
Geometry Processing with Neural Fields
- Supplementary Materials -

Guandao Yang ∗

Cornell University
Serge Belongie

University of Copenhagen
Bharath Hariharan
Cornell University

Vladlen Koltun
Intel Labs

Contents
1 Overview 1
2 Basic Properties 1
3 Properties of Implicit Thin Shell Losses 3

3.1 Stretching and Bending Loss Reaches Zero . 3
3.2 Connection to Thin-shell energy . 4

4 Derivation for Change of Variable 5
5 Implementation details 7

5.1 Architectures . 7
5.2 Optimizations and hyper-parameters . 7
5.3 Experiments . 7

6 Additional quantitative results 8
6.1 Quantitative Results for Deformation . 8
6.2 Quantitative Results for Sampling . 8
6.3 Visualization of Threshold-ed Points for Shape Smoothing and Sharpening 9

7 Discussion of Limitations and Future Work 9

1 Overview

This supplementary material contains theoretical derivations, implementation details, and additional
results and discussions. We will review some useful properties of neural fields (Section 2). Then we
will show the derivation of some important properties of the loss functions in Section 3. We also
show the connection between thin shell energy and our losses in Section 3. Section 4 contains the
derivation for the change of variable formula (i.e. Main paper equation (8)). We will provide the
implementation details in Section 5). Some additional results are shown in Section 6 to understand
our method’s behavior better. Finally, we will provide a more detailed discussion of limitations and
future works (Section 7).

2 Basic Properties

In this section, we will extend on some properties of the implicit fields. In particular, we will first
show some properties of the projection matrix. Then we will show some properties of surface normal
and tangent vectors. These properties will be used in later sections (i.e. Sec 3 and Sec 4).

∗Email: gy46@cornell.edu. This work is done while Guandao is interning in Intel Labs.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).
1

Theorem 2.1. (Properties of surface normal and projections) For surface normal vector n, we have
the followings:

1. The matrix P = I− nnT projects vectors onto the tangent plane.

2. PT = P = PP.

Proof. For the first property, we want to show for all vector v, Pv is perpendidular to n:

(Pv)
T
n = vT

(
I − nnT

)T
n

= vTn− vTnTnn

= vTn− vTn = 0

We now need to show that Pv is the shortest point of v to the tangent plane. This can be seen as
v −Pv = nnTv is a vector perpendicular to the tangent plane. The length of v −Pv equals the
projection of v onto the surface normal direction: nTv.

Second properties can be seen by simple algebra:

PP =
(
I− nnT

) (
I− nnT

)
= I− 2nnT + (nnT)T (nnT)

= I− 2nnT + nTnnnT

= I− 2nnT + nnT

= I− nnT = P

and PT = I−
(
nnT

)T
= I− (nT)TnT = I− nnT = P.

Theorem 2.2. (Transformation in Tangent and Surface normal directions) Let F : R3 → R be a
signed distance field, and D : R3 → R3 is an invertible deformation field. Define a new field G by
G(x) = F (D(x)), then the following will be true:

1. Let y = D(x), then nG(x) =
JD(x)TnF (y)

∥JD(x)TnF (y)∥ (thus nF (y) =
JD(x)−TnG(x)

∥JD(x)−TnG(x)∥).

2. Let u ∈ R3 be a vector that uTnG(x) = 0 (i.e. in the tangent plane of Gθ at point x), then
(JD(x)u)

T
nF (y) = 0 (i.e. in the tangent plane of F at point y).

3. PF (y)JD(x)PG(x) = JD(x)PG(x).

Proof. By chain rule, we have ∇xG(x) = (∇yF (y))
T
JD(x) = JD(x)TnF (y) since F is a signed

distance field (i.e. nF (y) = ∇yF (y)). This implies:

nG(x) = ∥∇xG(x)∥−1JD(x)TnF (y) =
JD(x)TnF (y)

∥JD(x)TnF (y)∥
.

With this we can prove the second part:

(JD(x)u)
T
nF (y) = uT

(
JD(x)TnF (y)

)
= uTnG(x)

∥∥JD(x)TnF (y)
∥∥ = 0.

2

For the third property, we have:

PFJDPG =
(
I− nFn

T
F

)
JD

(
I− nGn

T
G

)
=

(
I− nFn

T
F

) (
JD − JDnGn

T
G

)
= JD − JDnGn

T
G − nFn

T
FJD + nFn

T
FJDnGn

T
G

= JD − JDnGn
T
G − nF

(
JT
DnF

)T
+ nF

(
JT
DnF

)T
nGn

T
G

= JD − JDnGn
T
G − nFn

T
G

∥JDnF ∥
+

nFn
T
GnGn

T
G

∥JDnF ∥

= JD − JDnGn
T
G − nFn

T
G

∥JDnF ∥
+

nFn
T
G

∥JDnF ∥
= JD

(
I− nGn

T
G

)
= JDPG.

3 Properties of Implicit Thin Shell Losses

In this section, we will show some properties of the stretching and bending loss. We first discuss the
properties when stretching and bending loss reaches 0. We then discuss the relationship between
these two losses and the thin-shell energy.

3.1 Stretching and Bending Loss Reaches Zero

In particular, we want to show that when the stretching or bending loss reaches zero at a point, its
counterpart that assumes a particular parameterization also reaches zero.
Theorem 3.1. (Stretch Loss) Assume the iso-surface Mf of field f is parameterized by y(u, v) ∈ R3.
Field g is defined by g = f(D(x)) with an invertible function D : R3 → R3. Let x = D−1(y). Let
If (y) and Ig(x) be the first fundamental form of Mf and Mg for point y and x respectively. If∥∥Pg(x)

TPg(x)−Pg(x)
TJD(x)TJD(x)Pg(x)

∥∥
F
= 0, (1)

then we will have

∥Ig(x)− If (y)∥F = 0, (2)

where ∥·∥F denotes the Frobenius norm.

Proof. Since y = D(x), so the surface Mg can be parameterized by x(u, v) = D−1(y(u, v)). Note
that x(u, v) ∈ R3. Then by chain rule we have xu = JD−1(y)yu and xv = JD−1(y)yv . Since D is
invertible, we have yu = JD(x)xu and yv = JD(x)xv .

Now we compute the difference between two fundamental forms:

Ig(x)− If (y) =
[
xT
uxu xT

uxv

xT
v xu xT

v xv

]
−

[
yT
uyu yT

uyv

yT
v yu yT

v yv

]
=

[
xT
uxu xT

uxv

xT
v xu xT

v xv

]
−

[
xT
uJ

T
DJDxu xT

uJ
T
DJDxv

xT
v J

T
DJDxu xT

v J
T
DJDxv

]
= B(x)T

(
I− JT

DJD

)
B(x),

where B(x) = [xv xu] is a 3 × 2 matrix (Since xu and xv are all R3). We want to show that if
Equation 1 holds, then for all vectors w1 = [u1 v1] ∈ R2 and w2 = [u2 v2] ∈ R2, we will have
wT

1 (Ig − If)w2 = 0.

Let t1 = B(x)w1 ∈ R3 and t2 = B(x)w2, which are two tangent vectors at point x on iso-surface
Mg. We want to show that tT1

(
I− JT

DJD

)
t2 = 0. One way to see that is to reparameterize the

tangent vectors with

t1,2 = Pg(x) (u1,2xu + v1,2xv) = Pg(x)t1,2,

3

which holds because xT
unG(x) = xT

v nG(x) = 0 by definition (i.e. nG(x) =
xu×xv

∥xu×xv∥). With the
reparameterization, we have

wT
1 (Ig − If)w2 = tT1

(
I− JT

DJD

)
t2

= tT1 Pg(x)
T
(
I− JD(x)TJD(x)

)
Pg(x)t2

= tT1
(
Pg(x)

TPG(x)−Pg(x)
TJD(x)TJD(x)Pg(x)

)
t2

= 0,

since
∥∥Pg(x)

TPG(x)−Pg(x)
TJD(x)TJD(x)PG(x)

∥∥
F
= 0.

Theorem 3.2. (Bending Loss) Assume the iso-surface Mf of field f is parameterized by y(u, v) ∈
R3. Field g is defined by g = f(D(x)) with an invertible function D : R3 → R3. Let x = D−1(y).
Let IIf (y) and IIg(x) be the first fundamental form of Mf and Mg for point y and x respectively.
Let Sf (y) and Sg(x) be the shape operator of Mf and Mg for point y and x respectively. If∥∥PT

g

(
D(ng)− JT

DD(nf)JD

)
Pg

∥∥
F
= 0, (3)

then we will have

∥IIg(x)− IIf (y)∥F = 0, (4)

where ∥·∥F denotes the Frobenius norm.

Proof. Recall that the second fundamental form has the following properties:

II =
[
xT
uun xT

uvn
xT
vun xT

vvn

]
=

[
xT
uD(n)xu xT

uD(n)xv

xT
v D(n)xu xT

v D(n)xv

]
= BTD(n)B,

where B = [xu xv] and D(·) is the total derivative of surface normal n in canonical coordinate
system. With this properties, then we can express the fundamental form of surface Mf as IIf =
BTJT

DD(ng)JDB. Then the difference between two fundamental forms will be:

IIg − IIf = BT
(
D(ng)− JT

DD(nf)JD

)
B.

For any vector [a1 b1] and [a2 b2], define t1,2 = B[a1,2 b1;2]
T . Note that t1,2 are tangent vectors for

surface Mg since tT1,2ng = a1,2x
T
ung + b1,2x

T
v ng = 0. As a result, t1,2 = Pgt1,2.

[a1 b1] (IIg − IIf) [a2 b2]
T = [a1 b1]

TBT
(
D(ng)− JT

DD(nf)JD

)
B[a2 b2]

T

= tT1
(
D(ng)− JT

DD(nf)JD

)
t2

= tT1 P
T
g

(
D(ng)− JT

DD(nf)JD

)
Pgt2 = 0.

Since this holds for any a1,2 and b1,2, the matrix IIg − IIf must be zero.

3.2 Connection to Thin-shell energy

In this section, we will show the connection between thin-shell energy and our model. Recall that
thin-shell energy encourages the materials to resist stretching and bending, thus creating elastic
deformation. The thin-shell energy is a combination of two terms: the stretching energy, which
measures how the surface (and in particular the tangent planes) has been stretched, and the bending
energy, which measures the degree to which the curvatures along different directions have changed.

When the surfaces has a natural parameterization x(u, v) and y(u, v), this shell energy is written as
following:

E(x,y) =
∫∫

λs ∥Ix(u, v)− Iy(u, v)∥2F︸ ︷︷ ︸
Es(x,y)

+λb ∥IIx(u, v)− IIy(u, v)∥2F︸ ︷︷ ︸
Eb(x,y)

dudv, (5)

where If and IIf denotes the first and second fundamental forms (R2×2 matrices) for surface f(u, v),
and ∥·∥F is the Frobenius norm. Intuitively, the first fundamental form describes lengths and areas, so
the difference ∥Ix − Iy∥2F measures stretching. The second fundamental form describes curvatures,

4

so the difference ∥IIx − IIy∥2F measures bending. λs and λb control the resistance to stretching and
bending, respectively.

In the previous section, we’ve established that if the stretch loss reaches 0, then the difference between
the first fundamental forms will reach 0. This means that Es in the thin shell energy will reach 0 as
well. Similarly, if the bending loss reaches 0, then the difference between the second fundamental
forms will be 0. As a result, Eb will reach 0.

4 Derivation for Change of Variable

In this section, we will provide derivation for Equation 8 in Section 5.3.3 of the main paper. We will
first compute the surface area change and then leverage the change of surface area to derive Equation
8.

Theorem 4.1. (Change of surface area) Assume the iso-surface Mf of field f is parameterized by
y(u, v) ∈ R3. Field g is defined by g(x) = f(D(x)) with an invertible function D : R3 → R3. Let
x = D−1(y), and let ng be the surface normal of Mg at certain point. Then we will have the change
of local surface area to be

|yu × yv|
|xu × xv|

= det
(
PgJ

T
DJDPg + ngn

T
g

)
(6)

Proof. By the identity of cross product, we have

|xu × xv| = det

[
xT
uxu xT

uxv

xT
v xu xT

v xv

]
= det Ig = det

(
BTB

)
,

where B = [xu xv]. Similarly we have:

|yu × yv| = det

[
yT
uyu yT

uyv

yT
v yu yT

v yv

]
= det

[
xT
uJ

T
DJDxu xT

uJ
T
DJDxv

xT
v J

T
DJDxu xT

v J
T
DJDxv

]
= det If = det

(
BTJT

DJDB
)
,

Now defined an extended version of B ∈ R3×3 as Bn = [xu xv ng]. Then we will have:

det
(
BT

nBn

)
= det

xT
uxu xT

uxv xT
ung

xT
v xu xT

v xv xT
v ng

nT
g xu nT

g xv nT
g ng

 = det

[
BTB 0
0T 1

]
= det

(
BTB

)
With this, we will show the following:

det
(
BTJT

DJDB
)
= det

(
BT

nBn

)
det

(
PgJ

T
DJDPg + ngn

T
g

)
= det

(
BT

n

(
PgJ

T
DJDPg + ngn

T
g

)
Bn

)
= det

(
BT

nP
T
g J

T
DJDPgBn +BT

nngn
T
g Bn

)
.

First, observe that

PgBn =
(
I− ngn

T
g

)
Bn

= Bn − ngn
T
g [xu xv ng]

= Bn − ng[n
T
g xu nT

g xv nT
g ng]

= [xu xv ng]− ng[0 0 1]

= [xu xv ng]− [0 0 ng]

= [xu xv 0]

5

With this we have:
BT

nP
T
g J

T
DJDPgBn = [xu xv 0]TJT

DJD[xu xv 0]

=

xT
uJ

T
DJDxu xT

uJ
T
DJDxv 0

xT
v J

T
DJDxu xT

v J
T
DJDxv 0

0 0 0

=

[
BTJT

DJDB 0
0T 0

]
Similarly, since we know nT

g Bn = [nT
g xu nT

g xv nT
g ng] = [0 0 1], we have:

BT
nngn

T
g Bn = (Bnng)

T
(Bnng)

= [0 0 1]T [0 0 1]

=

[
0 0 0
0 0 0
0 0 1

]
.

Putting these two terms together, we have:

det
(
BT

nP
T
g J

T
DJDPgBn +BT

nngn
T
g Bn

)
= det

([
BTJT

DJDB 0
0T 1

])
= det

(
BTJT

DJDB
)
.

Theorem 4.2. (Change of variable intergration) Assume the iso-surface Mf of field f is parameter-
ized by y(u, v) ∈ R3. Field g is defined by g = f(D(x)) with an invertible function D : R3 → R3.
Mg can be parameterized by x(u, v) = D−1(y(u, v)). Then the surface intergral can be evaluated
by: ∫

x∈Mg

L(x)dx =

∫
y∈Mf

L(D−1(y))
∣∣det (JDPg + nfn

T
g

)∣∣−2
dy. (7)

Proof. We first apply the change of variable for surface intergral:∫
x∈Mg

L(x)dx =

∫∫
L(x(u, v))|xu × xv|dudv

=

∫∫
L(D−1(y(u, v)))

|xu × xv|
|yu × yv|

|yu × yv|dudv

=

∫
y∈Mf

L(D−1(y))

(
|yu × yv|
|xu × xv|

)−1

dy

=

∫
y∈Mf

L(D−1(y))
(
det

(
PgJ

T
DJDPg + ngn

T
g

))−1
dy.

Then we apply the fact that detAT = detA, we have:

|detJDPg + nfn
T
g |−2 = |det

((
JDPg + nfn

T
g

)T (
JDPg + nfn

T
g

))
|−1

= |det
(
PT

g J
T
DJDPg +PT

g J
T
Dnfn

T
g + ngn

T
f JDPg + ngn

T
f nfn

T
g

)
|−1

= |det
(
PT

g J
T
DJDPg + ngn

T
g +PT

g J
T
Dnfn

T
g + ngn

T
f JDPg

)
|−1

Now it’s left to show that PT
g J

T
Dnfn

T
g = ngn

T
f JDPg = 0. Recall that JT

Dnf = Cng where C is a
constant C =

∥∥JT
Dnf

∥∥. Also PT
g = Pg . With these, we have:

PT
g J

T
Dnfn

T
g = CPgngn

T
g

= C
(
I− ngn

T
g

)
ngn

T
g

= C
(
ngn

T
g − ngn

T
g ngn

T
g

)
= C

(
ngn

T
g − ngn

T
g

)
= 0

Since
(
ngn

T
f JDPg

)T

= PgJ
T
Dnfn

T
g = 0, so ngn

T
f JDPg = 0.

6

5 Implementation details

5.1 Architectures

Input network. The input network is MLP with sin activation [6]. For Armadillo, Cactus, Dino,
and Half-Noisy Sphere, the hidden dimensions are 3-512-512-512-512-512-512-3. For simpler shapes
(i.e., Cylinder and Bar), the hidden dimensions are 3-512-512-512-3. For the 2D rectangle, we use
2-128-128-128-128-2. For shape smoothing and sharpening, the output network assumes the same
topology as the input network.

Deformation network. For all our deformation experiments, we use six invertible residual blocks.
The positional encoding of residual blocks uses L = 5, so the input coordinate with d-dimensions
will be expanded to d(L + 1)-dimension before being processed by the MLP. These MLPs use
ELU [1] activations with 256 hidden nerons. Specifically, the dimensions evolves as following:
d-d(L + 1)-256-256-d. We apply spectrum normalization to each of the linear layers to enforce
Lipschitz continuity.

5.2 Optimizations and hyper-parameters

Input network We use the following objectives to train the input neural field Fθ:

L(θ) =
∫
x∈U

(Fθ(x)− ygtr)
2
+ kg (∥∇xFθ(x)∥ − 1)

2
dx. (8)

We set kg = 0.01 according to Gropp et al. [4]. We use Adam with a 1e− 5 learning rate to train for
300000 steps to obtain the input network. For simpler shapes, we also do early stopping when we see
the training loss converged before using up all the steps.

Distillation We choose λg = 0.01 and λc = 0.0001 for all experiments. For smoothing, we set
β = 0; for sharpening, we set β = 2. The threshold is chosen to be 50 for all shapes. Each updating
iterations, we will sample 5000 uniformly from the space the input is well supervised (e.g., in our
case, it is [−1, 1]3). We use Adam optimizer with a learning rate of 1e− 5 to train for 1000 iterations
and report the performance for the last iterations. These experiments were run on a workstation GPU
(e.g., Geforce 1080 Ti or TitanX, with about 10-12 GB memory) for about 10 minutes.

Deformation For deformation, we initialize λ0 = 100. We use Adam optimizer for the SGD step
using a learning rate of 1e− 5. Similarly, we set µ = 1e− 5 to update λi. We set τc = 1e− 4 for all
handles. For deformation experiments, we use slightly different hyper-parameters (i,e. ks and kb) for
different shapes. For 3D shapes, we set ks = 0.1 and kb = 1e − 3. This hyper-parameter usually
works well for most shapes. For cylinders, we tune down the bending resistance to kb = 1e− 5 to
better preserve surface area. Each experiment was run on a workstation GPU (e.g., Geforce 1080 Ti
or TitanX, with 12GB memory) for about 5 - 10 hours. We ran for 100k iterations but usually will
early stop when training loss converges.

5.3 Experiments

Data processing pipeline. We use package mesh-to-sdf 2 to produce ground truth SDF for 5M
uniformly sampoled points (within [−1, 1]3) and for 5M near surface points. The near-surface points
are obtained by first uniformly sampled 5M points on the surface, then perturbed these points by
ϵ ∼ N (0, σ2I) with σ = 0.1. These ground truths will be used as training. This data preprocessing
pipeline requires about 15-30 minutes to run. Together with the training, it will take about just as
long as optimizing for the deformation objectives (i.e., about 10 hours).

Shape filtering baselines. To extract meshes for the baselines, we first evaluate the field on 5123

voxels and run marching cube to obtain high-poly meshes. Then we run Taubin filter [8] on these
high-poly meshes directly to produce the filtered mesh for baseline. For the low-poly baseline, we
will run quadratic decimation [3]. We tune the target number of polygons according to the particular
shapes such that it can best preserve detail while working well with Taubin smooth to be performed

2https://github.com/marian42/mesh_to_sdf

7

https://github.com/marian42/mesh_to_sdf

later. It’s true that our processing pipeline for the extracted meshes is far from perfect. Nevertheless,
the mesh pipeline requires additional processing steps to work with the extracted meshes. This
indicates that they might not be the best candidate to manipulate geometries represented with neural
fields.

Shape deformation baselines. Similar to the shape filtering baselines, we first run marching cube to
extract high-resolution meshes. Then we will apply ARAP [7] algorithm implemented in Open3D [9]
to process the mesh. We set the smoothing hyper-parameter to be 1000 and optimize for enough steps
until the energy functions converged (the difference between iterations is less than 1e− 5).

For the additional baseline with remeshing, we run quadratic decimation to simply the marching
cubed extracted mesh into one that has roughly the same number of faces as the input mesh (i.e., the
original one used in ARAP paper). As for SR-ARAP baseline, we set the regularization loss weight
to be 1e− 3.

6 Additional quantitative results

6.1 Quantitative Results for Deformation

Table 1: Change of surface area and volum for different
deformation operations.

Area (%) Volume (%)

Operation Base Ours Base Ours

Bar twist 0.96 1.01 14.72 2.04
Cylinder rotate 0.08 13.91 21.05 15.59
Cylinder translate 0.19 6.68 37.30 8.39
Cactus rotate 0.07 3.77 10.97 4.67
Cactus bend 0.04 3.51 10.86 3.96
Cactus translate 0.13 1.28 28.47 0.87
Armidillo side 0.11 0.35 4.93 0.78
Armidillo bend 0.05 0.84 3.40 2.00
Armidillo back 0.04 1.31 12.15 1.07
Dino bend 0.04 1.29 1.89 1.57

This section provides quantitative
measures of how our method and the
baseline preserve surface area and vol-
ume. In table 1, we report the change
of surface area and the change of the
volume in percentage before and after
transformation. We can see that the
baseline optimize solely for preserv-
ing the surface area while sacrificing
the volume preservation. On the other
hand, our method tries to balance the
change of surface area and change of
volume. As a result, the deformation
of our method seemed more natural
when the shape of interests was as-
sumed to have volume. The baseline
method’s deformation is more suited for the shape that behaves like a thin shell without volumes.
Such behavior can potentially be achieved by our method by tuning hyper-parameters λs and λb.

6.2 Quantitative Results for Sampling

Table 2: CD-ratio, EMD-ratio, and time reported in Table 1 of the original paper. We include the
standard deviation in parenthesis.

Dino Armadillo

Metrics Base Ours Base Ours

CDr 1.54(0.05) 1.04 (0.01) 1.36 (0.03) 1.02 (0.02)
EMDr 3.38 (0.55) 1.15 (0.15) 3.30 (0.44) 1.08 (0.1)
Time 0.15 (0.03) 0.21 (0.06) 0.12 (0.05) 0.18 (0.03)

In addition, we provide the standard deviation of 10 different runs for sampling results in Table 2. The
number suggests that the difference is much larger than the standard deviation, showing statistical
significance of the improvement in terms of CD ratio and EMD ratio.

8

6.3 Visualization of Threshold-ed Points for Shape Smoothing and Sharpening

Figure 1: White points are fil-
tered out while computing the
curvature regularization.

In Section 4, we suggest filtering out points with high curvature
values before computing the curvature regularization for sharpening.
Note that this curvature-based filtering is a heuristic we use to deal
with the issue that the isosurface of neural fields represented using
SIREN architecture has lots of high noise. As we can see in Figure 1
of the main paper, even a planar isosurface (with curvature expected
to be 0) contains points with much higher curvature. With that said,
the curvature estimation using the second derivative of SIREN is not
always accurate. While it might seem mild in Figure 1, we can run
into points with extremely high curvature. Such points will cause
training divergence. This curvature-based filtering schema aims to
filter out points with high curvature to stabilize training. Depending
on the application, we usually tune the threshold such that about
80% of the points remain after filtering. Figure 1 shows the points
that got filtered out.

7 Discussion of Limitations and Future Work

This section will provide a more detailed discussion of the limitation and show how it can potentially
be addressed in future work.

Optimizing speed too slow. It takes about 5 to 10 hours to optimize a deformation using a single
GPU (e.g., Geforce 1080Ti) with 12GB memory. This prevents our algorithms from being used
interactively. To improve optimization speed, one can potentially decrease the size of the deformation
network (i.e., reducing to a single residual block) and use progressive training.

Output is not an SDF. Right now, the output field of the deformation step is not an SDF, while the
input requires the field to be an SDF. This prevents the algorithms from being used multiple times.
To address this issue, future work can either develop reinitialization techniques. For example, we
can finetune the network to fulfill the Eikonal constraints without breaking the iso-surface. Such
techniques have been studied in prior work such as Osher and Fedkiw [5]. Alternatively, we can
reduce the requirement of input from a valid SDF in a bounded domain to merely a neural field whose
iso-surfaces are differentiable. Another way to achieve it is to add Eikonal constraints loss during
training.

Shape filtering method does not reuse the existing network. The current shape filtering method
finetunes on the input network. This method either perturbs the original network. Alternatively, we
can reinitialize a network with the same architecture, initialize it with the input network’s parameter,
and optimize it with the filtering objective. This will create a new computational graph that does
not contain the original network. Such an approach will lose the edit history, and it is memory
intensive. These issues can potentially be fixed by using a correction network to obtain the filtering
operation [2].

9

References
[1] Djork-Arné Clevert, Thomas Unterthiner, and S. Hochreiter. Fast and accurate deep network

learning by exponential linear units (elus). arXiv: Learning, 2016. 7

[2] Yu Deng, J. Yang, and Xin Tong. Deformed implicit field: Modeling 3d shapes with learned
dense correspondence. 2021. 9

[3] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error metrics.
Proceedings of the 24th annual conference on Computer graphics and interactive techniques,
1997. 7

[4] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Y. Lipman. Implicit geometric regular-
ization for learning shapes. In ICML, 2020. 7

[5] S. Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces. In Applied
mathematical sciences, 2003. 9

[6] V. Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and G. Wetzstein.
Implicit neural representations with periodic activation functions. ArXiv, abs/2006.09661, 2020.
7

[7] O. Sorkine-Hornung and M. Alexa. As-rigid-as-possible surface modeling. In Symposium on
Geometry Processing, 2007. 8

[8] G. Taubin. A signal processing approach to fair surface design. Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques, 1995. 7

[9] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data
processing. arXiv:1801.09847, 2018. 8

10

