsize.
The denominator in (16) behaves like annealing, which can measure the noise in gradients like that
in secant penalized BFGS [27].

2.3 Enhancement of Stochastic Anderson Mixing

We introduce the variance reduction and preconditioned mixing techniques to further enhance SAM.

Variance reduction. Variance reduction techniques turn out to be effective if a scan over the full
dataset is feasible [1, 44]. Similar to SdLBFGS-VR proposed in [60], we also incorporate SVRG
to SAM, which we call SAM-VR (Algorithm 2), for solving (2). To simplify the description, we
denote one iteration of SAM in Algorithm 1 as SAM_update(xk, gk), i.e. one update of xk given
the gradient estimate gk.

Preconditioned mixing. Motivated by the great success of preconditioning in solving linear systems
and eigenvalue computation [18], we present a preconditioned version of SAM. The key modification
is the mixing step (4b). We replace the simple mixing xk+1 = x̄k + βkr̄k with xk+1 = x̄k +M−1

k r̄k
where Mk approximates the Hessian. Combining it with (8) and (12), we obtain

xk+1 = xk +
(
M−1
k − αk

(
Xk +M−1

k Rk
) (
RT
kRk + δkX

T
k Xk

)†
RT
k

)
rk. (17)

Setting αk ≡ 1 and δk ≡ 0, (17) reduces to a preconditioned AM update, which can be recast as the
solution to the constrained optimization problem: min

Hk

‖Hk −M−1
k ‖F subject to HkRk = −Xk,

a direct extension of (7). This preconditioned version of AM is related to quasi-Newton updates
[20]. We also point out that the action of M−1

k can be implicitly done via an update of any optimizer
at hand, i.e. xk+1 = optim(x̄k,−r̄k), where optim updates x̄k given the extragradient −r̄k. If
Rk = −∇2f(xk)Xk, which is the case in deterministic quadratic optimization, the projection step in
preconditioned AM is still a minimal residual procedure.
Remark 2. The same as SdLBFGS [60], SAM needs another 2md space to store Xk and Rk. The
extra main computational cost for SAM compared with SGD is O(m2d) +O(m3), which accounts
for the matrix multiplications (Rm×d × Rd×m) and matrix decomposition of a small Rm×m matrix.

5



Since dense matrix multiplication can be ideally parallelized and the cost of gradient evaluations
often dominates the computing, the benefit from SAM pays for this extra cost. Also, this cost can
be further reduced to O(md) +O(m3) (see Appendix B.2). In our implementation, we incorporate
sanity check of the positive definiteness, alternating iteration and moving average, and the details are
given in the supplementary materials.

3 Theory

In this section, we analyze the convergence and complexity of SAM. All the proofs are deferred to
the Appendix A.1. We first give two assumptions about the objective function f that are widely used
in stochastic programming [17, 60, 44].
Assumption 1. f : Rd → R is continuously differentiable. f(x) ≥ f low > −∞ for any x ∈ Rd.
∇f is globally L-Lipschitz continuous; namely ‖∇f(x)−∇f(y)‖2 ≤ L‖x−y‖2 for any x, y ∈ Rd.
Assumption 2. For any iteration k, the stochastic gradient ∇fξk(xk) satisfies Eξk [∇fξk(xk)] =
∇f(xk), Eξk [‖∇fξk(xk)−∇f(xk)‖22] ≤ σ2, where σ > 0, and ξk, k = 0, 1, . . . , are independent
samples that are independent of {xj}kj=0.

Throughout our analysis, we always assume both Assumptions 1 and 2 hold. Moreover, we state the
following conditions about the three parameters αk, βk, δk of SAM.

+∞∑
k=0

βk = +∞,
+∞∑
k=0

β2
k < +∞, (18a)

δk ≥ Cβ−2
k , αk ∈ [0,min{1, β

1
2

k }] and statisfies (14), (18b)

where C > 0 is a constant.

Convergence and complexity. We give the convergence of SAM by analyzing the iterations {xk}
generated by Algorithm 1.
Theorem 1. Let {xk} be the sequence generated by Algorithm 1 with fixed batchsize n. Given a
positive constant C, if βk ∈ (0, µ

4L(1+C−1) ], then under the conditions (18a) and (18b), it has

lim inf
k→∞

‖∇f(xk)‖2 = 0 with probability 1. (19)

Moreover, there exists a positive constant Mf such that

E[f(xk)] ≤Mf ∀k. (20)

Theorem 2. Under the same conditions as Theorem 1, if we require that the noisy gradient is
bounded, i.e.,

Eξk [‖∇fξk(xk)‖22] ≤Mg, (21)
where Mg > 0 is a constant, we have

lim
k→∞

‖∇f(xk)‖2 = 0 with probability 1. (22)

Now, we give the iteration complexity of SAM.
Theorem 3. Let {xk} be the sequence generated by Algorithm 1 with batchsize n. Given constants
C > 0 and r ∈ (0.5, 1), we choose βk = µ

4L(1+C−1) (k + 1)−r. Under the condition (18b), it has

1

N

N−1∑
k=0

E‖∇f(xk)‖22 ≤
16L(1 + C−1)(Mf − f low)

µ2
Nr−1 +

(1 + L−1µ−1)σ2

(1− r)n
(N−r − rN−1),

(23)

where n is the batchsize, andN is the iteration number. Moreover, for a given ε ∈ (0, 1), to guarantee
that 1

N

∑N−1
k=0 E‖∇f(xk)‖22 < ε, the number of iterations N needed is at most O(ε−

1
1−r ).

If the output xR is randomly chosen from previous iterates according to the certain probability
distribution, SAM has the same complexity O(ε−2) as RSG [17] and SQN [60].

6



Theorem 4. Let {xk} be the sequence generated by Algorithm 1 with batchsize n and xR be the
random output of the first N iterations where the random variable R follows the uniform distribution
PR(k)

def
= Prob{R = k} = 1/N . Given constant C > 0, we choose βk = µ

4L(1+C−1) and assume
condition (18b) holds. For any ε > 0, there exist some n and N = O(ε−2)/n such that we have
E
[
‖∇f(xR)‖22

]
≤ ε, where the expectation is taken with respect to R and {Sj}N−1

j=0 .

In fact, from the proof of Theorem 4, we can find the explicit choice of the batchsize. Define
Df

def
= f(x0) − f low and D̃ is a problem-independent positive constant. The batchsize n can be

chosen as n =
⌈
min

{
N̄ ,max

{
1, σL

√
N̄
D̃

}}⌉
,where N̄ is the total number of SFO-calls satisfying

N̄ ≥ max
{
C2

1

ε2 + 4C2

ε , σ2

L2D̃

}
, and C1 =

32Df (1+C−1)σ

µ2

√
D̃

+ (L+ µ−1)σ
√
D̃, C2 =

32DfL(1+C−1)
µ2 .

Thus, to ensure E
[
‖∇f(xR)‖22

]
≤ ε, the total number of SFO-calls is O(ε−2). Moreover, we give

the SFO-calls complexity of the variance reduced version of SAM.
Theorem 5. Let x be the output of Algorithm 2 with batchsize n. Given a positive constant C,
suppose ν, µ0 ∈ (0, 1) to be two constants satisfying

µ0µ

2(1 + C−1)1/2
− µ2

0(2L+ µ−1)(e− 1)

L
− 2µ2

0n−
2µ3

0(2L+ µ−1)(e− 1)n

L
≥ ν,

where e is the Euler’s number. Set βkt = β := µ0n
L(1+C−1)1/2T 2/3 , δkt ≥ Cβ−2, αkt ∈ [0,min{1, β 1

2 }]

and satisfies (14), and the number of iteration q =
⌊

T
µ0nd0

⌋
, where d0 = 6 + 2

L(1+C−1)1/2
. Then,

E
[
‖∇f(x)‖22

]
≤
T 2/3L

(
f(x0)− f low

)
qNnν

. (24)

To ensure E
[
‖∇f(x)‖22

]
≤ ε, the total number of SFO-calls is O(T + (T 2/3/ε)).

Remark 3. It is worth noting that the approximated HessianHk in SAM depends on the data samples
{ξi}i∈Sk

of the current mini-batch, which violates the assumption AS.4 in [60].

Analysis of AdaSAM. All the results in Theorems 1-5 are applicable for AdaSAM as (16) satisfies
the condition (18b). We further discuss the rationality of the first term in (16). Since rT

kHkrk ≥
βkµ‖rk‖22, and ‖Hkrk‖22 ≤ 2

(
β2
k + α2

kδ
−1
k

)
‖rk‖22 ≤ 2β2

k

(
1 + C−1

)
‖rk‖22 ifαk ≤ 1, δk ≥ Cβ−2

k

(see Corollary 1 in Appendix A.1), it is sensible to suppose ‖xk − xk−1‖2 ≈ ‖xk+1 − xk‖2 =
‖Hkrk‖2 = βkhk‖rk‖2, where hk ∈ (0, h) (h < +∞) is related to Hk. Therefore,

c1‖rk‖22
‖xk − xk−1‖22

≈ c1‖rk‖22
β2
kh

2
k‖rk‖22

≥ c1h−2β−2
k , (25)

which coincides with the requirement that δk ≥ Cβ−2
k . A further discussion is in Appendix D.3.

4 Experiments

We used AdaSAM (AdaSAM-VR) for the experiments, which is a special case of SAM (SAM-VR)
with δk specified as (16). The pseudocodes are given in Appendix B.1. To evaluate the effectiveness of
our methods, we compared them with several first-order and second-order optimizers for mini-batch
training of neural networks on different machine learning tasks. The datasets were MNIST [32],
CIFAR-10/CIFAR-100 [31] for image classification and Penn Treebank [35] for language model.
The experimental details and hyper-parameter tuning are referred to Appendix C.

Experiments on MNIST. We trained a simple convolutional neural network (CNN) 3 on MNIST, for
which we were only concerned about the minimization of the empirical risk (2), i.e. the training loss,
with large batch sizes. The training dataset was preprocessed by randomly selecting 12k images from
the total 60k images to facilitate large mini-batch training. Neither weight-decay nor dropout was
used. We compared AdaSAM with SGDM [43] (SGD with momentum), Adam [29], SdLBFGS [60],
and RAM (cf. (10)). The learning rate was tuned and fixed for each optimizer. The historical lengths
for SdLBFGS, RAM and AdaSAM were set as 20. δ = 10−6 for RAM and c1 = 10−4 for AdaSAM.

3Based on the official PyTorch implementation https://github.com/pytorch/examples/blob/master/mnist.

7

https://github.com/pytorch/examples/blob/master/mnist


0 20 40 60 80 100
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Tr
ai

n 
Lo

ss
SGDM
Adam
SdLBFGS
RAM
AdaSAM

(a) Batchsize=6K

0 20 40 60 80 100
epochs

10−5

10−4

10−3

10−2

10−1

100

101

Tr
ai

n 
Lo

ss

SGDM
Adam
SdLBFGS
RAM
AdaSAM

(b) Batchsize=3K

0 20 40 60 80 100
epochs

10−9

10−7

10−5

10−3

10−1

Tr
ai

n 
Lo

ss

AdaSAM: n=2K
AdaSAM: n=4K
AdaSAM: n=6K
AdaSAM-VR: n=2K
AdaSAM-VR: n=4K
AdaSAM-VR: n=6K

(c) Variance reduction

0 20 40 60 80 100
epochs

10−5

10−4

10−3

10−2

10−1

100

Tr
ai

n 
Lo

ss

Adagrad
RMSprop
Adagrad-AdaSAM
RMSprop-AdaSAM
AdaSAM

(d) Preconditioning

Figure 1: Experiments on MNIST. (a) Train Loss using batchsize = 6K; (b) Train Loss using batchsize
= 3K; (c) AdaSAM with variance reduction; (d) Preconditioned AdaSAM with batchsize = 3K.

Figure 1 (a) and (b) show the curves of training loss when training 100 epochs with batch sizes
of 6K and 3K, which indicate that AdaSAM can significantly minimize the empirical risk in large
mini-batch training. The comparison with RAM verifies the benefit of adaptive regularization. We
notice that there hardly exists any oscillation in AdaSAM during training except for the first few
epochs, which suggests that AdaSAM is tolerant to noise. We also tested the effectiveness of variance
reduction and preconditioning introduced in Section 2.3. The variance reduced extension AdaSAM-
VR was compared with AdaSAM for different batch sizes. The variants of AdaSAM preconditioned
by Adagrad [12] and RMSprop [55] are denoted as Adagrad-AdaSAM and RMSprop-AdaSAM,
respectively. Though AdaSAM-VR is more costly per iteration and the preconditioned variants seem
to deteriorate the final training loss, we point out that AdaSAM-VR can achieve lower training loss
(10−9) and the preconditioned variants converge faster to an acceptable training loss (e.g. 10−3).

Table 1: Final TOP1 test accuracy (mean ± standard deviation) (%) on CIFAR10/CIFAR100. The
bold numbers highlight the best results. WideResNet is abbreviated as WResNet.

Method CIFAR10 CIFAR100

ResNet18 ResNet20 ResNet32 ResNet44 ResNet56 WResNet ResNet18 ResNeXt DenseNet

SGDM 94.82±.15 92.03±.16 92.86±.15 93.10±.23 93.47±.28 94.90±.09 77.27±.09 78.41±.54 78.49±.12
Adam 93.03±.07 91.17±.13 92.03±.28 92.28±.62 92.39±.23 92.45±.11 72.41±.17 73.57±.17 70.80±.23
AdaBelief 94.65±.13 91.15±.21 92.15±.17 92.79±.24 93.30±.07 94.46±.13 76.25±.06 78.27±.16 78.83±.15
Lookahead 94.92±.33 92.07±.04 92.86±.15 93.26±.24 93.36±.13 94.90±.15 77.63±.35 78.93±.12 79.37±.16
AdaHessian 94.36±.09 91.92±.32 92.18±.18 92.74±.11 92.40±.06 94.04±.12 76.59±.42 - -
RNA 93.45±.21 90.73±.12 91.08±.51 91.61±.37 91.23±.14 93.85±.24 75.12±.39 75.88±.40 75.70±.49
RAM 95.10±.05 92.21±.09 93.05±.43 93.42±.13 93.76±.16 95.04±.09 76.19±.12 78.65±.20 78.28±.62
AdaSAM 95.17±.10 92.43±.19 93.22±.32 93.57±.14 93.77±.12 95.23±.07 78.13±.14 79.31±.27 80.09±.52

0 20 40 60 80 100 120 140 160
epochs

100

Te
st

 L
os

s

SGDM: epoch=80
SGDM: epoch=120
SGDM: epoch=160
Lookahead: epoch=80
Lookahead: epoch=120
Lookahead: epoch=160
AdaSAM: epoch=80
AdaSAM: epoch=120
AdaSAM: epoch=160

Figure 2: Test loss of training ResNet18
on CIFAR-10.

Experiments on CIFAR. For CIFAR-10 and CIFAR-
100, both datasets have 50K images for training and
10K images for test. The test accuracy at the final
epoch was reported as the evaluation metric. We trained
ResNet18/20/32/44/56 [21] and WideResNet16-4 [64]
on CIFAR-10, and ResNet18, ResNeXt50 [61] and
DenseNet121 [24] on CIFAR-100. The baseline op-
timizers were SGDM, Adam, AdaBelief [66], Looka-
head [65], AdaHessian [63] and RNA [52]. The hyper-
parameters were kept unchanged across different tests.
We trained 160 epochs with batch size of 128 and de-
cayed the learning rate at the 80th and 120th epoch. For
AdaSAM/RAM, αk and βk were decayed at the 80th
and 120th epoch.

Table 1 demonstrates the generalization ability of
AdaSAM (AdaHessian ran out of memory for training
ResNeXt50 and DenseNet121). It shows AdaSAM con-
sistently outperforms other optimizers for various neural
networks on CIFAR10/CIFAR100. Compared with SGDM/Lookahead, AdaSAM is built on a noisy
quadratic model to extrapolate historical iterates more elaborately, which may account for its effec-
tiveness. We also conducted tests on training for 120 epochs and 80 epochs. Figure 2 shows AdaSAM

8



Table 2: The memory and computation cost compared with SGDM and AdaHessian. Memory,
per-epoch time and total running time are abbreviated as “m",“t/e" and “t", respectively.

Cost CIFAR10/ResNet20 CIFAR10/WResNet CIFAR100/ResNeXt50 CIFAR100/DenseNet121
(× SGDM) m t/e t m t/e t m t/e t m t/e t

SGDM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AdaHessian 1.78 3.59 3.59 2.35 5.97 5.97 >1.6 - - >1.8 - -
AdaSAM 1.14 1.34 0.83 1.26 1.28 0.80 1.30 1.16 0.58 1.16 1.19 0.60

can achieve comparable or even lower test loss than SGDM/Lookahead when training with fewer
epochs, thus saving a large number of iterations. More results can be found in Appendix C.3.

To compare the total training time, we set SGDM as the baseline and terminated the training of
AdaSAM when the accuracy difference AdaSAM − SGDM > −0.05%. The memory, per-epoch
computational cost and total training time of training ResNet20/WideResNet16-4 (abbr. WResNet) on
CIFAR10 and ResNeXt50/DenseNet121 on CIFAR100 are reported in Table 2. It shows AdaSAM is
more efficient than AdaHessian and saves more than 15% training time than SGDM in these models.

0 25 50 75 100 125 150 175 200
epochs

80

85

90

95

100

105

110

115

120

Va
lid

at
io

n 
PP

L

SGDM
Adam
AdaBelief
Lookahead
pAdaSAM

(a) 1-Layer LSTM

0 25 50 75 100 125 150 175 200
epochs

65

70

75

80

85

90

95

100

105

Va
lid

at
io

n 
PP

L

SGDM
Adam
AdaBelief
Lookahead
pAdaSAM

(b) 2-Layer LSTM

0 25 50 75 100 125 150 175 200
epochs

60

65

70

75

80

85

90

95

100

Va
lid

at
io

n 
PP

L

SGDM
Adam
AdaBelief
Lookahead
pAdaSAM

(c) 3-Layer LSTM

Figure 3: Experiments on Penn Treebank. Validation perplexity of training 1,2,3-Layer LSTM.

Table 3: Test perplexity on Penn Treebank for 1,2,3-
layer LSTM. Lower is better.

Method 1-Layer 2-Layer 3-Layer

SGDM 85.21±.36 67.12±.14 61.56±.14
Adam 80.88±.15 64.54±.18 60.34±.22
AdaBelief 82.41±.46 65.07±.02 60.64±.14
Lookahead 82.01±.07 66.43±.33 61.80±.10
pAdaSAM 79.34±.09 63.18±.22 59.47±.08

Experiments on Penn Treebank. We trained
LSTM [22] on Penn Treebank and reported
the perplexity on the validation set in Figure 3
and perplexity on the test set in Table 3, where
pAdaSAM denotes the variant of AdaSAM
preconditioned by Adam. The experimental
setting was the same as that in AdaBelief
[66]. In our practice, we found that the vanilla
AdaSAM with default hyperparameter setting
is not suitable for this task. Nevertheless, a
suitable preconditioner (e.g. Adam) can largely
improve the behaviour of AdaSAM. Conversely, AdaSAM can also enhance a optimizer when the
latter is used as a preconditioner.

5 Discussion

In this section, we provide discussions that compare SAM with SQN [60] and SGD.

SAM versus SQN. Our theoretical results are similar to those of SQN [60], but there are some
fundamental differences:

(i) The basic assumptions are different. (a) Recall that the update is xk+1 = xk − Hkgk, where
gk = ∇fSk

(xk). Let S[k−1] := (S0, . . . , Sk−1) denote the random samplings in the first k iterations.
A key assumption in [60] is that Hk depends only on S[k−1], which guarantees E[Hkgk|S[k−1]] =
Hk∇f(xk) that can simplify the proof. In contrast, in our methods SAM and SAM-VR, Hk

depends on Sk since rk = −gk participates in constructing Hk, thus violating this assumption and
complicating our analysis. (b) The proposed algorithm SdLBFGS in [60] needs twice continuously
differentiable assumption of f and the boundedness of∇2f , which are not required in our algorithm.

9



(ii) The ways to construct the secant equations are different. In the deterministic case, a secant
equation is Hksk = yk, where sk = xk − xk−1 and yk = gk − gk−1. In the stochastic case, various
choices exist in forming yk. For SAM, the choice of yk is the same as that of the deterministic case,
thus making Hk depend on Sk. For the SQN methods in [60], yk = ∇fSk−1

(xk)−∇fSk−1
(xk−1),

which ensures Hk is independent of Sk. Such choice can reduce variance of noise in secant equations
but demands evaluating gradients on the same mini-batch Sk−1 twice. Some other SQN methods [7]
use subsampled Hessian-vector products to form yk = ∇2fS′k(xk − xk−1), where S′k denotes the
data samples independent of Sk, which also ensures Hk is independent of Sk.

SAM versus SGD. We compare SAM with SGD from theoretical and practical perspectives.

(i) Theoretical perspective. (a) For general nonconvex stochastic optimization, SAM achieves the
same worst-case complexity O(1/ε2) as SGD. (b) There are some specific cases that SAM can be
theoretically better than SGD. For strongly convex quadratic minimization, we prove that SAM is
essentially equivalent to GMRES (see Appendix A.2) that can exhibit superlinear convergence [58].
For nonlinear optimization, SAM can also have superlinear convergence rate in some cases as it is
closely related to the multisecant quasi-Newton method [14], as also pointed out in Remark 1.

(ii) Practical perspective. (a) With the same number of epochs as SGD, it is shown in Table 1 and
Table 3 that our method has better generalization performance than SGD in both image classification
and language tasks. (b) Our method can largely reduce the number of epochs to achieve a comparable
solution as SGD, as shown in Figure 2 in Section 4 and Figure 8 in Appendix C.3. The total
running time can reduce correspondingly, as shown in Table 2. (c) SAM needs additional memory
and computational cost, but it is still much more efficient and economical than other second-order
optimizers, as shown in Table 2 in Section 4 and Figure 22 in Appendix D.8.

Table 4: Comparison between SAM and SGD. ‘+’ (‘-’) means SAM is better (worse) than SGD, and
‘=’ means SAM is similar to SGD.

Criterion general specific memory time/epochs epochs time generalization
SAM vs. SGD = + - - + + +

Based on the above analysis, we summarize the comparisons of our method and SGD in Table 4. There
are 7 types of criterion. “general”: the worse-case complexity in nonconvex stochastic optimization;
“specific”: some specific problems; “memory”: memory usage; “time/epochs”: per-epoch running
time; “epochs” and “time": the total epochs and running time to achieve comparable test performance
as SGD; “generalization”: test performance with the same number of epochs as SGD.

6 Conclusion

In this paper, we develop an extension of Anderson mixing, namely Stochastic Anderson Mixing, for
nonconvex stochastic optimization. By introducing damped projection and adaptive regularization,
we establish the convergence theory of our new method. We also analyze its work complexity in
terms of SFO-calls and show it can achieve the O(1/ε2) complexity for an ε-accurate solution. We
also give a specific form of adaptive regularization. Then we propose two techniques to further
enhance our method. One is the variance reduction technique, which can further improve the work
complexity of our method theoretically and help achieve lower empirical risk in our experiments. The
other one is the preconditioned mixing strategy that directly extends Anderson mixing. Experiments
show encouraging results of our method and its enhanced versions in terms of convergence rate or
generalization ability in training different neural networks in different machine learning tasks. These
results confirm the suitability of Anderson mixing for nonconvex stochastic optimization.

Acknowledgments and Disclosure of Funding

This work was supported by the National Key R&D Program of China (No. 2018YFB1005103),
Technology and Innovation Major Project (No. 2020AAA0108403), National Natural Science Foun-
dation of China (No.61925601, No. 61772302, No. 11901338) and Huawei Noah’s Ark Lab. We
thank all anonymous reviewers for their valuable comments and suggestions on this work.

10



References
[1] Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In

International conference on machine learning, pages 699–707. PMLR, 2016.

[2] Donald G Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM
(JACM), 12(4):547–560, 1965.

[3] Wei Bian, Xiaojun Chen, and CT Kelley. Anderson acceleration for a class of nonsmooth
fixed-point problems. SIAM Journal on Scientific Computing, (0):S1–S20, 2021.

[4] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223–311, 2018. doi: 10.1137/16M1080173. URL
https://doi.org/10.1137/16M1080173.

[5] Claude Brezinski, Michela Redivo-Zaglia, and Yousef Saad. Shanks sequence transformations
and Anderson acceleration. SIAM Review, 60(3):646–669, 2018.

[6] Claude Brezinski, Stefano Cipolla, Michela Redivo-Zaglia, and Yousef Saad. Shanks and
Anderson-type acceleration techniques for systems of nonlinear equations. arXiv preprint
arXiv:2007.05716, 2020.

[7] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-
Newton method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031,
2016.

[8] Eric Cancès and Claude Le Bris. Can we outperform the DIIS approach for electronic structure
calculations? International Journal of Quantum Chemistry, 79(2):82–90, 2000.

[9] Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of
Adam-type algorithms for non-convex optimization. In International Conference on Learning
Representations, 2018.

[10] Kai Lai Chung. On a stochastic approximation method. The Annals of Mathematical Statistics,
pages 463–483, 1954.

[11] Jing Dong and Xin T Tong. Replica exchange for non-convex optimization. Journal of Machine
Learning Research, 22(173):1–59, 2021.

[12] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of machine learning research, 12(7), 2011.

[13] Rick Durrett. Probability: Theory and examples, volume 49. Cambridge university press, 2019.

[14] Haw-ren Fang and Yousef Saad. Two classes of multisecant methods for nonlinear acceleration.
Numerical Linear Algebra with Applications, 16(3):197–221, 2009.

[15] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of statistical learning,
volume 1. Springer series in statistics New York, 2001.

[16] Alejandro J Garza and Gustavo E Scuseria. Comparison of self-consistent field convergence
acceleration techniques. The Journal of chemical physics, 137(5):054110, 2012.

[17] Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

[18] Gene H Golub and Charles F Van Loan. Matrix computations, 4th. Johns Hopkins, 2013.

[19] Robert Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik. RSN: Randomized subspace
Newton. In Conference on Neural Information Processing Systems, 2019.

[20] Robert M Gower and Peter Richtárik. Randomized quasi-Newton updates are linearly convergent
matrix inversion algorithms. SIAM Journal on Matrix Analysis and Applications, 38(4):1380–
1409, 2017.

11

https://doi.org/10.1137/16M1080173


[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[22] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

[23] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[24] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[25] Shaojun Huang, Yuanzhang Sun, and Qiuwei Wu. Stochastic economic dispatch with wind using
versatile probability distribution and L-BFGS-B based dual decomposition. IEEE Transactions
on Power Systems, 33(6):6254–6263, 2018.

[26] Xunpeng Huang, Xianfeng Liang, Zhengyang Liu, Lei Li, Yue Yu, and Yitan Li. SPAN: A
stochastic projected approximate Newton method. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 1520–1527, 2020.

[27] Brian Irwin and Eldad Haber. Secant penalized BFGS: A noise robust quasi-Newton method
via penalizing the secant condition. arXiv preprint arXiv:2010.01275, 2020.

[28] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26:315–323, 2013.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[30] Galina M Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.

[31] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[32] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[33] Jian Li, Xuanyuan Luo, and Mingda Qiao. On generalization error bounds of noisy gradient
methods for non-convex learning. In International Conference on Learning Representations,
2019.

[34] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial
large learning rate in training neural networks. Advances in Neural Information Processing
Systems, 32:11674–11685, 2019.

[35] Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of English: The penn treebank. Computational Linguistics, 19(2):313–330, 1993.

[36] James Martens. Deep learning via Hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning, pages 735–742, 2010.

[37] Aryan Mokhtari and Alejandro Ribeiro. Stochastic quasi-Newton methods. Proceedings of the
IEEE, 108(11):1906–1922, 2020.

[38] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):
1574–1609, 2009.

[39] Boris T Polyak. New stochastic approximation type procedures. Automat. i Telemekh, 7(98-107):
2, 1990.

[40] Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

12



[41] Florian A Potra and Hans Engler. A characterization of the behavior of the Anderson acceleration
on linear problems. Linear Algebra and its Applications, 438(3):1002–1011, 2013.

[42] Phanisri P Pratapa, Phanish Suryanarayana, and John E Pask. Anderson acceleration of the
Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear
systems. Journal of Computational Physics, 306:43–54, 2016.

[43] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks,
12(1):145–151, 1999.

[44] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola. Stochastic
variance reduction for nonconvex optimization. In International conference on machine learning,
pages 314–323. PMLR, 2016.

[45] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

[46] Youcef Saad and Martin H Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7
(3):856–869, 1986.

[47] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[48] Jerome Sacks. Asymptotic distribution of stochastic approximation procedures. The Annals of
Mathematical Statistics, 29(2):373–405, 1958.

[49] Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-Newton method for online
convex optimization. In Artificial intelligence and statistics, pages 436–443, 2007.

[50] Damien Scieur, Alexandre d’Aspremont, and Francis Bach. Regularized nonlinear acceleration.
In Proceedings of the 30th International Conference on Neural Information Processing Systems,
pages 712–720, 2016.

[51] Damien Scieur, Francis Bach, and Alexandre d’Aspremont. Nonlinear acceleration of stochas-
tic algorithms. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 3985–3994, 2017.

[52] Damien Scieur, Edouard Oyallon, Alexandre d’Aspremont, and Francis Bach. Nonlinear
acceleration of CNNs. In ICLR Workshop track, 2018.

[53] Damien Scieur, Alexandre d’Aspremont, and Francis Bach. Regularized nonlinear acceleration.
Mathematical Programming, 179(1):47–83, 2020.

[54] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[55] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-RMSprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):
26–31, 2012.

[56] Alex Toth and CT Kelley. Convergence analysis for Anderson acceleration. SIAM Journal on
Numerical Analysis, 53(2):805–819, 2015.

[57] Alex Toth, J Austin Ellis, Tom Evans, Steven Hamilton, CT Kelley, Roger Pawlowski, and
Stuart Slattery. Local improvement results for Anderson acceleration with inaccurate function
evaluations. SIAM Journal on Scientific Computing, 39(5):S47–S65, 2017.

[58] Henk A Van der Vorst and C Vuik. The superlinear convergence behaviour of GMRES. Journal
of computational and applied mathematics, 48(3):327–341, 1993.

[59] Homer F Walker and Peng Ni. Anderson acceleration for fixed-point iterations. SIAM Journal
on Numerical Analysis, 49(4):1715–1735, 2011.

[60] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-Newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

13



[61] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1492–1500, 2017.

[62] Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of Langevin dynam-
ics based algorithms for nonconvex optimization. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pages 3126–3137, 2018.

[63] Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 10665–10673, 2021.

[64] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

[65] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps
forward, 1 step back. In Advances in Neural Information Processing Systems, pages 9597–9608,
2019.

[66] Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon
Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in
observed gradients. Advances in Neural Information Processing Systems, 33, 2020.

14


