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1 Proofs and more details

For convenience, we reserve the matrix RJ
B to denote the net effect of J on B prior to any mixing

effects among B—that is, on the subgraph where Ch(Vb) has been set to ∅ for each Vb ∈ B.

Proposition 3. For any J,B ⊆ V , RJ
B =

(
MB

B

)−1
MJ

B . Moreover, if B is a bottleneck from J to
K, then MJ

K = MB
KRJ

B .

1.1 Theorem 1 and its proof

Let us present the complete theorem first, and then give its proof. Let n be the dimensionality of
X. Remeber p is the number of noise terms. In the case where n = p, MX in (4) is a square
matrix, and its identifiability from X up to column rescaling and permutations has been provided
by Matsuoka et al. [1], but we are concerned with the case where n < p. In the case where the
noise terms εi are non-Gaussian, the identifiability of MX up to column rescaling and permutations
was also given in the literature [2], inspired by the results in [3]. Although the corresponding OICA
problem may be difficult to solve in practice, this identifiability result is nice in that it holds true even
if p is much larger than n. The heterogeneous variance case seems complementary: its maximum
likelihood estimation procedure is simple, but our proof of it uses a constraint on p, given a fixed n
(this condition is sufficient, but may be unnecessary, as illustrated by our simulation results), as given
in the following theorem.

Before presenting Theorem 1, let us give the following lemma, which will be needed in the proof of
Theorem 1.

Lemma 5. Suppose matrix K ∈ Rn×n has linearly independent columns, i.e., Rank(K) = n.
Let K̊ = K − d · 1ᵀ, where d ∈ Rn and 1 is the length-n vector of all 1’s. Then for any d,
Rank(K̊) ≥ n− 1.

Proof. Since K in invertible, let f := K−1 ·d. Then K̊ = K−d·1ᵀ = K(I−f ·1ᵀ), where I denotes
the identity matrix. Since K has full rank, Rank(K̊) = Rank(K(I− f · 1ᵀ)) = Rank(I− f · 1ᵀ).

To show Rank(I− f · 1ᵀ) ≥ n− 1, we can equivalently show that the nullspace of (I− f · 1ᵀ) has
at most dimension one. suppose that g is a nonzero vector in Rn that satisfies the equation:

(I− f1ᵀ)g = 0⇐⇒ g = f · 1ᵀg,

which also implies 1ᵀ · g = 1ᵀ · f · 1ᵀg, or 1ᵀ · f = 1. Therefore, there are two cases to consider:

• If the value of d satisfies 1ᵀ · f = 1ᵀK−1 · d = 1, the nullspace of (I− f1ᵀ) is span(f),
which has dimension one, and accordingly Rank(I− f · 1ᵀ) = Rank(K̊) = n− 1.
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• If the value of d does not satisfy 1ᵀK−1 · d = 1, the nullspace of (I− f1ᵀ) has dimension
zero, and consequently Rank(I− f · 1ᵀ) = Rank(K̊) = n.

We are now ready to present Theorem 1.

Theorem 1 Suppose we have observed X generated according to the mixing procedure (4) in a
number of domains, t = 1, 2, ..., T . Assume that εi are uncorrelated in each domain and that their
variances in domain t, denoted by σ2

ti, change independently across domains in the sense that S,
whose (i, t)th entry is σ2

ti, has full column rank. Further assume that each n columns of MX are
linearly independent and that p ≤ 2n− 2. Then if X admits a model

X = M̃X ε̃, (16)

where ε̃ also follows the above assumption on ε, every column of M̃X must be proportional to a
column of MX and vice versa.

Proof. Let σ2
ti be the variance of ε̃i in the tth domain. Let St be the diagonal matrix with

σ2
t1, σ

2
t2, ..., σ

2
tp on its diagonal, and similarly for S̃t. Let S̃ be the matrix with σ̃2

ti as its (i, t)th
entry. Denote by Mi

X the ith column of MX , and similarly for M̃i
X . In the t-th domain the two

mixing models imply the same distribution, or more specifically, the same covariance matrix, of X.
That is, in the t-th domain,

Cov(Xt) = MXStM
ᵀ
X = M̃X S̃tM̃

ᵀ
X , or equivalently, (17)

Cov(Xt) =

p∑
i=1

σ2
tiM

i
XM

iᵀ
X =

p∑
i=1

σ̃2
tiM̃

i
XM̃

iᵀ
X . (18)

It can also be written as
p∑

i=1

σ2
tiM

i
X ⊗Mi

X =

p∑
i=1

σ̃2
tiM̃

i
X ⊗ M̃i

X , or in matrix form,

(MX �MX ) · S = (M̃X � M̃X ) · S̃, (19)

where ⊗ denotes the Kronecker product and � the Khatri–Rao (column-wise Kronecker) product,
i.e., M̃X � M̃X = [M1

X ⊗M1
X , M

2
X ⊗MX2, ...,M

p
X ⊗Mp

X ].

Since S has full column rank, we can select p columns from it, corresponding to p domains, that
form a full rank matrix. Let this matrix be S∗ . Similarly we have S̃∗ corresponding to the alternative
model (16), corresponding to the same p domains. Equation (19) then implies

(MX �MX ) · S∗ = (M̃X � M̃X ) · S̃∗, (20)

We will use the concept Kruskal-rank [4], denoted by Rankk; the Kruskal-rank of a matrix K is
the maximum number of l such that every l columns of K are linearly independent. Bear in mind
that each n columns of MX are linear independent (i.e., Rankk(MX ) = n) and that p ≤ 2n − 2.
Lemma 1 by Sidiropoulos et al. [5] then implies that the rank of MX �MX is larger than or equal
to min(2n− 1, p) = p. That is, MX �MX has full column rank. Further because S∗ has full rank,
(20) implies that S̃∗ has full rank and that M̃X � M̃X has full column rank.

Right-multiplying both sides of (20) by S̃∗−1 and let Q := S∗ · S̃∗−1, one will get

(M̃X � M̃X ) = (MX �MX ) ·Q. (21)

We shall then show that Q must be a generalized permutation matrix and hence the columns of M̃X
are a permuted and scaled version of those of MX .

Without loss of generality, let us consider the first column of the matrices on both sides of (21), and
let qi1 be the (i, 1)th entry of Q. We have

M̃1
X ⊗ M̃1

X = (MX �MX ) ·Q1 =

p∑
i=1

qi1 · (Mi
X ⊗Mi

X ), (22)
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where qi1 cannot be zero for all i. Since each n columns of MX are linearly independent, it cannot
contain a zero column. Suppose Mi

X k, the (k, i)th entry of MX , is nonzero. According to the
specific structure of the Kronecker product M̃1

X ⊗ M̃1
X in (22), we know that there must exist a

non-zero vector d ∈ Rn such that the RHS satisfies
p∑

i=1

qi1 · (Mi
X ⊗Mi

X ) = d⊗
( p∑
i=1

qi1 · (Mi
Xk ·Mi

X )
)

=

p∑
i=1

qi1 ·
(
(Mi
Xk · d)⊗Mi

X
)

=⇒
p∑

i=1

qi1 ·
(
(Mi
X −Mi

Xk · d)⊗Mi
X
)

= 0

=⇒(M̊X �MX )Q1 = 0, (23)

where M̊X is a n× n matrix with (Mi
X −Mi

Xk · d) as its i-th column, i.e.,

M̊X = MX −Mi
Xk · d · 1T .

We are now about to show that in order for (23) to hold, qi1 6= 0 for one and only one i = 1, 2, ..., p.

There are two cases to consider:

• Suppose one column of M̊X is zero. Note that since Rankk(MX ) = n, each pair of its
columns are linearly independent, so there is only one zero column in M̊X . Let the r-th
column of M̊X be zero. Denote by M̊

(−r)
X the matrix obtained by removing the r-th column

from M̊X , and similarly for M(−r)
X . Let Q1

(−r) be the vector obtained by removing the r-th

entry from the vector Q1. According to Lemma 5, each n columns of M̊(−r)
X have rank at

least n− 1, so Rank(M̊
(−r)
X ) ≤ n− 1. At the same time, Rankk(M

(−r)
X ) = n. Moreover,

M̊
(−r)
X �M

(−r)
X has p−1 columns. Hence Rank(M̊

(−r)
X )+Rankk(M

(−r)
X ) ≥ n−1+n =

2n− 1 ≥ (p− 1) + 1 because it is assumed that p ≤ 2n− 2. Lemma 1 by Guo et al. [6]
then implies that M̊(−r)

X �M
(−r)
X has full column rank. On the other hand, (23) becomes

qr1 · 0 + (M̊
(−r)
X �M

(−r)
X )Q1

(−r) = (M̊
(−r)
X �M

(−r)
X )Q1

(−r) = 0.

Consequently, Q1
(−r) is a zero vector because M̊

(−r)
X �M

(−r)
X has full column rank. That

is, only qr1 is non-zero. Then (22) tells us that

M̃1
X ⊗ M̃1

X = qr1 · (Mr
X ⊗Mr

X ).

Hence, M̃1
X is a scaled version of Mr

X .

• Suppose no column of M̊X is zero. According to Lemma 5, each n columns of M̊X have
rank at least n−1, so Rank(M̊X ) ≤ n−1. Remember Rankk(M

(−r)
X ) = n and M̊X �MX

has p columns. Hence Rank(M̊X ) + Rankk(MX ) ≥ n− 1 + n = 2n− 1 ≥ p+ 1 because
p ≤ 2n− 2. Again, Lemma 1 by Guo et al. [6] indicates that M̊X �MX has full column
rank. Hence, in order for (23) to hold, Q1 must be a zero vector, leading to a contradiction.

Therefore, M̃1
X is a scaled version of Mr

X . Similarly M̃2
X is a scaled version of Mr′

X , and so on.
Because M̃X � M̃X has full column rank, different columns of M̃1

X must correspond to different
columns of MX . Further because of the symmetry between the two models (4) and (16), every
column of M̃X must be proportional to a column of MX and vice versa.

1.2 Proof of Theorem 2

Theorem 2. If F is identified up to trivialities, then the graph induced by F satisfies the bottleneck
and strong non-redundancy conditions.
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We prove this for the two conditions separately. Throughout, we use F, M, and Ch(·) to refer to
the relevant components of the true causal system; and F̂, M̂, and Ch′(·) to refer to the relevant
components of an alternative causal system which we will construct. R is as described in Proposition
3.

Bottleneck condition: Let B 6= Ch(Vi) be a minimal bottleneck from Ch(Vi) to X . Define

F̂i = IBVR
i
B

so that F̂i
j =

[
Ri

B

]
j

if Vj ∈ B and F̂i
j = 0 otherwise. Clearly, (I− F̂) is invertible whenever (I−F)

is. Moreover,

MX F̂
i = MB

XR
Ch(Vi)
B Fi

Ch(Vi)
= M

Ch(Vi)
X Fi

Ch(Vi)
= MXF

i.

So, since MX F̂ = MXF = (M − I)X , (3) shows that (I − F̂)−1X = MX . Thus F̂ generatesM.
Furthermore, ‖F̂‖0 ≤ ‖F‖0 since B is assumed to be minimal, so that F̂ ∈ F . Therefore, since F

and F̂ induce different DAGs when B 6= Ch(Vi), F is not identified up to trivialities.

Parental non-redundancy: If Li → Vj , define P as the identity matrix with the i-th and j-th columns
switched; D as the diagonal matrix with Di

i = 1/F i
j and ones on the rest of the diagonal; and further

M̂X = MXDP,

F̂i = Ij + Ii −
(
F i
j

)−1
PFi,

F̂j = P
[(
F i
j

)−1
Fi + (F− I)j

]
,

F̂k = PD−1Fk for all k 6∈ {i, j},

so that Ch′(Li) = Ch(Li) and Ch′(Vj) ⊆ Ch(Vj), but with weights F̂i 6∝ Fi and F̂j 6∝ Fj .
Moreover, for every other Vk, if Li ∈ Ch(Vk), then Vj ∈ Ch′(Vk) and vice versa. Clearly ‖F̂‖0 ≤
‖F‖0 if Li is a parental redundancy of Vj . Moreover, the resulting graph is acyclic whenever the true
graph is acyclic. We compute:

M̂X F̂
i = M̂X

[
Ij + Ii −

(
F i
j

)−1
PFi

]
= MX

(
F i
j

)−1 [
Ii + F i

j I
j − Fi

]
=
(
F i
j

)−1 [
Mi
X + F i

jM
j
X −Mi

X + IiX

]
= Mj

X

= M̂i
X ,

where we have used the fact that IiX = 0 since Li ∈ L. We further calculate

M̂X F̂
j = MD

[(
F i
j

)−1
Fi + (F− I)j

]
=
(
F i
j

)−1
Mi − Ij

= M̂j − Ij ,

and finally
M̂X F̂

k = MXF
k

for k 6∈ {i, j}. Hence M̂X F̂ = (M − I)X . Rearranging, we see that (I − F̂)−1X = M̂X ∈ M.
Because we have already argued that ‖F̂‖0 ≤ ‖F‖0 if Li is a parental redundancy of Vj , it follows
that F̂ ∈ F if Li is a parental redundancy of Vj . Therefore, due to the changes in causal scale, F is
not identifiable up to trivialities.

Co-parental non-redundancy: If Li 6→ Vj and Vk ∈ Ch(Li) ∩ Ch(Vj), define

F̂j = Fj + (I− F)if,
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where f :=
F j

k

F i
k

. Then Ch′(Vj) = Ch(Vj)∪{Li}∪Ch(Li)−{Vk}. If Li is a co-parental redundancy
of Vj , then the resulting system is no denser than the original. Moreover, the resulting system is
acyclic. Finally, we calculate:

MX F̂
j = (M− I)jX + fIiX

= (M− I)jX ,

since Li ∈ L. With F̂k = Fk for all remaining k 6= i, (3) shows that (F̂ − I)−1X = MX , so that
F̂ ∈ F . But since F induces a different DAG, F is not identified up to trivialities.

Remark: Notice that parental non-redundancy is not necessary to identify the full causal DAG; if Li

is a parental redundancy of Vj , and neither Li nor Vj has any parent, then both the true system and
the alternative system constructed in the proof of Theorem 2 will have the same skeleton. However,
the alternative system is emphatically not a mere re-indexing and re-scaling of latent variables. In
particular, if Vj ∈ X , then the net effect of Xj on X will not be identified.

1.3 Characterizing bottleneck faithfulness

In this section we show that the set of adjacency matrices, corresponding to a fixed graph, that are not
bottleneck faithful is a proper algebraic subset of all adjacency matrices for that graph. That is, the
property of being bottleneck faithful is a generic property, both in the sense that it holds on an dense
open set and that the exception set is of Lebesgue measure zero. But first, we prove Proposition 1
from the main paper.

Proof. (Prop. 1) Decompose MJ
K = MB

KRJ
B using Proposition 3, then Rank

(
MJ

K

)
≤ |B|.

To formalize that bottleneck faithfulness is a generic property, let G denote a graph (a DAG) with p
nodes and n edges. A p × p adjacency matrix F that induces G has n nonzero entries, and we let
FG ⊆ Rn denote the set of adjacency matrices that induce G – with FG regarded as a subset of Rn.
An algebraic subset of FG is a set

A = {F ∈ FG | pol(F) = 0}
where pol is a polynomial. If pol is not the zero polynomial, A is a proper algebraic subset, and it is
well known thatA is then nowhere dense and of Lebesgue measure zero. We will construct a non-zero
polynomial that evaluates to 0 if and only if the adjacency matrix is not bottleneck faithful. To this
end, we first show that for any graph there exists an adjacency matrix that is bottleneck faithful.
Proposition 4. For any graph G there exists F ∈ FG such that F is bottleneck faithful.

Proof. The proof is by induction on the number of edges, n. Clearly for n = 0 we have bottleneck
faithfulness.

For the induction step, let n ≥ 1 and suppose there exists a bottleneck faithful adjacency matrix
for any graph with less than n edges. Let G′ be a graph with n edges, let Vi be a root node with
Ch′(Vi) 6= ∅ the children of Vi in G′. Let G be the subgraph of G′ with all edges out of Vi removed,
and let F ∈ FG denote a bottleneck faithful adjacency matrix for G. By choosing F i

l for l ∈ Ch′(Vi)
we can regard F ∈ FG′ , and the objective is to choose F i

l such that F becomes bottleneck faithful for
G′. In what follows, M denotes the mixing matrix for F on G, that is, when F i

l = 0 for l ∈ Ch′(Vi),
and M′ denotes the mixing matrix on G′ for any choice of F i

l for l ∈ Ch′(Vi).

Given J,K ⊆ V we denote by LJ
K the set of coefficients F i

l for l ∈ Ch′(Vi) for which bottleneck
faithfulness for G′ is violated by J and K.

If Vi 6∈ J , then since Vi is a root in G′, bottleneck faithfulness holds for G′ from J to K – no matter
the coefficients F i

l for l ∈ Ch′(Vi). Thus LJ
K = ∅.

If Vi ∈ J , we have that Mi
K = IiK , and

M′iK = IiK +
∑

l∈Ch′(Vi)

F i
l M

l
K and M′jK = Mj

K for j 6= i.

There are two cases to consider.
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1. There is a minimal bottleneck, B, from J to K in G such that all paths from i to K in G′
pass through B.

In this case, B is also a minimal bottleneck in G′. Since Vi is a root node, Mj
i = 0 for all

j, and replacing zero entries in the column IiK by possibly non-zero entries in the column
M′iK cannot reduce the rank of MJ

K . Thus no choice of F i
l for l ∈ Ch′(Vi) makes J and K

violate bottleneck faithfulness for G′ and LJ
K = ∅.

2. For any minimal bottleneck, B, from J to K in G there is a path from i to K in G′ that does
not pass through B.

Note that in this case, Vi 6∈ K and IiK = 0. Choose any minimal bottleneck, B, in G. Then
B ∪ {i} is a minimal bottleneck in G′, and with col(MJ

K) the column space of MJ
K ,

LJ
K =

(F i
l )l∈Ch′(Vi)

∣∣∣∣∣∣
∑

l∈Ch′(Vi)

F i
l M

l
K ∈ col(MJ

K)

 ⊆ RCh′(Vi).

Note that LJ
K is a linear subspace of RCh′(Vi). Due to bottleneck faithfulness for G,

Rank(M
J∪Ch′(Vi)
K ) ≥ |B|+ 1, or there would be a bottleneck from J to K in G′ of size

|B|. This shows that LJ
K is a true subspace.

The set
⋂

J,K(LJ
K)c contains all valid choices of coefficients F i

l for l ∈ Ch′(Vi) such that F is
bottleneck faithful for G′. Since all LJ

K are true subspaces, their complements are open and dense
and so is their intersection. It is, in particular, non-empty and contains an element with F i

l 6= 0 for all
l ∈ Ch′(Vi).

Proposition 5. Let G be a graph with n edges. The set

A = {F ∈ FG | F is bottleneck faithful for G}

is a proper algebraic subset of Rn. In particular, a generic adjacency matrix F is bottleneck faithful.

Proof. Recall that the mixing matrix for F is

M = (I − F)−1 = I + F + . . .+ Fp,

thus the entries in M are polynomials in the coefficients in F. For any J and K, let bJK denote the
size of a minimal bottleneck from J to K, let

HJ
K = {H | H is a bJK × bJK submatrix of MJ

K},

and define
polJK(F) =

∑
H∈HJ

K

det(H)2.

Clearly, polJK is a polynomial in the coefficients of F, polJK(F) = 0 if and only if bottleneck
faithfulness is violated for F by J and K, and

A =

F ∈ FG

∣∣∣∣∣∣
∏

J⊆V,K⊆V

polJK(F) = 0


is the set of adjacency matrices that are not bottleneck faithful. By Proposition 4 it is non-empty, thus
the defining polynomial is not the zero polynomial and A is a proper algebraic subset.

1.4 Proofs of Theorem 3 and its associated lemmas

First we prove a useful result not in the main text.

Proposition 6. Suppose a partially observed DAG satisfies the bottleneck condition and generalized
non-redundancy. For every Vi, Vj , Ch(Vi) is a bottleneck from Ch(Vj) to X if and only if Vi = Vj .
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Proof. The backward direction is obvious. Conversely, define

S := {Vk ∈ Desc(Vj)− Ch(Vi) : Ch(Vi) is a bottleneck from Vk to X}.

Obviously S ∩ X = ∅, and if S = ∅, then Ch(Vi) is not a bottleneck from Vj to X . Hence,
by acyclicity, there is an Ln ∈ S which has no descendent in S. Therefore Ch(Ln) ⊆ Ch(Vi) ∪
{Vi}.

As indicated in the main paper, we assume in Lemmas 1-4 and Theorem 3 that the bottleneck
condition, strong non-redundancy, and bottleneck faithfulness hold, and thatM is identifiable.

1.4.1 Proof of Lemma 1

Lemma 1. Let J = Ch(Vi). Then the unique solution to (8) is given by x = Fi
Ch(Vi)

.

Proof. For uniqueness, notice that

Rank
(
M

Ch(Vi)
X

)
≥ Rank

(
M

Ch(Vi)
X−{Vi}

)
= |Ch(Vi)|,

with the equality following from the bottleneck condition and bottleneck faithfulness.

To see that Fi
J is a solution, notice that MJ

XF
i
J = MXF

i, and use (3).

1.4.2 Proof of Lemma 2

Lemma 2. Suppose J ⊆ V − Anc(Vi). If (M − I)iX ∈ Range
(
MJ
X
)
, then |J | ≥ |Ch(Vi)|, with

equality if and only if J = Ch(Vi).

Proof. Let J ⊆ V − Anc(Vi). The i-th row of (8) is satisfied trivially: MJ
i = 0 when J ⊆

V −Anc(Vi), and (M− I)ii = 0 by acyclicity. Thus (8) has a solution if and only if

Mi
X−{Vi} = MJ

X−{Vi}x

has a solution. This can be factorized as

MB
X−{Vi}R

i
B = MB

X−{Vi}R
J
Bx,

where B is any minimal bottleneck from {Vi} ∪ J to X − {Vi}. By bottleneck faithfulness,

Rank
(
MB
X−{Vi}

)
= |B|

so that there is a solution to (8) if and only if

Ri
B = RJ

Bx.

We distinguish two cases: either Vi ∈ B, or Vi 6∈ B.

In the first case, Ri
B is a B-dimensional basis vector with 1 in the i-th slot and 0 elsewhere. Thus if

there is a solution, RJ
i 6= 0, so that J has a path to Vi. Hence J ∩Anc(Vi) 6= ∅.

In the second case, bottleneck faithfulness and the fact that B is a minimal bottleneck indicate that
|J | ≥ |B|. Noting that B is a bottleneck from Ch(Vi) to X , we apply the bottleneck condition:
|B| ≥ |Ch(Vi)| with equality if and only if B = Ch(Vi). Moreover, for each Vj ∈ J , Ch(Vi)
is a bottleneck from Vj to X − {Vi} if and only if Vj ∈ Ch(Vi) by Proposition 6. Combining,
|J | ≥ |B| ≥ |Ch(Vi)| with equalities if and only if J = B = Ch(Vi).

1.4.3 Proof of Lemma 3

Lemma 3. For every k ≥ 0, let Vk and Jk(Vi) be defined as in the main paper. Then Vi ∈ Vk+1−Vk
if and only if all of the following hold:

1. Vi 6∈ Vk,

2. |Support(Mi)−Xk| ≤ 1,

7



3. |Jk+1(Vi)| = 1, and

4. for all Vj 6= Vi satisfying points 1 and 2, Mj
Xk
6∈ Range

(
M

Jk(Vi)
Xk

)
.

Proof. Suppose Vi ∈ Vk+1 − Vk. The first conjunct is obvious, the second conjunct follows by
acyclicity, and the third conjunct follows from Lemma 2. For the fourth conjunct, take any other Vj ,
and let B be a minimal bottleneck from {Vj} ∪ Ch(Vi) to Xk. Then B is further a bottleneck from
{Vj} ∪Ch(Vi) to X . By Proposition 6, B 6= Ch(Vi), since B is in particular a bottleneck from Vj to
X . Hence, by the bottleneck condition, |B| > |Ch(Vi)|, since B is in particular a bottleneck from
Ch(Vi) to X . Therefore,

Rj
B = R

Ch(Li)
B x

has no solution due to bottleneck faithfulness, so that

Mj
Xk

= M
Ch(Vi)
Xk

x

also has no solution by bottleneck faithfulness applied to MB
Xk

.

Conversely, suppose Vi 6∈ Vk+1 − Vk, and let J ∈ Jk+1(Vi). Clearly there exists some Vj ∈
(Vk+1−Vk)∩Desc(Vi). Now, for any minimal bottleneckB from {Vi}∪J toXk, Ri

B ∈ Range(RJ
B)

by bottleneck faithfulness on MB
Xk

. Since J ⊆ Vk, it follows that B ⊆ Vk; otherwise some row of
RJ

B is zero, proving that either B is not minimal, or that J does not admit a solution to (8). So in
particular, Anc(Vj) ∩B = ∅. Therefore, since Vi has a path to Vj , and since B is a bottleneck from
Vi to Xk, B is a bottleneck from Vj to Xk. Hence

Mj
Xk
∈ Range

(
MB
Xk

)
⊆ Range

(
MJ
Xk

)
,

since B is by definition a bottleneck from J to Xk. Because Vj clearly satisfies conjuncts 1 and 2,
the fourth conjunct is violated.

1.4.4 Proof of Lemma 4

Lemma 4. Xi ∈ Xk+1 if and only if Xi ∈ Vk+1 and Support (Mi)−Xk = {i}.

Proof. This follows from definitions and acyclicity.

1.4.5 Proof of Theorem 3

Theorem 3. Suppose F satisfies strong non-redundancy, bottleneck faithfulness, and the bottleneck
condition. Then F is identifiable up to trivialities.

Proof. Lemma 3 shows that MVkX is identifiable fromM up to permutation and scaling of columns,
since neither it nor Lemma 2 upon which it relies makes any assumptions about the scaling or
permutation of M.

From here, Lemma 4 shows that MX
X is identifiable up to scaling for each X ∈ X . But then MX

X is
identifiable exactly since MX

X = 1 by acyclicity. Hence MXX is identifiable exactly, and MLX up to
permutation and scaling of columns. In other words,

M̃ := {MXDP : DP ∈ DPp with (DP)XX = I} ⊂ M

is identifiable.

Fix any M̃ ∈ M̃, and let PD satisfy M̃PD = MX . Without loss of generality, reindex the latent
variables so that P = I. Because Vk is identified for every k, apply Lemma 2 to conclude that
M̃Ch(Vi) is identifiable for every i. Moreover, notice that M̃i = M̃Ch(Vi)x if and only if Mi

X =

M
Ch(Vi)
X

[
D

Ch(Vi)
Ch(Vi)

x/Di
i

]
. By Lemma 1, this holds if and only if x = Di

i(D
−1)

Ch(Vi)
Ch(Vi)

Fi
Ch(Vi)

.

Repeating for every Vi, F̃ := D−1FD is identified from M̃.
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2 Detailed experimental results

2.1 BIC penalty

As indicated in the main paper, we created 10 causal systems for each of the graphs in Figure 5. The
causal weights were drawn uniformly from (−0.9,−0.5) ∪ (0.5, 0.9), and the independent variances
σ2
t,i were drawn independently and uniformly from (0.5, 2.0). For each of the T domains, n samples

were then simulated according to (12).

To estimate the full system, we enumerate all partially observed DAGs with three observed and at
most two latent variables, and optimize all causal weights and noise variances using L-BFGS. As
initialization, every covariance term and non-zero causal weight was set to 1. We then selected the
graph with the lowest BIC:

BIC(F,Σ) = −2``(F,Σ) + ‖F‖0 log(nT ).

The table below summarizes the rate at which the correct skeleton was learned for each graph and
each choice of T × n.

Graph 1× 5000 3× 1666 5× 500 5× 1000 5× 10000
(i) 10 10 10 10 10
(ii) 4 9 9 10 10
(iii) 2 10 9 8 9
(iv) 2 10 10 9 10
(v) 10 10 9 9 10
(vi) 1 7 4 6 8
(vii) 0 7 8 10 10
(viii) 0 7 8 9 10
(ix) 0 9 8 9 10
(x) 0 6 6 10 10
(xi) 0 9 6 9 10
(xii) 0 9 9 9 10
(xiii) 0 6 3 7 8
(xiv) 0 2 2 4 9
(xv) 0 0 1 3 6
(xvi) 2 9 8 9 10
(xvii) 0 0 1 3 5
(xviii) 0 5 7 8 10
(xix) 0 3 0 4 10
(xx) 0 5 2 6 10
(xxi) 0 3 1 2 8
(xxii) 0 5 0 5 8

Notice that the three sample sizes 1× 5000, 3× 1666, and 5× 1000 all have the same total number
of samples; any difference in performance is therefore attributable to the diversity of domains, and
not to mere sample size.

Obviously these are not the only identifiable graphs; however, they are the only identifiable graphs
up to re-indexing of variables. For example, graph (vii) has three versions: X1 ← L → X2,
X1 ← L→ X3, and X2 ← L→ X3. However, it is clearly sufficient to study the empirical recovery
rate of only one of the three structures. Nevertheless, the exhaustive search was performed over
all 1759 possible graphs with at most two latent variables; that is to say, for example, that the BIC
optimization for graph (vii) included all three of these possibilities.

Recovery for graphs with exactly one latent and over 3 edges—graphs (xiii), (xiv), and (xv)—was
relatively poor. In many incorrectly recovered graphs, the model of best fitting had an additional
latent variable. In some sense, this gives the model an extra degree of freedom to approximate the
covariances, by providing a larger overcomplete basis. However, only the number of edges was
penalized in the L0 penalty, and not the number of latents. This was not possible in the case of (xii),
as every graph with two latents has at least 4 edges, and so the BIC penalty was effective to prevent
this. It is possible that this could be avoided by choosing the number of latent variables by a separate
prior method, or by penalizing the number of latent variables. However, since this is not relevant
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(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi)

(xvii) (xviii) (xix) (xx)

(xxi) (xxii)

Figure 5: Identifiable graph skeletons, up to re-indexing of variables.

to enough graphs which are computationally admissible in an exhaustive search, we are not able to
effectively study these cases.

The other graph with poor performance was (xvii). Note that in this case, with two latent variables
and three measured variables, the mixing matrix MX is not guaranteed to be recoverable by Theorem
1. (Recall that Theorem 1 gives sufficient identifibility conditions, which might not be necessary,
and in the two cases the condition p ≤ 2n− 2 does not hold.) However, in every alternative graph,
the recovered system had a very different mixing matrix—even in terms of sparsity patterns up to
permutation of columns! We therefore attribute this indeterminacy to a non-identifiable mixing matrix
in the heterogeneous case, and not to an unidentifiable graph structure in general (for example, in the
single-domain non-Gaussian setting).

For the sake of reproducibility, we have included the code for this main experiment, along with
instructions for how to generate these results.

2.2 Detailed experimental results: Unidentifiable graphs

Here we show detailed estimation results for the three equivalence classes of Figure 6. For each
of graphs (i) through (ix) of Figure 6, we generated 15 adjacency matrices as in the identifiable
experiments—that is, with weights drawn uniformly from (−0.9,−0.5) ∪ (0.5, 0.9). Further, we
drew 1000 samples from 5 domains, with the variance of each noise term σ2

t,i drawn uniformly from
the interval (0.5, 2.0). We then optimized the log likelihood for each of the three systems in each
equivalence class, and selected the model with the best optimized log likelihood. Since we are only
showing that the graphs in each class are equivalent, we do not need to search over all possible latent
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(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

(x) (xi)

(xii) (xiii)

Figure 6: Three equivalence classes of graphs: {(i), (ii), (iii)} are equally sparse and observationally
indistinguishable, as are {(iv), (v), (vi)} and {(vii), (viii), (ix)}. Moreover, (x) (xi) (xii) and (xiii) are
not minimal, with (x) being observationally equivalent to (i) and (xi) being observationally equivalent
to (iv). (xii) and (xiii) are discussed in Figure 1 of the main paper.

DAGs, but only over DAGs in the equivalence class. The charts below show the number of times
each graph was chosen.

True graph Times (i) was selected Times (ii) was selected Times (iii) was selected
(i) 6 3 6
(ii) 7 4 4
(iii) 7 1 7

True graph Times (iv) was selected Times (v) was selected Times (vi) was selected
(iv) 8 3 4
(v) 6 4 5
(vi) 7 2 6

True graph Times (vii) was selected Times (viii) was selected Times (ix) was selected
(vii) 2 5 8
(viii) 1 8 6
(ix) 1 7 7
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In general, the difference in average log likelihood was on the same order as the convergence tolerance,
‖∇2``/n‖∞ < 10−8, where n is the total number of samples.

We ran a similar experiment for the non-minimal graphs (x)-(xiii). For each, 10 heterogeneous causal
systems were generated, and 1000 samples were simulated from each of the T = 5 domains. For
every overly dense graph, on all 10/10 trials, a sparser and observationally equivalent graph received
a lower BIC score than the true overly dense one.

2.3 Detailed experimental results: L1 penalty

In this section, we show exact results for a random system generated with skeleton (xviii). Results
for other partially observed graphs are similar.

The true causal model is given by:
L1

L2

X1

X2

X3

 =


0 0 0 0 0
0 0 0 0 0

0.82 0 0 0 0
0.53 0.51 0 0 0

0 0.82 0 0 0



L1

L2

X1

X2

X3

+ ε.

As in the tests of the BIC algorithm, we used 5 domains. In the t-th domain, ε ∼ N (0,Σt) for
diagonal Σt. The variances for the t-th domain (i.e. the diagonal entries of Σt) are listed in the t-th
row of the matrix below:

S =


1.45 0.71 1.91 1.28 1.12
0.89 1.66 1.18 1.35 0.52
1.42 1.41 1.42 1.91 1.52
1.03 1.15 1.54 0.59 1.50
1.50 0.81 0.69 0.97 1.04

 .
All coefficients were randomly drawn by the same method used for the BIC-simulation studies.

We simulated 1000 observations for each of the 5 domains, and then estimated the adjacency matrix
by minimizing

−2``(F,Σ)/(nT ) + λ
∑
|Fi,j |

as in (15), subject to σt,i ∈ (0.1, 2.0) for each t ∈ {1, ..., 5} and i ∈ L. It is necessary to bound each
of the latent σ, because otherwise it would be possible to evade the L1 penalty by making FL very
small but ΣL very large. However, to give the L1 optimizer the fairest chance of finding the true
system, we constrained the latent values of σ with the same upper bound as Σ was generated with.

Because this is a non-convex objective, we ran L-BFGS-B from 10 random initializations, and used
the point which best optimized (15).

Below we show the best-fitting adjacency matrix for various choices of λ. Recovered edges with
strength in (−0.1, 0.1) were pruned.

λ = .5; our procedure returned:


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


λ = .1; our procedure returned:


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0.20 0 0
0 0 0 0.23 0


12



λ = .015; our procedure returned: 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0.37 0.24 0 0
0 0.31 0 0.19 0


Interestingly, at this choice of λ, the true graph was no longer a local minimum; with the truth as
initialization, the optimizer moves to

0 0 0 0 0
0 0 0 0 0

0.45 0 0 0 0
0.39 0.36 0.12 0 0

0 0.41 0 0.16 0


which has a much smaller L1 penalty than the true system.

λ = .01; our procedure returned: 
0 0 0 0 0
0 0 0 0 0

0.39 0 0 0 0
0.38 0.37 0.16 0 0

0 0.32 0 0.21 0


With the truth as initialization, the optimizer moves to an adjacency matrix with similar support.
Again, these systems incur a smaller L1 penalty than the true system, even though they are denser
than the true system.

Similar results for each choice of λ are obtained with 10 000 samples in each domain.
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