
Appendix

A Preliminaries on Stochastic Gradient Descent

The following lemma demonstrates the convergence property of the SGD framework when the
gradient estimator v(x) is unbiased and has bounded variance. Similar results can be found in
Nemirovski et al. [29], Rakhlin et al. [31]. Differently, these papers assumed that the norm of the
gradient estimator, i.e., ∥v(x)∥2, is bounded, whereas we only assume that the variance of the gradient
estimator is bounded. One can also refer to the recent summary [6] for more general results on SGD.

Note that L-SGD, V-MLMC, and RT-MLMC are biased methods for optimizing F but unbiased
methods for optimizing FL. We use Lemma A.1 together with Assumption 2.1(a) and equation
(9) to derive the global convergence of biased methods on F in the (strongly) convex setting; with
Assumption 2.2 and equation (21) to derive the stationary convergence of biased methods on F in the
nonconvex smooth setting.

Lemma A.1 (Convergence of SGD). Suppose that F (x) is SF -smooth on Rd and suppose that there
exists a constant V > 0 such that

Ev(x) = ∇F (x),V(v(x)) ≤ V,

where expectations are taken w.r.t the randomness in v. Let x∗ be a minimizer of F (x) on Rd and x̂T

be selected uniformly randomly from {xt}Tt=1. We have the following results:

(a1). If F (x) is µ-strongly convex, for fixed stepsizes γt = γ ∈ (0, 1
SF

], we have

E[F (xT )− F (x∗)] ≤ (1− γµ)T−1[F (x1)− F (x∗)] +
SF γV

2µ
.

(a2). If F (x) is µ-strongly convex, for stepsizes γt = 1
µ(t+2S2

F /µ2)
, we have

E[F (xT )− F (x∗)] ≤ SF max{V, µ2(1 + 2S2
F /µ

2)∥x1 − x∗∥22}
µ2(T + 2S2

F /µ
2)

.

(b). If F (x) is convex, for stepsizes γt = γ ∈ (0, 1
2SF

], we have

E[F (x̂T )− F (x∗)] ≤ γV +
∥x1 − x∗∥22

γT
.

(c). If F (x) is nonconvex, for fixed stepsizes γt = γ ∈ (0, 1
SF

], we have

E∥∇F (x̂T )∥22 ≤ 2(F (x1)− F (x∗))

γT
+ SF γV.

Note that we do not specify the stepsizes in cases (a1), (b), and (c). When the variance of v(x) is of
order O(ϵ), one can use stepsizes that are independent of ϵ to guarantee ϵ-optimality or ϵ-stationarity.
The algorithm would behave similar like gradient descent. On the other hand, when the variance of
v(x) is of order O(1) or even larger, one should use stepsizes γt = O(1/t) in the strongly convex
setting and γt = O(1/

√
T ) in the convex or nonconvex smooth setting.

Proof. Notice that x∗ is a minimizer of F over Rd. We have ∇F (x∗) = 0.

Strongly Convex Case (a1) By smoothness, one has that

F (xt+1)− F (xt) ≤∇F (xt)
⊤(xt+1 − xt) +

SF

2
∥xt+1 − xt∥22

=− γt∇F (xt)
⊤v(xt) +

SF γ
2
t

2
∥v(xt)∥22.
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Taking expectation conditioned on xt on both side, since E[v(xt)|xt] = ∇F (xt) it holds that

E[F (xt+1)− F (xt)|xt] ≤− γt∥∇F (xt)∥22 +
SF γ

2
t

2
E[∥v(xt)∥22|xt]

=− γt∥∇F (xt)∥22 +
SF γ

2
t

2
∥∇F (xt)∥22 +

SF γ
2
t

2
V(∥v(xt)∥22|xt)

=−
(
γt −

SF γ
2
t

2

)
∥∇F (xt)∥22 +

SF γ
2
t

2
V(∥v(xt)∥22|xt)

=−
(
1− SF γt

2

)
γt∥∇F (xt)∥22 +

SF γ
2
t

2
V(∥v(xt)∥22|xt)

≤− γt
2
∥∇F (xt)∥22 +

SF γ
2
t

2
V(∥v(xt)∥22|xt)

≤− γtµ(F (xt)− F (x∗)) +
SF γ

2
t

2
V(∥v(xt)∥22|xt),

(14)

where the second to last inequality uses the assumption that γt ≤ 1
SF

, the last inequality uses PL
condition derived from strong convexity. By strong convexity, we have

F (x∗) ≥F (x) +∇F (x)⊤(x∗ − x) +
µ

2
∥x∗ − x∥22

≥min
x̄

F (x) +∇F (x)⊤(x̄− x) +
µ

2
∥x̄− x∥22

=F (x)− 1

2µ
∥∇F (x)∥22.

(15)

Therefore we have the PL condition:
1

2µ
∥∇F (x)∥22 ≥ F (x)− F (x∗).

Subtracting F (x∗) on both sides of (14) and taking full expectation, we have

E[F (xt+1)− F (x∗)] ≤(1− γtµ)E[F (xt)− F (x∗)] +
SF γ

2
t

2
V(∥v(xt)∥22)

≤(1− γtµ)E[F (xt)− F (x∗)] +
SF γ

2
t

2
V

(16)

For fixed γt = γ ≤ 1
SF

, by induction, we have

E[F (xt)− F (x∗)] ≤ (1− γµ)t−1E[F (x1)− F (x∗)] +
SF γV

2µ
.

It holds for t = 1. Suppose that it holds true for t.

E[F (xt+1)− F (x∗)] ≤(1− γµ)
(
(1− γµ)t−1E[F (x1)− F (x∗)] +

SF γV

2µ

)
+

SF γ
2

2
V

=(1− γµ)tE[F (x1)− F (x∗)] +
SF γV

2µ
.

It completes the induction. Since x1 and x∗ are deterministic, we have

E[F (xT )− F (x∗)] ≤ (1− γµ)T−1[F (x1)− F (x∗)] +
SF γV

2µ
.

Strongly Convex case (a2) Denote at =
1
2E||xt − x∗||22.

at+1 =
1

2
E||xt+1 − x∗||22

=
1

2
E||xt − γtv(xt)− x∗||22

= at +
1

2
γ2
t E||v(xt)||22 − γtEv(xt)

⊤(xt − x∗).

(17)
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Following (17), we have

at+1 =at +
1

2
γ2
t E||v(xt)||22 − γtEv(xt)

⊤(xt − x∗)

≤at +
1

2
γ2
tV(v(xt)) +

1

2
γ2
t E∥∇F (xt)∥22 − γt(EF (xt)− F (x∗) +

µ

2
E∥xt − x∗∥22)

≤at +
1

2
γ2
tV(v(xt)) +

1

2
γ2
t S

2
FE∥xt − x∗∥22 − γt(µE∥xt − x∗∥22)

=(1− 2µγt + γ2
t S

2
F )at +

1

2
γ2
tV(v(xt)),

where the first inequality uses the decomposition of mean squared error and strong convexity, the
second inequality uses the smoothness of F and that ∇F (x∗) = 0.

To prove (a2), since z = 2S2
F /µ

2 and γt =
1

µ(t+z) , we have γ2
t S

2
F ≤ 0.5µγt. As a result, we have

E∥xt+1 − x∗∥22 ≤(1− 1.5µγt)E∥xt − x∗∥22 + γ2
tV(v(xt))

≤
(
1− 1.5

t+ z

)
∥xt − x∗∥22 +

V

µ2(t+ z)2
.

By induction, one has

E∥xt − x∗∥22 ≤ 2max{V, µ2(1 + z)∥x1 − x∗∥22}
µ2(t+ z)

.

It holds for t = 1. Suppose that it holds for t, by recursion, we have

E∥xt+1 − x∗∥22 ≤
(
1− 1.5

t+ z

)
E∥xt − x∗∥22 +

V

µ2(t+ z)2

≤
(
1− 1.5

t+ z

)
2max{V, µ2(1 + z)∥x1 − x∗∥22}

µ2(t+ z)
+

V

µ2(t+ z)2

=
(2(t+ z)2 − (t+ z + 3))max{V, µ2(1 + z)∥x1 − x∗∥22}+ V (t+ z + 1)

µ2(t+ z)2(t+ z + 1)

≤2(t+ z)2 max{V, µ2(1 + z)∥x1 − x∗∥22}
µ2(t+ z)2(t+ z + 1)

=
2max{V, µ2(1 + z)∥x1 − x∗∥22}

µ2(t+ z + 1)
.

The last inequality holds as V ≤ max{V, µ2(1 + z)∥x1 − x∗∥22}. It completes the induction. Since
F is SF -smooth and that ∇F (x∗) = 0, one has that

EF (xT )− F (x∗) ≤ ∇F (x∗)⊤E(xT − x∗) +
SF

2
E∥xT − x∗∥22 ≤ SF max{V, µ2(1 + z)∥x1 − x∗∥22}

µ2(T + z)
.

Convex Case (b). We prove the case when F (x) is convex. Dividing γt on both sides of (17), it
holds that

Ev(xt)
⊤(xt − x∗) ≤ at − at+1

γt
+

1

2
γtE||v(xt)||22.

Since F (x) is convex and v(xt) is an unbiased gradient estimator of F (xt) conditioned on xt, we
have

−Ev(xt)
⊤(xt − x∗) = −∇F (xt)

⊤(xt − x∗) ≤ F (x∗)− F (xt).

Summing up the two inequalities above and rearranging, it holds that conditioned on xt,

F (xt)− F (x∗) ≤ at − at+1

γt
+

1

2
γtE||v(xt)||22

≤at − at+1

γt
+

1

2
γtV(v(xt)) +

1

2
γt∥∇F (xt)∥22

=
at − at+1

γt
+

1

2
γtV(v(xt)) +

1

2
γt∥∇F (xt)−∇F (x∗)∥22

≤at − at+1

γt
+

1

2
γtV(v(xt)) + γtSF [F (xt)− F (x∗)].
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The last inequality holds as F is convex and SF -smooth on Rd. Equivalently, one has that for any
x, y ∈ Rd,

F (x)− F (y) ≥ ∇F (y)⊤(x− y) +
1

2SF
∥∇F (x)−∇F (y)∥22.

It implies that

E[F (xt)− F (x∗)] ≤ 1

1− γtSF

[at − at+1

γt
+

1

2
γtV(v(xt))

]
.

For γt ≤ 1
2SF

, it holds that 1
1−γtSF

≤ 2. By definition of x̂T , Jensen’s inequality, and convexity of
F , it holds that

E[F (x̂T )− F (x∗)] ≤ 1

T

T∑
t=1

E[F (xt)− F (x∗)]

≤ 1

T

T∑
t=1

γtV(v(xt)) +
1

T

T∑
t=2

∥xt − x∗∥22
(

1

γt
− 1

γt−1

)
+

1

γ1T
∥x1 − x∗∥22

≤γV +
∥x1 − x∗∥22

γT
.

(18)

where the last inequality holds as γt = γ.

Nonconvex smooth case (c) Next we prove the case when F (x) is SF -smooth but nonconvex on
Rd. Since F (x) is SF -smooth, it holds that

F (xt+1)− F (xt) ≤ ∇F (xt)
⊤(xt+1 − xt) +

SF

2
∥xt+1 − xt∥22

=−∇F (xt)
⊤γtv(xt) +

SF γ
2
t

2
∥v(xt)∥22.

Taking expectation on both side, it holds

E[F (xt+1)− F (xt)]

≤− γtE∥∇F (xt)∥22 +
SF γ

2
t

2
E∥v(xt)∥22

=− γtE∥∇F (xt)∥22 +
SF γ

2
t

2
E∥∇F (xt)∥22 +

SF γ
2
t

2
V(v(xt)).

Summing up from t = 1 to t = T , taking full expectation, and setting γt = γ ≤ 1/SF , we have

E[F (xT+1)− F (x1)]

≤(−γ +
SF γ

2

2
)

T∑
t=1

E∥∇F (xt)∥22 +
T−1∑
t=0

SF γ
2

2
V(v(xt))

≤− γ

2

T∑
t=1

E∥∇F (xt)∥22 +
T∑

t=1

SF γ
2

2
V(v(xt)).

As a result, it holds that

E∥∇F (x̂T )∥22 ≤ 1

T

T∑
t=1

E∥∇F (xt)∥22 ≤ 2E(F (x1)− F (xT+1))

γT
+ SF γV

≤2(F (x1)− F (x∗))

γT
+ SF γV.
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B Bias, Variance and Cost of Gradient Estimators

This section demonstrates the bias, variance, and per-iteration cost of the L-SGD and the MLMC-
based gradient estimators. The simplified results are given in the main content in Table 2. We use
RT-MLMC to illustrate how to select the batch size for V-MLMC and the probability distribution for
randomized MLMC methods.

The following lemma formally characterizes the expectation of L-SGD and MLMC-based gradient
estimators.
Lemma B.1. For any x ∈ Rd independent of

EvL−SGD(x) = EvV−MLMC(x) = EvRT−MLMC(x) = ∇FL(x).

If additionally Assumption 2.2 holds, we further have

EvRU−MLMC(x) = EvRR−MLMC(x) = ∇F (x).

Proof. The proof for L-SGD is straightforward. For V-MLMC, it holds that

EvV−MLMC(x) = E
[ L∑

l=0

1

nl

nl∑
i=1

H l(x, ζli)

]
=

L∑
l=0

[∇F l(x)−∇F l−1(x)] = ∇FL(x).

For RT-MLMC, we have

EvRT−MLMC(x) = E
[
H l(x, ζl)

ql

]
=

L∑
l=0

ql
∇F l(x)−∇F l−1(x)

ql
= ∇FL(x).

For RU-MLMC, letting L → ∞, we have

EvRU−MLMC(x) = E
[
H l(x, ζl)

ql

]
=

∞∑
l=0

ql
∇F l(x)−∇F l−1(x)

ql
= lim

L→∞
∇FL(x) = ∇F (x),

where the last equality uses Assumption 2.2.

As for the RR-MLMC estimator, we have

EvRR−MLMC = E
L∑

l=0

plH
l(x, ζl) = EL

L∑
l=0

pl[∇F l(x)−∇F l−1(x)]

=

∞∑
L=0

qL

( L∑
l=0

pl[∇F l(x)−∇F l−1(x)]

)
=

∞∑
L=0

L∑
l=0

qLpl[∇F l(x)−∇F l−1(x)]I{l ≤ L}

=

∞∑
l=0

[∇F l(x)−∇F l−1(x)]

∞∑
L=l

qLpl =

∞∑
l=0

[∇F l(x)−∇F l−1(x)]

∑∞
L=l qL

1−
∑l−1

l′=0 ql′

=

∞∑
l=0

[∇F l(x)−∇F l−1(x)] = lim
L→∞

∇FL(x)

=∇F (x).

By convention, we let
∑−1

l′=0 ql′ = 0 and ∇F−1(x) = 0. Similar to RU-MLMC, the last equality
uses Assumption 2.2.

In the following, we demonstrate the variance and the cost of those estimators. Recall that we use
A to denote a method, where A can be either of L-SGD, V-MLMC, RT-MLMC, RU-MLMC, and
RR-MLMC; CA

iter to denote the (expected) per-iteration cost of method A; V(vA) to denote the
variance of the gradient estimator of A; TA to denote the iteration complexity of A for achieving
ϵ-optimality or ϵ-stationarity; C := TACA

iter to denote the (expected) total cost.

Note that the per-iteration cost CA
iter depends on different gradient constructions. By Lemma A.1, the

iteration complexity TA depends on the desired accuracy ϵ and V(vA). To upper bound the (expected)
total cost C, we need first to make sure that both the per-iteration cost CA

iter and the variance of the
gradient estimator V (vA) are finite.
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Lemma B.2. Under Assumption 2.1, denote RL(α) :=
∑L

l=0 2
αl = 1−2α(L+1)

1−2α with α ∈ R and
α ̸= 0, for any x ∈ Rd, we have the following results.

• For vL−SGD with batch size nL, its variance and per-iteration cost satisfy the followings:

V(vL−SGD(x)) ≤ σ2

nL
.

CL−SGD
iter = nLCL ≤ nLMc2

cL.

• For vV−MLMC(x), setting nl = ⌈2−(b+c)l/2N⌉ for a constant N > 0, its variance and per-
iteration cost satisfy the followings:

V(vV−MLMC(x)) ≤
L∑

l=0

Vl

nl
≤

MbR
L( c−b

2 )N−1 if c ̸= b;

Mb(L+ 1)N−1 if c = b.

CV−MLMC
iter =

L∑
l=0

Clnl ≤

McR
L( c−b

2 )N +McR
L(c) if c ̸= b;

Mc(L+ 1)N +McR
L(c) if c = b.

• For vRT−MLMC(x), setting ql = 2−(b+c)l/2RL(− b+c
2 )−1 so that

∑L
l=0 ql = 1, we have the

followings:

V(vRT−MLMC(x)) ≤
L∑

l=0

Vl

ql
=

MbR
L( c−b

2 )RL(− b+c
2 ) if c ̸= b;

Mb(L+ 1)RL(− b+c
2 ) if c = b.

CRT−MLMC
iter =

L∑
l=0

Clql ≤

McR
L( c−b

2 )RL(− b+c
2 )−1 if c ̸= b;

Mc(L+ 1)RL(− b+c
2 )−1 if c = b.

• For vRU−MLMC(x), when c ≥ b, either its expected per-iteration cost or its variance is
unbounded. When c < b, setting ql = 2−(b+c)l/2R∞(− b+c

2 )−1 so that
∑∞

l=0 ql = 1, we
have the followings:

V(vRU−MLMC(x)) ≤
∞∑
l=0

Vl

ql
= MbR

∞(
c− b

2
)R∞(−b+ c

2
).

CRU−MLMC
iter =

∞∑
l=0

Clql ≤ McR
∞(

c− b

2
)R∞(−c+ b

2
)−1.

• For vRR−MLMC(x), when c ≥ b, either its expected per-iteration cost or its variance is
unbounded. When c < b, setting qL = 2−(b+c)l/2(1 − 2−(b+c)/2) so that

∑∞
L=0 qL = 1, we

have the followings:

V(vRR−MLMC(x)) ≤
∞∑

L=0

qL

( L∑
l=0

p2l Vl

)
= MbR

∞(
c− b

2
).

CRR−MLMC
iter =

∞∑
L=0

qL

( L∑
l=0

Cl

)
≤ Mc2

c

2c − 1
R∞(

c− b

2
)R∞(−c+ b

2
)−1.

Remark B.1. Note that RL(α) = O(1) when α < 0, RL(α) = O(L) when α = 0, and RL(α) =
O(2α(L+1)) when α > 0, R∞(α) = O(1) when α < 0. Lemma B.2 suggests that when c < b, the
variance and the per-iteration cost of RT-MLMC, RU-MLMC, and RR-MLMC are all O(1).

In the following, we prove Lemma B.2.

Proof. We use the following equality to prove the results.

RL(α =)

L∑
l=0

2αl =
1− 2α(L+1)

1− 2α
for α ̸= 0; R∞(α) = (1− 2α) for α < 0. (19)
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L-SGD The statement follows directly from Assumption 2.1 and the fact that {∇hL(x, ζLi )}
nL
i=1

are independent for any given L.

Vanilla MLMC Notice that {H l(x, ζli)}
nl
i=1 are independent for any given l and H l(x, ζli) with

different l are independently generated. Using (19) and that fact that nl = ⌈2−(b+c)l/2N⌉ ∈
[2−(b+c)l/2N, 2−(b+c)l/2N + 1), we have the following results.

V(vV−MLMC(x)) ≤
L∑

l=0

Vl

nl
≤ Mb

[
L∑

l=0

2−bl

2−(b+c)l/2

]
N−1 =

Mb
1−2−(b−c)(L+1)/2

1−2−(b−c)/2 N−1 if c ̸= b;

Mb(L+ 1)N−1 if c = b.

CV−MLMC
iter =

L∑
l=0

nlCl ≤ Mc

[
L∑

l=0

2cl2−(b+c)l/2

]
N +Mc

L∑
l=0

2cl

=

Mc
1−2−(b−c)(L+1)/2

1−2−(b−c)/2 N +Mc
2c(L+1)−1

2c−1 if c ̸= b;

Mc(L+ 1)N +Mc
2c(L+1)−1

2c−1 if c = b.

Randomized Truncated MLMC Using (19) and the statement is obvious by simple calculation.

Randomized Unbiased MLMC To make sure that CRU−MLMC
iter =

∑∞
l=0 Clql < ∞, it requires

that the following inequality holds for large l

ql2
cl < 1 =⇒ ql < 2−cl.

To make sure that V(vRU−MLMC(x)) =
∑∞

l=0 Vl/ql < ∞, it requires for large enough l such that

2−bl

ql
< 1 =⇒ ql > 2−bl.

As a result, to make sure that both the expected per-iteration cost and the variance are finite, the
following inequality should hold for large l

2−bl < ql < 2−cl.

The inequality holds only when c < b. Otherwise, either the variance or the expected per-iteration
cost is unbounded for any selection of {ql}∞l=0.

When c < b, plugging in ql, Vl and Cl, using (19) and letting L → ∞, we have the upper bounds
on the variance and the expected per-iteration cost of the randomized unbiased MLMC gradient
estimator.

Russian Roulette MLMC The expected cost to generate such an estimator is

CRR−MLMC
iter =EL

L∑
l=0

Cl =

∞∑
L=0

qL

L∑
l=0

Cl

≤
∞∑

L=0

qL

L∑
l=0

Mc2
cl = Mc

∞∑
L=0

qL
2c(L+1) − 1

2c − 1
.

To make sure that the expected per-iteration cost is finite, it requires that qL < 2−cL. Without loss
of generality, we assume that ql = 2αl(1 − 2α) for a constant 0 < α < −c and l ∈ N so that∑∞

l=0 ql = 1. As a result, we have
∑l−1

l′=0 ql′ = 1− 2αl. The variance of the estimator is

V(vRR−MLMC(x)) ≤
∞∑

L=0

qL

( L∑
l=0

p2l Vl

)
=

∞∑
L=0

qL

( L∑
l=0

1

(1−
∑l−1

l′=0 ql′)
2
I{l ≤ L}Vl

)
=

∞∑
L=0

L∑
l=0

qL
1

(1−
∑l−1

l′=0 ql′)
2
I{l ≤ L}Vl
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=

∞∑
l=0

Vl

∑∞
L=l qL

(1−
∑l−1

l′=0 ql′)
2

=

∞∑
l=0

Vl

1−
∑l−1

l′=0 ql′
.

Note that we abuse of notation
∑l−1

l′=0 ql′ = 0 when l = 0. To make sure that the variance is bounded,
it requires that

2−bl

1−
∑l−1

l′=0 ql′
< 1 =⇒ 2−bl < 1− (1− 2αl),

It further implies that

2−bl < 2αl =⇒ α > −b.

Therefore, to ensure that both the expected per-iteration cost and the variance are finite, it requires
that c < b. Selecting α = −(b+ c)/2, we have

V(vRR−MLMC(x)) ≤
∞∑
l=0

Mb2
−bl/2−(b+c)l/2 = Mb

1

1− 2−(b−c)/2
.

CRR−MLMC
iter ≤Mc

∞∑
L=0

qL
2c(L+1)

2c − 1
= Mc

2c

2c − 1
(1− 2−(b+c)/2)

∞∑
L=0

2(c−b)L/2

=Mc
2c

2c − 1

1− 2−(b+c)/2

1− 2−(b−c)/2
.

C Total Cost Analysis

This section discusses the (expected) total cost of L-SGD, V-MLMC,RT-MLMC, RU-MLMC, and
RR-MLMC. We use V (vA) to denote the uniform upper bound on the variance of the gradient
estimator constructed by Algorithm A. Let x̂T be uniformly selected from x1, ..., xT .

In the (strongly) convex case, by error decomposition (9) and Assumption 2.1(a), the expected error
of L-SGD, V-MLMC, RT-MLMC satisfy that

EF (x̂A)− F (x∗) ≤ 2BL + EFL(x̂A)− FL(xL). (20)
To make sure that the expected error is bounded by ϵ, we set L = ⌈1/a log(4Ma/ϵ)⌉ so that
2BL = 2Ma2

−aL ≤ ϵ/2. What remains is to use the convergence results of SGD, i.e., Lemma A.1
in Appendix A, to show that EFL(x̂A)− FL(xL) ≤ ϵ/2. Note that under the choice of L, we have
2cL ≤ 2c(4Ma/ϵ)

c/a.

In the nonconvex smooth case, by Assumption 2.2, we have

E∥∇F (x̂A
T )∥22 ≤2E∥∇FL(x̂A

T )∥22 + 2E∥∇F (x̂A
T )−∇FL(x̂A

T )∥22
≤2E∥∇FL(x̂A

T )∥22 + 2Ma2
−aL.

(21)

To make sure that E∥∇F (x̂T )∥22 ≤ ϵ2, we set L = ⌈1/a log(4Ma/ϵ
2)⌉ so that 2Ma2

−aL ≤ ϵ2/2.
What remains is to use Lemma A.1(d) to show that 2E∥∇FL(x̂T )∥22 ≤ ϵ2/2.

By Lemma B.2, the variance of the gradient estimator of L-SGD with batch size nL = O(1)
is σ2/nL = O(1). The variance of the gradient estimator of RT-MLMC is O(1) when c < b,
O(log(ϵ−1)) when c = b, and O(ϵ−(b+c)/2a) when c > b. On the contrary, as we have mentioned
in Remark 4, V-MLMC has to use large mini-batches, thus the variance is very small and of order
O(ϵ−1).

When the variance of the gradient estimator is at least O(1), we demonstrate the relationship among
the variance of the gradient estimator, the (expected) cost to construct the gradient estimator, and the
(expected) total cost for achieving ϵ-optimality in the convex setting (ϵ-stationarity in the nonconvex
smooth setting respectively) via the following theorem.
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Theorem C.1. For ϵ > 0 small enough, let ρ0 > 0 be a constant that does not depend on ϵ. If
V (vA) ≥ ρ0, we have the followings.

• If Assumption 2.1 holds and FL is µ-strongly convex for L = ⌈1/a log(4Ma/ϵ)⌉, set stepsizes
γt =

1
µ(t+2S2

F /µ2)
. Let xA

T be the T -th iteration of A, xA
T is an ϵ-optimal solution of F if

T ≥ 2SF max{V (vA), µ2(1 + 2S2
F /µ

2)∥x1 − xL∥22}
µ2ϵ

.

The (expected) total cost of Algorithm A for finding xA
T can be upper bounded by

C ≤ 4CA
iterSF max{V (vA), µ2(1 + 2S2

F /µ
2)∥x1 − xL∥22}µ−2ϵ−1.

• If Assumption 2.1 holds and FL is convex for L = ⌈1/a log(4Ma/ϵ)⌉, set stepsizes γt =
1√

TV (vA)
. If it holds that

T ≥ 4V (vA)(1 + ∥x1 − xL∥22)2ϵ−2,

then γt ≤ 1/2SF and x̂A
T , selected uniformly from the first T iteration of A, is an ϵ-optimal

solution of F . The (expected) total cost of Algorithm A for finding x̂A
T is upper bounded by

C ≤ 8CA
iterV (vA)(1 + ∥x1 − xL∥22)2ϵ−2.

• If Assumptions 2.1(b)(c)(d) and 2.2 holds set L = ⌈1/a log(4Ma/ϵ
2)⌉ and stepsizes γt =

1√
TV (vA)

. If T satisfies

T ≥ 16V (vA)(2(FL(x1)− FL(xL)) + SF )
2ϵ−4,

then γt ≤ 1/(SF ) and x̂A
T is an ϵ-stationarity point of F . The (expected) total cost of Algorithm

A for finding x̂A
T is upper bounded by

C ≤ 32CA
iterV (vA)(2(FL(x1)− FL(xL)) + SF )

2ϵ−4.

Remark C.1. For V (vA) ≥ ρ0, the condition on the stepsizes γt = 1/
√

TV (vA) ≤ 1/(2SF ) in
Lemma A.1(b) and γt = 1/

√
TV (vA) ≤ 1/SF in Lemma A.1(c) can be easily satisfied as long as ϵ

is small enough.

Proof. In (strongly) convex case, by (20), setting L = ⌈1/a log(4Ma/ϵ)⌉, we have Mc2
cL ≤

Mc2
c(4Ma/ϵ)

c/a and it remains to show EFL(xA
T )− FL(xL) ≤ ϵ/2.

Strongly convex case By Lemma A.1(a2), replacing x∗ with xL, F with FL, and V with V (vA),
we have

E[FL(xA
T )− FL(xL)] ≤ SF max{V (vA), µ2(1 + 2S2

F /µ
2)∥x1 − xL∥22}

µ2(T + 2S2
F /µ

2)
.

To guarantee that xT is ϵ-optimal solution of F , we let the right-hand-side of the previous inequality
to be smaller or equal to. Therefore, we need

T ≥ 2SF max{V (vA), µ2(1 + 2S2
F /µ

2)∥x1 − xL∥22}
µ2ϵ

.

Selecting the smallest T ∗ ∈ N such that the requirement on T is satisfied, since ϵ is small, the total
cost C satisfies:

C = T ∗CA
iter ≤

4CA
iterSF max{V (vA), µ2(1 + 2S2

F /µ
2)∥x1 − xL∥22}

µ2ϵ
.
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Convex case If T ≥ 4V (vA)(1 + ∥x1 − xL∥22)2ϵ−2, we have γt = 1/
√
TV (vA) ≤ 1/(2SF ). By

Lemma A.1(b), plugging in stepsizes γt = 1/
√
TV (vA) and replacing x∗ with xL, F with FL, and

V with V (vA), we have

E[F (x̂A
T )− F (xL)] ≤

√
V (vA)(1 + ∥x1 − xL∥22)√

T
.

To make sure the right-hand side is less or equal to ϵ/2, it suffices to have

T ≥ 4V (vA)(1 + ∥x1 − xL∥22)2ϵ−2.

Selecting the smallest T ∗ ∈ N such that the requirement on T is satisfied, the total cost C satisfies:

C =T ∗CA
iter ≤ 8CA

iterV (vA)(1 + ∥x1 − xL∥22)2ϵ−2.

Nonconvex smooth case By (21), setting L = ⌈1/a log(4Ma/ϵ
2)⌉, we have that 2Ma2

−aL ≤
ϵ2/2 and 2cL ≤ 2c(4Ma/ϵ

2)c/a. If T ≥ 16V (vA)(2(FL(x1) − F (xL)) + SF )
2ϵ−4, we have

γt = 1/
√
TV (vA) ≤ 1/SF . By Lemma A.1(c), using stepsizes γt = 1/

√
TV (vA), replacing x∗

with xL, F with FL, and V with V (vA), we have

E∥∇FL(x̂A
T )∥22 ≤

√
V (vA)(2(FL(x1)− FL(xL)) + SF )√

T
.

To make sure that the right-hand-side is bounded by ϵ2/4, it suffices to have

T ≥ 16V (vA)(2(FL(x1)− FL(xL)) + SF )
2ϵ−4.

Using the smallest T ∗ that satisfies the requirement on T , we have

C =T ∗CA
iter ≤ 32CA

iterV (vA)(2(FL(x1)− FL(xL)) + SF )
2ϵ−4.

C.1 Total Cost of L-SGD

In this subsection, we show the total cost of L-SGD when the batch size nL = 1 using Theorem C.1.
Theorem C.2. For L-SGD with batch size nL = 1, if ϵ > 0 is small enough, we have the followings.

• If Assumptions 2.1 holds and FL is µ-strongly convex with L = ⌈1/a log(4Ma/ϵ)⌉, set stepsizes
γt =

1
µ(t+2S2

F /µ2)
. To ensure that xL−SGD

T is an ϵ-optimal solution of F , the total cost of L-SGD
satisfies

C = O(McM
c/a
a ϵ−1−c/a).

• If Assumptions 2.1 holds and FL is convex with L = ⌈1/a log(4Ma/ϵ)⌉, set stepsizes γt =

1/
√
Tσ2. To ensure that x̂L−SGD

T is an ϵ-optimal solution of F , the total cost of L-SGD satisfies

C = O(McM
c/a
a ϵ−2−c/a).

• If Assumptions 2.1(b)(c)(d) and 2.2 hold, set L = ⌈1/a log(4Ma/ϵ
2)⌉ and stepsizes γt =

1/
√
Tσ2. To ensure that x̂L−SGD

T is an ϵ-stationarity point of F , the total cost of L-SGD
satisfies

C = O(McM
c/a
a ϵ−4−2c/a).

Proof. By Lemma B.2, we have

V(vL−SGD) ≤ V (vL−SGD) = σ2.

CL−SGD
iter = nLCL ≤ Mc2

cL ≤

Mc2
c(4Ma/ϵ)

c/a if L = ⌈1/a log(4Ma/ϵ)⌉;

Mc2
c(4Ma/ϵ

2)c/a if L = ⌈1/a log(4Ma/ϵ
2)⌉.

The proof is done by plugging V (vL−SGD) and CL−SGD
iter with nL = 1 and L = ⌈1/a log(4Ma/ϵ)⌉

(L = ⌈1/a log(4Ma/ϵ
2)⌉) in convex (nonconvex, respectively) setting from Lemma B.2 into Theo-

rem C.1.
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Remark C.2. We mentioned in Remark 4 that L-SGD cannot use large mini-batch sizes, i.e., nL =
O(ϵ−1), to reduce the total cost as V-MLMC does. We use the convex case for demonstration. If
nL = O(ϵ−1), then V (vL−SGD) = O(ϵ). Using Lemma A.1(c) with stepsizes γt = 1/(2SF ), we
know that

EFL(x̂L−SGD
T )− FL(xL) ≤ O(ϵ) +

2SF ∥x1 − xL∥22
T

.

Therefore the iteration complexity T = O(ϵ−1). The total cost would be TnLCL = O(ϵ−2−c/a),
which remains the same comparing to without using batch size, i.e., nL = 1. The reason is that using
large batch sizes for L-SGD only reduces the iteration complexity while using large batch sizes for
V-MLMC reduces the iteration complexity and the per-iteration cost simultaneously.

C.2 Expected Total Cost of RT-MLMC

Theorem C.3 (Full version of Theorem 3.1). For RT-MLMC with ql =

2−(b+c)l/2( 1−2−(b+c)(L+1)/2

1−2−(b+c)/2 )−1, if ϵ > 0 is small enough, we have the followings.

• If Assumptions 2.1 holds and FL is µ-strongly convex with L = ⌈1/a log(4Ma/ϵ)⌉, set stepsizes
γt =

1
µ(t+2S2

F /µ2)
. To ensure that xRT−MLMC

T is an ϵ-optimal solution of F , the expected total
cost of RT-MLMC satisfies

C =


O(MbMcϵ

−1) if c < b;

O(MbMca
−2ϵ−1 log2(4Ma/ϵ)) if c = b;

O(MbMcM
(c−b)/a
a ϵ−1−(c−b)/a) if c > b.

• If Assumptions 2.1 holds and FL is convex with L = ⌈1/a log(4Ma/ϵ)⌉, set stepsizes γt =

1/
√
TV (vRT−MLMC). To ensure that x̂RT−MLMC

T is an ϵ-optimal solution of F , the expected
total cost of RT-MLMC satisfies

C =


O(MbMcϵ

−2) if c < b;

O(MbMcϵ
−2a−2 log2(4Ma/ϵ)) if c = b;

O(MbMcM
(c−b)/a
a ϵ−2−(c−b)/a) if c > b.

• If Assumptions 2.1(b)(c)(d) and 2.2 hold, set L = ⌈1/a log(4Ma/ϵ
2)⌉ and stepsizes γt =

1/
√
TV (vRT−MLMC). To ensure that x̂RT−MLMC

T is an ϵ-stationarity point of F , the expected
total cost of RT-MLMC satisfies

C ≤


O(MbMcϵ

−4) if c < b;

O(MbMca
−2 log2(4Ma/ϵ)ϵ

−4) if c = b;

O(MbMcM
(c−b)/a
a ϵ−4−2(c−b)/a) if c > b.

Proof. Notice that for L large enough and α < 0, it holds
1− 2α(L+1)

1− 2α
≤ 1

1− 2α
,

1− 2α

1− 2α(L+1)
≤ 2(1− 2α).

By Lemma B.2 for RT-MLMC, we know that V (vRT−MLMC) is at least O(1) (when c < b).
Therefore the requirement of Theorem C.1 holds. Particularly, we have

CRT−MLMC
iter V (vRT−MLMC) ≤


MbMc(1− 2−(b+c)/2)−2 if c < b;

4MbMca
−2 log2(4Ma/ϵ) if c = b;

MbMc(4Ma)
(c−b)/a2−(b−c)(1− 2−(b−c)/2)−2ϵ−2(c−b)/a if c > b.

(22)
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Strongly convex case In strongly convex case, when c < b,

CRT−MLMC
iter ≤ Mc

1

(1− 2−(b−c)/2)(1− 2−(b+c)/2)
:= Mcρ1.

V (vRT−MLMC) ≤ Mb
2(1− 2−(b+c)/2)

1− 2−(b−c)/2
:= Mbρ2;

Plugging those into Theorem C.1, one has the desired results.

Without loss of generality, assuming that ϵ is small enough. When c = b, V (vRT−MLMC) =
O(L + 1) = O(log(1/ϵ)) ≥ µ2(1 + 2S2

F /µ
2)∥x1 − xL∥22, and when c > b V (vRT−MLMC) =

O(ϵ−(c−b)/2a) ≥ µ2(1 + 2S2
F /µ

2)∥x1 − xL∥22. By Theorem C.1, we have

EC ≤ 4CRT−MLMC
iter SFV (vRT−MLMC)µ−2ϵ−1.

Plugging in (22), we have the desired results.

Convex case and nonconvex smooth case One needs to further verify that γt = 1√
TV (vRT−MLMC)

is less or equal to 1
2SF

in the convex case and 1
SF

in the nonconvex smooth setting. Notice that
vRT−MLMC is O(1) for c < b, O(log(1/ϵ)) for c = b, and O(ϵ−(b−c)/2a) for c > b. Therefore, the
condition on the stepsize holds for large T as suggested by Theorem C.1. Plugging (22) into the
convex and nonconvex setting of Theorem C.1, we have the desired results.

C.3 Total Cost of V-MLMC

In this subsection, we consider the total cost of V-MLMC.

Theorem C.4 (Full version of Theorem 3.2). For V-MLMC with nl = ⌈2−(b+c)l/2N⌉ for some
N > 0, we have the followings:

• If Assumption 2.1 holds and FL is strongly convex, let stepsizes γt = 1/SF , L =
⌈1/a log(4Maϵ

−1)⌉ and set N as the followings:

N =


O(Mbϵ

−1µ−1) if c < b;

O(Mb(L+ 1)ϵ−1µ−1) if c = b;

O(Mb2
−(b−c)(L+1)/2µ−1ϵ−1) if c > b.

Then xV−MLMC
T is an ϵ-optimal solution of F after T = ⌈2 log(4[FL(x1) −

FL(xL)]ϵ−1)/ log(SF /(SF − µ))⌉ iterations. The total cost of V-MLMC satisfies

C =


O(log(ϵ−1)ϵ−{1,c/a}) if c < b;

O(log3(ϵ−1)ϵ−1 + log(ϵ−1)ϵ−c/a) if c = b;

O(log(ϵ−1)ϵ−max{1+(c−b)/a,c/a}) if c > b.

• If Assumption 2.1 holds and FL is convex, set stepsizes γt = 1
2SF

, L = ⌈1/a log(4Ma/ϵ)⌉ and
set N as the followings:

N =


O(Mbϵ

−1S−1
F ) if c < b;

O(Mb(L+ 1)ϵ−1S−1
F ) if c = b;

O(Mb2
−(b−c)(L+1)/2ϵ−1S−1

F ) if c > b.
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Then x̂V−MLMC
T is an ϵ-optimal solution of F after T = ⌈8SF ∥x1 − xL∥22ϵ−1⌉ iterations and

the total cost satisfies

C =


O(ϵ−1−max{1,c/a}) if c < b;

O(ϵ−2 log2(ϵ−1) + ϵ−1−c/a) if c = b;

O(ϵ−1−max{1+(c−b)/a,c/a}) if c > b.

• If Assumptions 2.1(b)(c)(d) and 2.2 hold, set stepsizes γt = 1
SF

, L = ⌈1/a log(4Ma/ϵ
2)⌉ and

set N as the followings:

N =


O(Mbϵ

−2) if c < b;

O(Mb(L+ 1)ϵ−2) if c = b;

O(Mb2
−(b−c)(L+1)/2ϵ−2) if c > b.

Then x̂V−MLMC
T is an ϵ-stationarity point of F after ⌈16SF (F

L(x1)−FL(xL))ϵ−2⌉ iterations
and the total cost satisfies

C ≤


O(ϵ−2−2max{1,c/a}) if c < b;

O(log2(ϵ−1)ϵ−4 + ϵ−2−2c/a) if c = b;

O(ϵ−2−2max{1+(c−b)/a,c/a}) if c > b.

Remark C.3. When a ≥ min{b, c}, we have max{1, c/a} = max{1 + (c− b)/a, c/a} = 1. As a
result, the total cost of V-MLMC is the same as RT-MLMC when this additional condition holds.

Proof. In the (strongly) convex case, by (20) setting L = ⌈1/a log(4Ma/ϵ)⌉, to guarantee that xT

or x̂T is an ϵ-optimal solution, we only need to guarantee that

EFL(xT )− FL(xL) ≤ ϵ/2.

Strongly convex case By Lemma A.1(a1), we have

EFL(xT )− FL(xL) ≤ (1− γµ)T−1[FL(x1)− FL(xL)] +
SF γV (vV−MLMC)

2µ
.

To make sure that (1− γµ)T−1[FL(x1)− FL(xL)] ≤ ϵ/4 and SF γV (vV−MLMC)
2µ ≤ ϵ/4, it suffices

to have for small ϵ,

T ≥ 2 log(4[FL(x1)− FL(xL)]ϵ−1)/ log(SF /(SF − µ));

V (vV−MLMC) ≤ ϵµ

2
.

By Lemma B.2, under the condition 2−(b+c)l/2N ≥ 1, we have

V (vV−MLMC) ≤

Mb
1−2−(b−c)(L+1)/2

1−2−(b−c)/2 N−1 if c ̸= b;

Mb(L+ 1)N−1 if c = b,

CV−MLMC
iter ≤

Mc
1−2−(b−c)(L+1)/2

1−2−(b−c)/2 N +Mc
2c(L+1)−1

2c−1 if c ̸= b;

Mc(L+ 1)N +Mc
2c(L+1)−1

2c−1 if c = b.
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• When c < b, setting N = 2Mb(1− 2−(b−c)/2)−1ϵ−1µ−1 guarantees that V (vV−MLMC) ≤ ϵµ
2 .

Selecting the smallest T ∗ ∈ N such that the requirement on T holds, then the total cost is
bounded by

C ≤ T ∗CV−MLMC
iter ≤T ∗[2MbMc(1− 2−(b−c)/2)−2µ−1ϵ−1 +Mc2

c(2c − 1)−1(4Ma)
c/aϵ−c/a].

• When c = b, setting N = 2Mb(L+ 1)ϵ−1µ−1, guarantees that V (vV−MLMC) ≤ ϵµ
2 . Selecting

the smallest T ∗ ∈ N such that the requirement on T holds, then the total cost is bounded by

C ≤ T ∗CV−MLMC
iter ≤ T ∗[2MbMc(L+ 1)2µ−1ϵ−1 +Mc2

c(2c − 1)−1(4Ma)
c/aϵ−c/a].

Plugging in L = ⌈1/a log(4Ma/ϵ)⌉ we obtain the desired rate.

• When c > b, setting N = 2Mb2
−(b−c)(L+1)/2(2−(b−c)/2 − 1)−1µ−1ϵ−1 guarantees that

V (vV−MLMC) ≤ ϵµ
2 . Selecting the smallest T ∗ ∈ N such that the requirement on T holds, then

the total cost is bounded by

C ≤T ∗[2MbMc(1− 2−(b−c)/2)−22−(b−c)(4Ma)
(c−b)/aµ−1ϵ−1−(c−b)/a +Mc2

c(2c − 1)−1(4Ma)
c/aϵ−c/a],

where we uses 2(c−b)L = O(ϵ−(c−b)/a) if c > b.

Convex case By Lemma A.1(b), with stepsizes γt = 1
2SF

we have

E[FL(x̂T )− FL(xL)] ≤ V (vV−MLMC)

2SF
+

2SF ∥x1 − xL∥22
T

.

To make sure that x̂T is ϵ/2-optimal to FL so that x̂T is ϵ-optimal to F , it suffices to have

T ≥ 8SF ∥x1 − xL∥22ϵ−1;

V (vV−MLMC) ≤ ϵSF

2
.

Selecting T ∗ ∈ N the smallest T satisfying the condition on iteration. By a similar argument in the
strongly convex case, we set

N =


2Mb(1− 2−(b−c)/2)−1ϵ−1S−1

F if c < b;

2Mb(L+ 1)ϵ−1S−1
F if c = b;

2Mb2
−(b−c)(L+1)/2(2−(b−c)/2 − 1)−1ϵ−1S−1

F if c > b.

It guarantees that V (vV−MLMC) ≤ ϵSF /2. Plugging N into Lemma B.2 for V-MLMC, we know
that the total cost is bounded by

C = T ∗CV−MLMC
iter = ⌈8SF ∥x1 − xL∥22ϵ−1⌉CV−MLMC

iter

≤



16SF ∥x1 − xL∥22ϵ−1(2MbMc(1− 2−(b−c)/2)−2ϵ−1S−1
F +Mc2

c(2c − 1)−1(4Ma)
c/aϵ−c/a) if c < b;

16SF ∥x1 − xL∥22ϵ−1(8MbMca
−2 log2(4Ma/ϵ)ϵ

−1S−1
F +Mc2

c(2c − 1)−1(4Ma)
c/aϵ−c/a) if c = b;

16SF ∥x1 − xL∥22ϵ−1(2MbMc(1− 2−(b−c)/2)−22−(b−c)(4Ma)
(c−b)/aϵ−1−(c−b)/aS−1

F if c > b.

+Mc2
c(2c − 1)−1(4Ma)

c/aϵ−c/a)

Note that (L+ 1)2 ≤ 4L2 = 4a−2 log2(4Ma/ϵ), 2(c−b)L = O(ϵ−(c−b)/a) if c > b.

Nonconvex smooth case By (21) and Lemma A.1(d), with stepsizes γt = 1
SF

, we only need to
select N so that

E∥∇FL(x̂T )∥22 ≤ 2SF (F
L(x1)− FL(xL))

T
+ V (vV−MLMC) ≤ ϵ2

4
.
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It suffices to have

T ≥ 16SF (F
L(x1)− FL(xL))ϵ−2;

V (vV−MLMC) ≤ ϵ2

8
.

Selecting the smallest T ∗ ∈ N such that the requirement on iteration is satisfied. To make sure that
the variance is bounded by ϵ2/4, we set

N =


8Mb(1− 2−(b−c)/2)−1ϵ−2 if c < b;

8Mb(L+ 1)ϵ−2 if c = b;

8Mb2
−(b−c)(L+1)/2(2−(b−c)/2 − 1)−1ϵ−2 if c > b.

Thus the total cost is bounded by

C ≤



32SF (F
L(x1)− FL(xL))ϵ−2(8MbMc(1− 2−(b−c)/2)−2ϵ−2 +Mc2

c(2c − 1)−1(4Ma)
c/aϵ−2c/a) if c < b;

32SF (F
L(x1)− FL(xL))ϵ−2(32MbMca

−2 log2(4Maϵ
−1)ϵ−1 +Mc2

c(2c − 1)−2(4Ma)
c/aϵ−2c/a) if c = b;

32SF (F
L(x1)− FL(xL))ϵ−2(8MbMc(1− 2−(b−c)/2)−22−(b−c)(4Ma)

(c−b)/aϵ−2−2(c−b)/a+ if c > b.

Mc2
c(2c − 1)−1(4Ma)

c/aϵ−2c/a)

Note that (L+ 1)2 ≤ 4L2 = 4a−2 log2(4Ma/ϵ).

C.4 Expected Total Cost of RU-MLMC and RR-MLMC

In this subsection, we consider the expected total cost of RU-MLMC (see (7)) and RR-MLMC (see
(8)). Both algorithms are unbiased and are applicable only when c < b, namely, the increase rate
of the cost to generate a gradient estimator per level is strictly smaller than the decrease rate of the
variance of ∇H l(x, ζl).

Theorem C.5. Let A denote RU-MLMC or RR-MLMC. Under Assumption 2.1(b)(c)(d) with c < b
and Assumption 2.2, setting ql = 2−(b+c)l/2(1− 2−(b+c)/2) in RU-MLMC and RR-MLMC, we have
the following results.

• When F (x) is µ-strongly convex, setting γt =
1

µ(t+2SF /µ2) , to guarantee that xA
T is an ϵ-optimal

solution of F , the expected total cost of RU-MLMC and RR-MLMC satisfy

C = O(McMbϵ
−1).

• When F (x) is convex, set γt = 1/
√

V (vA)T , to guarantee x̂A
T is an ϵ-optimal solution of F , T

is large enough so that γt ≤ 1/(2SF ). The expected total cost of RU-MLMC and RR-MLMC
satisfy

C = O(MbMcϵ
−2).

• When F (x) is SF -smooth, setting γt = 1/
√

V (vA)T , to guarantee x̂A
T is an ϵ-stationarity point

of F , the iteration complexity T has to be large enough so that γt < 1/SF . The expected total
cost of RU-MLMC and RR-MLMC satisfy

C = O(MbMcϵ
−4).

Proof. Notice that both algorithms are unbiased. Thus Lemma A.1 can be directly applied.
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Strongly Convex F By Lemma A.1 (a2), to make sure that xT is an ϵ-optimal solution, it suffices
to have

T ≥ SF max{V (vA), µ2(1 + 2S2
F /µ

2)∥x1 − x∗∥22)}
µ2ϵ

.

Selecting the smallest T ∗ ∈ N satisfying the requirement, by Lemma B.2, we have the upper bounds
on the expected total cost such that

C = T ∗CA
iter ≤

2SF max{V (vA), µ2(1 + 2S2
F /µ

2)∥x1 − x∗∥22)}
µ2ϵ

CA
iter.

Plugging in V (vA) and CA
iter from Lemma B.2 where A refers to RU-MLMC and RR-MLMC, we

have the desired results. The expected total cost of RU-MLMC satisfies

C ≤ 2SFMc
1− 2−(b+c)/2

1− 2−(b−c)/2
max{Mb

1

(1− 2−(b−c)/2)

1

1− 2−(b+c)/2
, µ2(1 + 2S2

F /µ
2)∥x1 − x∗∥22)}µ−2ϵ−1;

The expected total cost of RR-MLMC can be upper bounded by

C ≤ 2SF
Mc2

c(1− 2−(b+c)/2)

(2c − 1)(1− 2−(b−c)/2)
max{ Mb

1− 2−(b−c)/2
, µ2(1 + 2S2

F /µ
2)∥x1 − x∗∥22)}µ−2ϵ−1.

Convex F To apply Lemma A.1(b), it requires that

γt =
1√

V (vA)T
≤ 1

2SF
.

Notice that by Lemma B.2, V (vA) = O(1) for both RU-MLMC and RR-MLMC when c < b. As a
result, for T large enough, the condition on the stepsize is satisfied. By Lemma A.1, to make sure
that x̂T is an ϵ-optimal solution, it suffices to have

T ≥ ϵ−2V (vA)(1 + ∥x1 − x∗∥22)2

Selecting the smallest T ∗ ∈ N satisfying the requirement, by Lemma B.2, we have the upper bounds
on the expected total cost such that

C = T ∗CA
iter ≤ 2CA

iterV (vA)(1 + ∥x1 − x∗∥22)2ϵ−2.

Plugging in V (vA) and CA
iter from Lemma B.2 where A refers to RU-MLMC and RR-MLMC, we

have the desired results. Particularly, the expected total cost of RU-MLMC satisfies

C ≤ 2MbMc(1− 2−(b−c)/2)−2(1 + ∥x1 − x∗∥22)2ϵ−2.

The expected total cost of RR-MLMC can be upper bounded by

C ≤ 2MbMc(1 + ∥x1 − x∗∥22)2
2c(1− 2−(b+c)/2)

(2c − 1)(1− 2−(b−c)/2)2
ϵ−2.

Nonconvex Smooth F Similar to the convex case, we verify that the stepsizes selections are
well-defined for large enough T . By Lemma A.1(c), to make sure that E∥∇F (x̂T )∥22 ≤ ϵ2, it requires
that

T ≥ V (vA)(2(F (x1)− F (x∗)) + SF )
2ϵ−4.

Selecting the smallest T ∗ that the inequality holds, we can upper bound the total cost satisfies that

EC ≤ 2CA
iterV (vA)(2(F (x1)− F (x∗)) + SF )

2ϵ−4.

Plugging in V (vA) and CA
iter from Lemma B.2 where A refers to RU-MLMC and RR-MLMC, we

have the desired results. Particularly, the expected total cost of RU-MLMC satisfies

C ≤ 2MbMc(2(F (x0)− F (xT )) + SF )
2(1− 2−(b−c)/2)−2ϵ−4.

The expected total cost of RR-MLMC can be upper bounded by

C ≤ 2MbMc(2(F (x0)− F (xT )) + SF )
2 2c(1− 2−(b+c)/2)

(2c − 1)(1− 2−(b−c)/2)2
ϵ−4.
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D Discussion on Assumptions

Note that the assumption F (x) is µ-strongly convex in Lemma A.1(a1) and (a2) can be relaxed to PL
condition. Recall that if F (x) satisfies PL condition with parameter µ, then it holds that

∥∇F (x)∥22 ≥ 2µ(F (x)− F (x∗)).

One can derive PL condition from strong convexity. Supposing that F is µ-strongly convex, we have

F (x∗) ≥F (x) +∇F (x)⊤(x∗ − x) +
µ

2
∥x∗ − x∥22

≥min
x̄

F (x) +∇F (x)⊤(x̄− x) +
µ

2
∥x̄− x∥22

=F (x)− 1

2µ
∥∇F (x)∥22.

(23)

Rearranging terms, we have the PL condition:

∥∇F (x)∥22 ≥ 2µ(F (x)− F (x∗)).

In proving Lemma A.1(a1), we only use PL condition. As for (a2), one can show a similar result of
(a2) using only the PL condition. The following corollary rigorously summarizes the expected error
of SGD under PL condition.

Corollary D.1. Suppose that F (x) is SF -smooth on Rd and suppose that there exists a constant
V > 0 such that

Ev(x) = ∇F (x),V(v(x)) ≤ V,

where expectations are taken w.r.t the randomness in v. Let x∗ be a minimizer of F (x) on Rd. If
F (x) satisfies PL condition with parameter µ, we have the following results.

• For fixed stepsizes γt = γ ∈ (0, 1
SF

], it holds that

E[F (xT )− F (x∗)] ≤ (1− γµ)T−1[F (x1)− F (x∗)] +
SF γV

2µ
.

• For time-varying stepsizes γt = 2
µ(t+2SF /µ−1) , we have

E[F (xT )− F (x∗)] ≤ 2max{SFV, µ
2(1 + z)(F (x1)− F (x∗))}
µ2(T + z)

.

Proof. The proof of fixed stepsizes is the same as the proof of Lemma A.1(a1). As for the time
varying stepsizes, following (16), we have

E[F (xt+1)− F (x∗)] ≤ (1− γtµ)E[F (xt)− F (x∗)] +
SF γ

2
t

2
V. (24)

Plugging in γt =
2

µ(t+z) with z = 2SF /µ− 1 so that γt ∈ (0, 1/SF ], by induction, we have

E[F (xT )− F (x∗)] ≤ 2max{SFV, µ
2(1 + z)(F (x1)− F (x∗))}
µ2(T + z)

.

Since the expected error under PL condition stays the same, the (expected) total cost of L-SGD,
V-MLMC, RT-MLMC, RU-MLMC, and RR-MLMC under PL condition remains the same as the
(expected) total cost achieved under the strong convexity assumption. For a more detailed discussion
on PL condition and strong convexity, see Karimi et al. [24].
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D.1 Substituteable Bias Assumption under PL Condition

Recall that in Assumption 2.1(a), we make assumptions on the bias of the function value estimator,
while in Assumption 2.2, we make assumptions on the bias of the gradient estimator. In this subsection,
we demonstrate that under PL condition, one can derive the same (in terms of dependence on ϵ) total
cost of L-SGD, V-MLMC, and RT-MLMC by replacing Assumption 2.1(a) with Assumption 2.2.
We also show that Assumption 2.2 cannot replace Assumption 2.1(a) for convex objectives using a
counter example. RU-MLMC and RR-MLMC are unbiased methods under Assumption 2.2 and do
not need Assumption 2.1(a).

Let xA
T denote the T -th iteration of algorithm A for A being L-SGD, V-MLMC, and RT-MLMC. The

key step of such replacement is to show that under Assumption 2.2, the expected error of algorithm
A, i.e., E[F (xA

T )− F (x∗)], has a similar error decomposition like (9).
Proposition D.1. Suppose that F is SF smooth and satisfies the PL condition with parameter µ,
under Assumptions 2.1(b)(c) and Assumption 2.2, the followings hold.

• When using fixed stepsizes γt = γ ∈ (0, 1/SF ], we have

E[F (xA
T )− F (x∗)] ≤ (1− γµ)T−1[F (x1)− F (x∗)] +

1

2µ
Ma2

−aL +
SF γ

2µ
V (vA). (25)

• When using time-varying stepsizes γt = 2
µ(t+2SF /µ−1) , we have

E[F (xA
t )− F (x∗)] ≤ 2max{SFV, µ

2(1 + z)(F (x1)− F (x∗))}
µ2(t+ z)

+
1

2µ
Ma2

−aL. (26)

Proof. By smoothness of F , using γt ≤ 1/SF , and taking expectation conditioned on xt, we have

EF (xA
t+1)

≤F (xA
t ) +∇F (xA

t )
⊤E(xA

t+1 − xA
t ) +

SF

2
E∥xA

t+1 − xA
t ∥22

=F (xA
t ) +∇F (xA

t )
⊤E(xA

t+1 − xA
t ) +

SF γ
2
t

2
E∥v(xA

t )∥22

=F (xA
t )−

γt
2
(2∇F (xA

t )
⊤Ev(xA

t )) +
SF γ

2
t

2
∥Ev(xA

t )∥22 +
SF γ

2
t

2
Var(v(xA

t ))

≤F (xA
t ) +

γt
2
(−2∇F (xA

t )
⊤Ev(xA

t ) + ∥Ev(xA
t )∥22) +

SF γ
2
t

2
Var(v(xA

t ))

=F (xA
t ) +

γt
2
(−∥∇F (xA

t )∥22 + ∥Ev(xA
t )−∇F (xA

t )∥22) +
SF γ

2
t

2
Var(v(xA

t ))

≤F (xA
t )−

γt
2
∥∇F (xA

t )∥22 +
γt
2
BL +

SF γ
2
t

2
V (vA),

where the first inequality uses smoothness, the second inequality uses γt ≤ 1/SF , the third inequality
uses Assumption 2.2, the last equality uses ∥a− b∥22 = ∥a∥22 − 2a⊤b+ ∥b∥22. Using PL condition
and taking full expectation, we have

E[F (xA
t+1)− F (x∗)]

≤E[F (xA
t )− F (x∗)]− γt

2
2µE(F (xA

t )− F (x∗)) +
γt
2
BL +

SF γ
2
t

2
V (vA)

=(1− γtµ)E(F (xA
t )− F (x∗)) +

γt
2
BL +

SF γ
2
t

2
V (vA).

(27)

• If using fixed stepsizes, plugging in γt = γ ∈ (0, 1/SF ], by induction, we have

E[F (xA
T )− F (x∗)] ≤ (1− γµ)T−1[F (x1)− F (x∗)] +

1

2µ
BL +

SF γ

2µ
V (vA)

≤(1− γµ)T−1[F (x1)− F (x∗)] +
1

2µ
Ma2

−aL +
SF γ

2µ
V (vA).
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• If using time varying stepsizes, plugging γt =
2

µ(t+z) ∈ (0, 1/SF ] with z = 2SF /µ − 1 into
(27), by induction, we have

E[F (xA
t )− F (x∗)] ≤ 2max{SFV, µ

2(1 + z)(F (x1)− F (x∗))}
µ2(t+ z)

+
1

2µ
BL

≤2max{SFV, µ
2(1 + z)(F (x1)− F (x∗))}
µ2(t+ z)

+
1

2µ
Ma2

−aL.

In the previous analysis of V-MLMC, we use fixed stepsizes. Particularly, we use Assumption 2.1,
equation (9), and Lemma A.1(a1) to get

E[F (xA
T )− F (x∗)] ≤ 2BL + EFL(xA

T )− FL(xL)

≤2Ma2
−aL + (1− γµ)T−1[FL(x1)− FL(xL)] +

SF γV (vA)

2µ
. (28)

Comparing (25) and (28), the only differences are in the constants, which do not affect the rate of the
total cost.

In the previous analysis of L-SGD and RT-MLMC, we use time-varying stepsizes. Particularly,
combining Assumption 2.1(a), equation (9), and Lemma A.1(a2), we have

E[F (xA
T )− F (x∗)] ≤ 2BL + EFL(xA

T )− FL(xL)

≤2Ma2
−aL +

SF max{V, µ2(1 + 2S2
F /µ

2)∥x1 − x∗∥22}
µ2(T + 2S2

F /µ
2)

. (29)

Comparing (26) and (29), the only differences are in the constants, which do not affect the rate of the
total cost.
Remark D.1. Unlike Assumption 2.1(a), Assumption 2.2 is not sufficient for obtaining global
optimality gap when solving unconstrained optimization with convex objective F using biased
gradient methods. Suppose that Assumption 2.2 holds and that one finds an ϵ/4-stationarity point
of FL via some biased methods. The point is an ϵ-stationarity point of F by Assumption 2.2 for
certain L. However, there is no link between the gradient norm of the point and the optimality gap
for unconstrained optimization with convex objectives. In fact, one can show that for any ϵ ∈ (0, 1),
there exists a convex smooth function F : Rd → R and a point x0 such that ∥∇F (x0)∥22 = ϵ2 and
F (x0)− infx F (x) > 1. One example is the Huber function defined in the following and x0 ∈ Rd is
such that ∥x0∥2 = 2/ϵ > ϵ.

FHuber(x) =

{
1
2∥x∥

2
2 if ∥x∥2 < ϵ,

ϵ(∥x∥2 − ϵ
2 ) if ∥x∥2 ≥ ϵ.

One can easily see that ∥∇F (x0)∥22 = ϵ2 but F (x0)− infx F (x) = 2− ϵ2

2 > 1. When encountering
such functions, the biased gradient methods do not guarantee to converge to an ϵ-optimal solution
under Assumption 2.2.

E Applications to CSO Problems

We demonstrate the proof for Proposition 4.1. Note that Hu et al. [20] already proved the smoothness
and the bias part. We focus on the variance of the oracle SOl.

Proof. We first consider the variance of hl(x, ζl).

V(hl(x, ζl))

≤E∥hl(x, ζl)∥22
=E∥∇ĝ1:2l(x, ζ

l)⊤∇fξl(ĝ1:2l(x, ζ
l))∥22
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≤E[∥∇ĝ1:2l(x, ζ
l)∥22∥∇fξl(ĝ1:2l(x, ζ

l))∥22]
≤L2

fL
2
g.

Next we show the variance of H l(x, ζl). Notice that

ĝl1:2l(x, ξ
l) =

1

2
[ĝl1:2l−1(x, ξ

l) + ĝl1+2l−1:2l(x, ξ
l)].

V(H l(x, ζl)) ≤ E∥H l(x, ζl)∥22

=E∥∇ĝl1:2l(x, ξ
l)⊤∇fξl(ĝ

l
1:2l(x, ξ

l))− 1

2
∇ĝl1:2l−1(x, ξ

l)⊤∇fξli(ĝ
l
1:2l−1(x, ξ

l))

−1

2
∇ĝl2l−1+1:2l(x, ξ

l)⊤∇fξli(ĝ
l
2l−1+1:2l(x, ξ

l))∥22

=E
∥∥∥1
2
∇ĝl1:2l−1(x, ξ

l)⊤
[
∇fξl(ĝ

l
1:2l(x, ξ

l))−∇fξl(ĝ
l
1:2l−1(x, ξ

l))
]

+
1

2
∇ĝl2l−1+1:2l(x, ξ

l)⊤
[
∇fξl(ĝ

l
1:2l(x, ξ

l))−∇fξl(ĝ
l
2l−1+1:2l(x, ξ

l))
]∥∥∥2

2

≤
L2
g

2
E
∥∥∥∇fξli(ĝ

l
1:2l(x, ξ

l))−∇fξli(ĝ
l
1:2l−1(x, ξ

l))
∥∥∥2
2

+
L2
g

2
E
∥∥∥∇fξl(ĝ

l
1:2l(x, ξ

l))−∇fξl(ĝ
l
2l−1+1:2l(x, ξ

l))
∥∥∥2
2

≤
L2
gS

2
f

2

[
E
∥∥∥ĝl1:2l(x, ξl)− ĝl1:2l−1(x, ξ

l)
∥∥∥2
2
+ E

∥∥∥ĝl1:2l(x, ξl)− ĝl2l−1+1:2l(x, ξ
l)
∥∥∥2
2

]
=
L2
gS

2
f

4
E
∥∥∥ĝl2l−1+1:2l(x, ξ

l)− ĝl1:2l−1(x, ξ
l)
∥∥∥2
2

≤
L2
gS

2
f

4

2σ2
g

2l−1

=
L2
gS

2
fσ

2
g

2l
,

where the last inequality uses the fact that ĝl2l−1+1:2l(x, ξ
l) and ĝl1:2l−1(x, ξ

l) are independently
identical distributed for a given ξl.

Corollary 4.1 is obtained via directly applying a = b = c = 1 in Theorem 3.2 for V-MLMC, Theorem
3.1 for RT-MLMC. In Table 3, the BSGD in Hu et al. [20] achieved Õ(ϵ−2), O(ϵ−3), and O(ϵ−6)
sample complexity in the strongly convex, convex and nonconvex smooth setting, respectively. Since
BSGD is a special case of the L-SGD framework in our paper, when plugging a = b = c = 1 into
Theorem C.2, we directly recover the corresponding sample complexity. Hu et al. [20] additionally
considered the variance reduction technique in the nonconvex smooth setting and achieves O(ϵ−5)
sample complexity, which is still worse than the V-MLMC and RT-MLMC in terms of the sample
complexity.

F Numerical Experiments Details

The experiments are conducted on a personal computer with an Intel i7 CPU and GTX 2070 GPU.

F.1 Synthetic Problem with Biased Oracles

We consider a synthetic quadratic programming problem.

min
x∈Rd

F (x) :=
1

2
∥x− z∞∥2,

where z∞ = limn→∞ zn and stochastic observation of zn can be obtained via some simulation
process with cost n. Thus the approximation function is

F l(x) =
1

2
∥x− z2l∥2.
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Let zn = (1 + bias/n)1d and ẑn be the output of the simulation such that ẑn ∼ N(zn, σ
2Id), where

1d denotes a d dimensional all one vector, N denote normal distribution with mean zn and covariance
matrix σ2Id. Here bias is a hyperparameter that controls the bias. One can construct hl

hl(x) = x− ẑ2l , for l = 0, . . . ,∞;

and construct H l

H0(x) = x− ẑ20 ; H l(x) = −ẑ2l +
1

2
(ẑ′2l−1 + ẑ′′2l−1) for l = 1, . . . ,∞

where ẑ′2l and ẑ′′2l−1 should be perfectly correlated with ẑ2l . Without loss of generality, we construct

H l(x) = 1
2l

∑2l

i=1 ξ
l
i such that

ξli ∼ N(−z2l + z2l−1 , σ2Id) for i = 1, . . . , 2l, for l ≥ 1.

H l(x) ∼ N(−z2l + z2l−1 , σ22−2l ∗ Id) for l ≥ 1; H0(x) = x− ẑ20 .

For three biased methods, V-MLMC, RT-MLMC, and LSGD, we test truncation level L ∈
{0, . . . , 10}. For V-MLMC, we consider a mini-batch size nl = 2L−l so that there would not
be any extra costs incurred by rounding to integer numbers. For three randomized methods RT-
MLMC, RU-MLMC, RR-MLC, we test geometry distribution with parameter p ∈ {0.1, . . . , 0.9}.
In the experiments, we set dimension d as 100, bias as 1, variance σ2 as 1, total budget as 4e + 4.
Note that the variance of H l decays exponentially with b = 2. The stepsize γ is selected in
{0.1, 0.01, 0.001, 0.0005, 0.0001}. We measure the performance of different algorithms via the
average total costs over 10 trials. In each trial, x1 are initialized according to N(5 ∗ 1d, Id). We do
not specify any random seed in the experiments.

The best parameter setup of each method for synthetic quadratic programming is summarized in
Figure 2. Note that each line in the figure reflects a trial of the methods with a different random
initialization. The performance of each method is measured by the average error, which is reflected
on top of each subfigure.

We summarized the implications from the figures as follows:

• On the synthetic quadratic programming example, all four MLMC gradient methods outperform
the naive biased method LSGD.

• V-MLMC has the smallest variance as suggested by the theory. As a result, the stepsize of
V-MLMC is much larger than the stepsizes of randomized MLMC gradient methods, which
aligns with the theory. Although, in theory, the variance of RT-MLMC, RU-MLMC, RR-MLMC,
and LSGD are all treated as O(1), in practice, we notice that the variances of RT-MLMC,
RU-MLMC, and RR-MLMC are larger than the variance of LSGD due to the extra randomness
introduced by sampling a level.

• Although in theory, V-MLMC could have extra costs incurred by rounding mini-batch sizes to
integers numbers, in practice, we realize that one can always select a N so that each mini-batch
nl is an integer to avoid such extra cost. It implies potential improvements on the theory of
V-MLMC.

• Comparing LSGD and RT-MLMC with large truncation level 10, one can immediately see that
LSGD runs out of budget very fast and may not converge due to large per-iteration cost whereas
RT-MLMC with truncation level 10 with proper stepsize can always converge. It aligns with the
theory that the cost to construct RT-MLMC gradient estimators is much smaller than the cost to
construct LSGD gradient estimator.

• For RR-MLMC and RU-MLMC, when the parameter p of the geometry distribution is small,
there is a high probability to generate a large level l, which can run out of budget very fast.
However, for RT-MLMC, since the largest truncation level is restricted to 10, RT-MLMC
performs robustly with small p. The numerical observation aligns with the theory of RU-MLMC,
RR-MLMC, and RT-MLMC. When the parameter p is large, i.e., close to 1, then with a high
probability, the geometry distribution would generate a small level and would generate a very
large level with a very small probability. When such rare events happen, there would be a sudden
jump in the error. as we observed when p = 0.8 or p = 0.9.
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Figure 2: Best Setup of Different Algorithm on synthetic quadratic programming. The second row
demonstrates the performance of RT-MLMC using the best selection of L ∈ {0, . . . , 10} for a given
p = 0.6 on the left, and RT-MLMC using best selection of p ∈ {0.1, . . . , 0.9} for a given L = 6 on
the right.

F.2 Invariant Robust Regression

In this subsection, we conduct numerical experiments on an invariant robust regression [8] of the
form:

min
x∈Rd

Eξ=(a,b)f(Eη|aη
⊤w − b),

where f is a loss function, ξ = (a, b) represents the feature label pair, η represents the poisoned
feature. Such problem is a special case of conditional stochastic optimization. For f , we consider
absolute loss and square loss. For simplicity, we consider η = X + c where c ∼ N(0, σ2Id).
In the experiments of absolute loss, we set dimension d as 20, variance σ2 as 1. We generate
N = 2000 samples of ξ, i.e., 2000 feature label pairs such that a ∼ N(1d, Id) and b = a⊤x0 with
x0 ∼ N(5 ∗ 1d, 10 ∗ Id). Here 1d denotes a d-dimensional all one vector. The total budget is 1e+ 5.
The MLMC component H l is constructed via (13). For all methods, we use a mini-batch of 50, i.e., at
each iteration, we take 50 pairs of perturbed feature and label pairs. For V-MLMC, we use mini-batch
size ml = 2L−l for each level l. For RT-MLMC, RU-MLMC, and RR-MLMC, we additionally uses
a mini-batch of 20 on the level generated by the geometry distribution to control their variance so
that they can use larger stepsizes. Correspondingly, the cost is enlarged as well.

The best parameter setup of each method for invariant absolute regression, i.e., f is the absolute loss,
are summarized in Figure 3. The best parameter setup of each method for invariant least square, i.e.,
f is the square loss, are summarized in Figure 4. Note that each line in the figure reflects a trial of
the methods with a different random initialization. We performs 5 trials. The budget for invariant
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Figure 3: Best Setup of Different Algorithm on invariant absolute regression. The second row
demonstrates the performance of RT-MLMC using the best selection of L ∈ {0, . . . , 10} for a given
p = 0.6 on the left, and RT-MLMC using best selection of p ∈ {0.1, . . . , 0.9} for a given L = 6 on
the right.

absolute regression is 1e+5 and for invariant least square is 4e+4. The performance of each method
is measured by the average error, which is reflected on top of each subfigure.

We summarize the implications from invariant robust regression problems as follows. Note that the
bias limit denotes the smallest average error that a biased method with a certain truncation level L,
i.e., LSGD, V-MLMC, RT-MLMC, can achieve even if the budget is infinity. Note that as truncation
level L gets larger, the bias limit gets closer to 0.

• In invariant absolute regression, we notice that RT-MLMC is better than LSGD and all other
MLMC gradient methods achieve comparable performance. The major benefit of RT-MLMC
is that it has a much smaller cost compared to LSGD. Thus when LSGD achieves the bias
limit of truncation level 7, RT-MLMC can achieve the bias limit of a higher truncation level
9. Comparing RT-MLMC and unbiased MLMC gradient methods, RT-MLMC generally has a
smaller variance. V-MLMC cannot beat LSGD since the cost of V-MLMC is much higher than
LSGD. Thus with this sample budget, V-MLMC can only reach the bias limit of truncation level
5.

• For invariant least square, the gradient estimators could have larger variances. One can see
that the optimal stepsizes selection is smaller in invariant least-square than that in the invariant
absolute regression. Furthermore, to balance the variance of RT-MLMC, it has to use a smaller
stepsize compared to LSGD. As a result, using 1e+ 5 budgets, RT-MLMC has not converged to
the bias limit of a large truncation level yet. On the other hand, V-MLMC has a much larger
per-iteration cost. As variance grows, the number of iterations of V-MLMC grows. Thus 1e+ 5
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Figure 4: Best Setup of Different Algorithm on invariant least square. The second row demonstrates
the performance of RT-MLMC using the best selection of L ∈ {0, . . . , 10} for a given p = 0.6 on
the left, and RT-MLMC using best selection of p ∈ {0.1, . . . , 0.9} for a given L = 6 on the right.

budget for V-MLMC is not enough to reach the bias limit as well. We further test the variance
times the cost to construct gradient estimators. Such value of MLMC gradient methods is similar
to that of LSGD. Thus MLMC gradient methods do not achieve better performance. It means
that the constants that we hide in O(1) in theory also play an important role in the practical
performance of MLMC gradient methods.

• Although in theory mini-batch reduces the variance, but it increases the cost of the gradient
estimator, there is no influence on the eventual cost if the optimal stepsize is used. In practice,
however, we do not know the optimal stepsizes. Mini-batches allow larger stepsizes and stabilize
the training process.
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