
A Background on Causal Bayesian Networks

A.1 Definitions

Graph. A graph G is a collection of nodes and links connecting pairs of nodes. Directed and
undirected links give rise to directed and undirected graphs, respectively. A path from node Xi to
node Xj is a sequence of linked nodes starting at Xi and ending at Xj . A directed path is a path
whose links are directed and pointing from preceding towards following nodes in the sequence.

Directed Acyclic Graph (DAG). A DAG is a directed graph with no directed paths starting and
ending at the same node. A node Xi with a direct link to Xj , Xi → Xj , is called parent of Xj . In
this case, Xj is called child of Xi. A node is a collider on a path if it has two parents on that path. A
node Xi is an ancestor of a node Xj if there exists a directed path from Xi to Xj . In this case, Xj is
a descendant of Xi. We denote with de(Xi,G) the set of descendants2 of Xi in G.

Bayesian Network. A Bayesian network is a DAG in which nodes represent random variables and
links express statistical relationships between the variables. Each node Xi in the graph is associated
with the conditional distribution p(Xi|pa(Xi)), where pa(Xi) is the set of parents of Xi. The joint
distribution of all nodes, p(X1, . . . , XI), is given by the product of all conditional distributions, i.e.
p(X1, . . . , XI) =

∏I
i=1 p(Xi|pa(Xi)).

A causal Bayesian network is a Bayesian network in which links represent causal influence rather
than statistical dependence. X is a potential cause of Y if there exists a directed path, also called
causal path, from X to Y .

The sets of variables X and Y are d-separated by the set of variables Z in the DAG G (denoted as
X ⊥⊥GY |Z) if all paths from any element of X to any element of Y are closed (or blocked) by Z . A
path is blocked by Z if at least one of the following conditions is satisfied:

(a) There is a non-collider on the path which belongs to the conditioning set Z .

(b) There is a collider on the path such that neither the collider nor any of its descendants belong
to the conditioning set Z .

If X and Y are d-separated by Z , then X and Y are statistically independent given Z (denoted as
X ⊥⊥ Y |Z).

A.2 Graphical Criteria for Selecting Asymptotically Optimal Adjustment Sets

In this section, we provide an overview of some of the recent results on adjustment set comparison and
selection w.r.t. asymptotic variance using graphical criteria introduced in Henckel et al. [7], Rotnitzky
and Smucler [27] and Smucler et al. [29].

Forbidden Set. The forbidden set relative to (X,Y ) in G is defined as forb(X,Y,G) =
de(cn(X,Y,G),G) ∪ X , where cn(X,Y,G) denotes the set of causal nodes, namely the set of
nodes on causal paths from X to Y , excluding X .

Adjustment Set. A (possibly empty) set Z is an adjustment set relative to (X,Y ) if p(y|do(x)) =
p(y|x) if Z = ∅, and p(y|do(x)) =

∫
z
p(y|x, z)p(z)dz otherwise. An adjustment set Z is minimal if

no subset of Z is an adjustment set.

Adjustment sets can be read off from a given causal DAG using the adjustment criterion which
generalizes the backdoor criterion [25, 26, 28].

Adjustment Criterion. The adjustment criterion requires that the following conditions hold: (a)
forb(X,Y,G) ∩ Z = ∅ and (b) all non-causal paths from X to Y are blocked by Z.

The backdoor criterion and the adjustment criterion differ in the first condition (a). The backdoor
criterion excludes all descendants of X , whilst the adjustment criterion excludes only the descendants
of the causal nodes relative to (X,Y ).

Below we give two lemmas for a DAG G with node set V , and X ⊂ V , Y ∈ V \X with X a
random vector taking values on a finite set. We use, e.g., σ2

B to indicate the asymptotic variance

2Following the convention that a node is an ancestor and descendant of itself.
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of an asymptotically linear estimator µ̂do(x) of µdo(x) := E[Y |do(X = x)] based on the adjustment
criterion using that uses adjustment set B.

Lemma 2. (Addition of precision set G) Suppose that B ⊂ V \ {X,Y } is an adjustment set relative
to (X,Y ) in G, and that G is a disjoint set with B such that X ⊥⊥ G G |B. Then (G,B) is also an
adjustment set relative to (X,Y ) in G and σ2

B − σ2
G∪B ≥ 0.

Lemma 3. (Removal of overadjustement setB) Suppose that (G∪B) ⊂ V \ {X,Y } is an adjustment
set relative to (X,Y ) in G, with G ∩B = ∅, and that Y ⊥⊥ GB |G,X . Then G is also an adjustment
set relative to (X,Y ) in G and σ2

G∪B − σ2
G ≥ 0.

Lemma 2 quantifies the reduction in variance associated with supplementing an adjustment set B
with a precision set G, i.e with variables that are independent of X when conditioning on B. Lemma
3 quantifies the increase in variance incurred by keeping an overadjustment set B, i.e. variables that
are associated with X but do not help predicting Y given the remaining adjusting variables G and X .
In general B is more harmful the weaker the association between Y and G within levels of X .

Theorem 4. Suppose that G ⊂ V \ {X,Y } and B ⊂ V \ {X,Y } are adjustment set relative to
(X,Y ) in G such that X ⊥⊥G G \B |B and Y ⊥⊥ GB \G |G,X . Then σ2

B − σ2
G ≥ 0.

The proof follows from the equivalence σ2
B − σ2

G = σ2
B − σ2

B∪(G \B) + σ2
G∪(B \G) − σ2

G, and from
applying Lemma 2 to σ2

B − σ2
B∪(G \B) (supplementation with precision set G \B) and Lemma 3 to

σ2
G∪(B \G) − σ2

G (deletion of overadjustment set B \G).

W1 O1

X Y

W2 O2

Not all pairs of valid adjustment sets can be ordered using Theorem 4. In
the DAG on the left, Z = {O1,W2} and Z̃ = {O2,W1} are adjustment
sets relative to (X,Y ) which cannot be compared as X��⊥⊥GW1 |Z nor
X��⊥⊥GW2 | Z̃. The set Z yields a smaller asymptotic variance than Z̃ if the
association encoded in the green link is stronger than that in the brown link
and the one encoded in the blue link is weaker than the one in the red link.

If an adjustment set relative to (X,Y ) in G exists G = O(X,Y,G) =
pa(cn(X,Y,G),G) \ forb(X,Y,G) is an adjustment set that satisfies the

independence conditions of Theorem 4 with respect to any adjustment set B. Therefore, we have the
following important corollary to Theorem 4.

Theorem 5. If an adjustment set Z relative to (X,Y ) in G exists then σ2
Z − σ2

O ≥ 0 (O :=
O(X,Y,G)). O is called asymptotically optimal adjustment set.

A.3 A Neyman Orthogonal Frontdoor Criterion Estimator

We can obtain an estimator µ̂do(x) of µdo(x) := E[Y |do(X = x)] based on the frontdoor criterion

µdo(x) =
∑
z

p(Z = z|X = x)
∑
x′

p(X = x′)µx′(Z = z)

in a variety of ways. For example, if the distributions are all parametric with parameter θ (e.g. if they
are tabular), then we may obtain an asymptotically linear estimate for µ̂ by estimating θ̂ and using
the plug-in estimate

µ̂do(x) =
∑
z

p(Z = z|X = x, θ̂)
∑
x′

p(X = x′|θ̂)µx′(Z = z|θ̂).

However, if we wish to use non-parametric estimators for the nuisance function, we need to look
for semi-parametric estimators with Neyman orthogonality [2]. The recent work of Jung et al. [15]
provides algorithms for constructing such estimators and even guarantees that the influence functions
are uncentered. For a generalized front-door criterion where X , Z , and Y are allowed to share a
confounding parent C, Fulcher et al. [6, Theorem 1] derives the efficient influence function. The case
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corresponding to the front-door criteria and binary X is

ψ(W, η) = (Y − Ep[Y |Z, X])

(
p(Z|X = 1)

p(Z|X)
− p(Z|X = 0)

p(Z|X)

)
+
∑
z′

Ep[Y |Z = z′, X] (p(Z = z′|X = 1)− p(z′|X = 0))

+

(
X

p(X = 1)
− 1−X
p(X = 0)

)∑
x′

Ep[Y |Z, X = x′]p(X = x′)

−
(

X

p(X = 1)
− 1−X
p(X = 0)

)∑
x′,z′

Ep[Y |Z = z′, X = x′]p(Z = z′|X)p(X = x′),

which is the formula implemented in the experiments. The nuisance function is η = (p(X =
x), p(X = x|Z = z),Ep[Y |Z = z,X = x]).

B Background on Bandit Algorithms

Multi-armed bandits are a popular and successful framework for modeling sequential decision making
problems under uncertainty. Like most of the Online Learning literature, a bandit problem is phrased in
the language of repeated games between the learner (or investigator) and the environment. Generally,
the learner has K actions to choose from. The game proceeds in rounds t = 1, 2, . . ., and during each
round, the learner chooses arm kt, the environment chooses a loss function `t ∈ {1, . . . ,K} → R,
and the learner observes `t(kt) but not `t at any other possible choice. It is this limitation on the
feedback that makes the problem interesting.

By now, several great textbooks exist on multi-armed bandits [20], so we will only focus on explaining
the background specific for best-arm identification. Multi-armed bandits usually refers to the regret-
minimization formulation where the learner chooses actions and tries to incur cumulative loss almost
as small as the cumulative loss of the best single fixed action (this quantity is known as the regret).
In contrast, the best-arm-identification problem is to identify the arm with the smallest average
loss without regard to any losses accumulated along the way. Intuitively, a best-arm-identification
algorithm will explore more than a regret-minimization algorithm, since it is not deterred from
playing costly arms that could still provide information.

There are two goals explored in the literature. In fixed-confidence, the learner wishes to find the best
arm with a guaranteed minimum confidence in as few samples as possible; analyzing algorithms in
this setting usually requires showing a proof of correctness (that the probability of correctness is
sufficiently high) and a bound on the sample complexity (since the sample complexity is random, this
is usually shown in expectation or with high probability). In the fixed-budget setting, the learner has
a fixed number of samples that can be collected and wishes to maximize the probability of finding the
correct arm. Our setting more naturally fits into the fixed-confidence setting.

The best-arm-identification protocol is the following.

Experimental Protocol
Given: Number of actions K, desired confidence δ ∈ (0, 1), error tolerance ε > 0

Fixed: loss distributions ν1, . . . , νK with means µ1, . . . , µK
for t = 1, 2, . . . , T : do

The learner chooses action kt ∈ [K]

The learner observes Yt ∼ νkt
The learner decides whether to stop

end
The goal is to return an (ε, δ)-PAC index k̂ with

P
(
µk̂ ≥ minkµk + ε

)
≤ δ.
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In words, the learner may sample from one of K distributions every round and wants to identify
the distribution with the smallest mean. More specifically, the learner wants to guarantee that the
returned index corresponds to a mean that is at most ε suboptimal with probability at least 1− δ, i.e.
one that is probably approximately correct (PAC).

Typically, an algorithm is analyzed by proving an upper bound on the sample complexity in terms
of some parameters that describe the difficulty of the particular instance. These upper bounds often
match, at least up to log factors, lower bounds on sample complexity that hold for any PAC algorithm.
The instance-dependent parameters are typically the sub-optimality gap of the means, defined as
∆k := µk − µk∗ , where k∗ = arg minkµk.

The most common bandit algorithms in the literature fall into a few categories.

1. Action elimination algorithms (e.g. Successive Elimination [4]) keep a set of arms that could
be optimal. They alternate between sampling all the arms in this set and using confidence
intervals to prune the set.

2. Optimistic algorithms, like UCB [20] and LUCB [17], first construct the most optimistic
problem instance every round that is consistent with the confidence intervals (e.g. by
assuming the smallest mean values in the confidence sets), then act greedily as if this
instance was true.

3. Track-and-Stop-style [19] algorithms, which require that the distributions live in a parametric
family, compute an asymptotic lower bound on the sample complexity and try to keep the
empirical sampling proportion close to the sampling proportion achieving the lower bound.

When ε = 0, the sample complexity lower bound is

Ω

∑
k 6=k∗

∆−2
k log(log(∆−2

k )/δ)

 .

There exist algorithms with matching upper bounds, such as lil’UCB and Exponential Gap Elimination
[12], but these algorithms rely on the fact that the confidence interval widths all decrease at a
deterministic, Hoeffding-like rate (i.e. of O(n−1/2 log(1/δ))), and are not generally suitable for our
setting. We choose to adapt versions of Successive Elimination and LUCB, which work without
modification for general confidence interval widths, and leave extending these optimal algorithms as
future work.

When ε > 0, the most cited lower bound is that of Mannor and Tsitsiklis [21], which is

Ω

(
K

ε2
log(1/δ)

)
.

To the best of our knowledge, a lower bound that matches the terms in our analysis, ∆k

2 ∨ ε, does
not exist. However, the lower bounds bound the literature are, in general, not useful for our setting;
they tend to assume that the arm rewards have well controlled tail behavior (e.g. are sub-Gaussian or
belong in some exponential family). In contrast, we do not wish to make such assumptions about the
confidence interval widths. As such, any instance-dependent lower bounds would need to depend on
the widths for all the estimators, significantly complicating the analysis.

B.1 The general LUCB algorithm

The version of the LUCB algorithm given in the main text is tailored for best-arm identification.
The original algorithm [17] is written for m-best-arm identification and can also be adapted for our
estimator-selection setting; it is presented below.
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Algorithm 3 top-m CS-LUCB
Input B > 1,τ̃ > 0, m ≥ 1
{ψk, η̂k, uk, ck : k ∈ [K]}
for k=1,. . . , K do

Obtain B new samples D
Add half of D to Dηk and half to Dσk
σ̂2
k, βk ← CSUpdate(uk, η̂k, ψk, L, τ̃ ,Dηk ,Dσk )

end
for t = 1, 2, . . . do

Kt ← arg minK⊆[K]:|K|=m
∑
k∈K ckσ̂

2
k

lt ← arg maxk∈Kt ck(σ̂2
k + βk)

ut ← arg mink/∈Ktck(σ̂2
k − βk)

if clt
(
σ̂2
lt

+ βlt
)
≤ cut

(
σ̂2
ut − βut

)
− ε then

Return Kt

end
for k ∈ ut, lt do

Obtain B new samples D
Add half of D to Dηk and half to Dσk
σ̂2
k, βk ← CSUpdate(uk, η̂k, ψk, L, τ̃ ,Dηk ,Dσk )

end
end

C Confidence Sequences

We begin with a “canonical assumption” used throughout the literature (see e.g. Howard et al. [9]).
The use of ψ is this section is completely separate from the use of ψ for an uncentered influence
function in the main paper; the meaning of ψ is changed to aid the reader in appealing to the
confidence sequence literature. For a random processes (St)t>0 ∈ R and (Vt)t>0 ∈ R and function
ψ : R→ R, we say that (St)t>0 is sub-ψ with variance process Vt if, for all t > 0,

Et−1[exp{λSt − ψ(λ, Vt)}] ≤ exp{λSt−1 − ψ(λ, Vt−1)} (3)

for all λ in some subset of R and where Et is the conditional expectation w.r.t. Ft :=
σ(S1, . . . , St, V1, . . . , Vt). Equivalently, we require that exp{λ>St − ψ(λ, Vt)} is a nonnegative
supermartingale adapted to Ft. Unless otherwise specified, we assume that Eq. (3) holds for all
λ ∈ Rd. Intuitively, the function ψ controls the tail behavior. We extend this definition to vector-
valued random processes (St)t>0 ∈ Rd with variances process (Vt)t>0 ∈ Rd×d by requiring Eq. (3)
holds for all λ ∈ Rd and replacing λSt with λ>St (ψ is still real-valued).

The definitions for a sub-exponential random variable and sub-ψ process with sub-exponential
boundary are very related and summarized below.
Definition 4. A random variable X ∈ R with mean µ is ν sub-exponential if there exist constants ν
and c such that

E
[
eλ(X−µ)

]
≤ e νλ

2

2 ∀ λ ∈ [0, 1/c).

A random process St is ν sub-exponential with scale c > 0 and variance process Vt if the “canonical
assumption” is satisfied for

ψE,c(λ) = ν
− log(1− cλ)− cλ

c2
∀ λ ∈ [0, 1/c). (4)

By Howard et al. [9, Proposition 5], these two conditions are equivalent.

The sub-exponential property is useful for bounding the variance; roughly, the square of a sub-
Gaussian random variable is sub-exponential. Specific parameter values may be obtained by compar-
ing moments. For example, [8, Appendix B] uses this approach to show that, if X is σ2 sub-Gaussian,
then

E
[
eλ(X2−E[X2])

]
≤ e16λ2σ4 ∀λ ∈ [0, (4σ2)−1),

which satisfies the definition of sub-Exponential for the values in Lemma 1, repeated below.
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Lemma 1. If X is σ2 sub-Gaussian, then X2 is a sub-exponential random variable with ν = 4
√

2σ4

and c = 4σ2.

The purpose of stating the tail control in terms of sub-ψ assumptions is to enable the reader to quickly
adapt confidence sequence results from the literature. For example, we can obtain a confidence
sequence on a bounded random variable (which is useful for obtaining a confidence sequence for
tabular conditional probability distributions) using Howard et al. [10, Proposition 11], which implies
that confidence sequences for bounded random variables are sub-Gaussian.

Next, we present a general purpose confidence sequence for averages of sub-Gaussian and sub-
exponential random variables that is used in the construction of Corollary 1. This confidence
sequence is a special case of [10, Equation 8], which derives a boundary for what the authors
call “sub-Gamma” random variables. Their Proposition 11 implies that this boundary holds for
sub-Gaussian and sub-exponential random variables as well.
Lemma 4. Let γ > 0 and m > 0 be scalar parameters, and let h : R≥0 → R≥0 be an increasing
function with summable reciprocals. With `(v) := log(h(logγ(v/m)) + log(2/α), define

un(a, b) =
γ1/4 + γ−1/4

√
2n

√
(an ∨m)`(an ∨m) + b

√
γ + 1

n
`(an ∨m).

If W is a λ sub-exponential random variable with scale c, then {un(λ, c)} is a boundary sequence at
level α for |En[W ]−E[W ]|. If W is a λ sub-Gaussian random variable, then un(λ, 0) is a boundary
sequence at level α for |En[W ]− E[W ]|.

We can now show a result for the case when ψ(W, η), at the true η, is λ sub-Gaussian by combining
Theorem 1 with Lemma 4 and Lemma 1. This Lemma is a more general version of Corollary 1 in the
main text.
Corollary 2. Let α ∈ (0, 1) and assume the same setting as Theorem 1, and additionally that ψ(W, η)
is λ sub-Gaussian. Then, for {un(a, b)} and {un(a)} as defined in Lemma 4 and n′ = |Dσn|,

P
(
∃n ≥ 1 :

∣∣σ̂2(Dn)− σ2
∣∣ ≥ 2L2(uηn)2 + un′(8λ

2, 2λ) + u2
n′(λ) + 2τ̃un′(λ)

)
≤ α.

In particular, let m > 0 and define λ′ = λ∨ 8λ2 and n′ := (18.6λ log(λn/m) + log(2/α))∨m/λ′.
Then, the confidence sequence with parameters γ = 2 and h(k) = 22k+1 (as suggested by [10])
evaluates to

P

∃n ≥ n′ :
∣∣σ̂2(Dn)− σ2

∣∣ ≥ 2L2(uηn)2 +
5
(√

2λ+ τ̃
)

8

√
1

n

(
2λ log(λ′n/m) + log

2

α

) ≤ α.
D Confidence Sequences for Parameters

As an illustration that confidence sequences for fit parameters are possible, we will reproduce the
confidence sequence for the ordinary least squares estimator from Abbasi-Yadkori et al. [1, Theorem
2]. Assume the linear model

Yt = z>t β + εt, t = 1, 2, . . . , (5)

where zt are arbitrary vectors and εt are i.i.d., zero mean random variables. The errors are known to
be a sub-Gaussian stochastic process, meaning that we can derive a sub-ψ condition for them. The
claim, shown in e.g. [3], is repeated below in our notation.

Lemma 5. Let St =
∑t
s=1 zsεs and assume the linear model Eq. (5). If εt is σ2 sub-Gaussian, then

(St)t>0 is sub-ψ with ψ(λ, V ) = σ2

2 λ
2V and variance process Vt =

∑t
s=1 zsz

>
s .

An interesting feature of this confidence sequence is that it is self-normalized; the bound on St is a
function of the data as it depends on Vt. Using the boundary sequence derived in [1], we can show
the following.

Lemma 6. Let St =
∑t
s=1 zsεs and let Dt be the data matrix (i.e. the matrix with rows z1, . . . , zt.

Assume the linear model Eq. (5), and let and ρ > 0. If εt is λ sub-Gaussian, then (St)t>0 has

P

(
∀t > 0 : S>t (D>t Dt + σ−2ρI)−1St ≤ λ log

(
1

α2

det(λD>t Dt + ρI)

ρd

))
≥ 1− α.
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In the context of estimating a nuisance function η, we have β̂t − β = (D>t Dt)
−1St, so

un =

√
λ log

(
1

α2

det(λD>t Dt + ρI)

ρd

)
is a boundary sequence of level α on the random variable

(β̂t − β)>(D>t Dt)(D
>
t Dt + σ−2ρI)−1(D>t Dt)(β̂t − β).

E Delayed Proofs

Proof of Theorem 1. We use the shorthand η̂n := η̂(Dηn). Also, let En denote the empirical expecta-
tion w.r.t. Dσn. The sample splitting estimator defined in Eq. (2) splits the data into two folds, uses
the first fold to evaluate η̂n, and the second fold to calculate

varn[ψ(W, η̂n)] = En[(ψ(W, η̂n)− En[ψ(W, η̂n)])2].

Using the identity varn[ψ(W, η̂n)] = En[ψ(W, η̂n)2]−En[ψ(W, η̂n)]2, we can expand σ̂2(Dn)−σ2

as

σ̂2(Dn)− σ2 = varn[ψ(W, η̂n)]− var[ψ(W, η)]

= En[ψ2(W, η̂n)]− E[ψ2(W, η)]− En[ψ(W, η̂n)]2 + E[ψ(W, η)]2

= En[ψ2(W, η̂n)]− En[ψ2(W, η)]− En[ψ(W, η̂n)]2 + En[ψ(W, η)]2

+
(
En[ψ2(W, η)]− E[ψ2(W, η)]

)
+
(
En[ψ(W, η)]2 − E[ψ(W, η)]2

)
= En

[
(ψ(W, η̂n)− ψ(W, η))2

]
+ 2En [ψ(W, η)(ψ(W, η̂n)− ψ(W, η))] (6)

− En[ψ(W, η̂n)− ψ(W, η)]En[ψ(W, η̂n) + ψ(W, η)]

+
(
En[ψ2(W, η)]− E[ψ2(W, η)]

)
+
(
En[ψ(W, η)]2 − E[ψ(W, η)]2

)
.

Using the L-Lipschitz property of ψ, we can bound the first term by∣∣En [(ψ(W, η̂n)− ψ(W, η))2
]∣∣ ≤ L2 ‖η̂n − η‖2 . (7)

Rearranging the second and third terms and using Cauchy-Schwarz, we have

|2En [ψ(W, η)(ψ(W, η̂n)− ψ(W, η))]− En[ψ(W, η̂n)− ψ(W, η)]En[ψ(W, η̂n) + ψ(W, η)]|
= |En [(2ψ(W, η)− En[ψ(W, η̂n) + ψ(W, η)]) (ψ(W, η̂n)− ψ(W, η))]|

≤
√
En
[
(2ψ(W, η)− En[ψ(W, η̂n) + ψ(W, η)])

2
]√

En
[
(ψ(W, η̂n)− ψ(W, η))

2
]

=

√
En
[
(ψ(W, η)− ψ(W, η̂n))

2
]√

En
[
(ψ(W, η̂n)− ψ(W, η))

2
]

= En
[
(ψ(W, η̂n)− ψ(W, η))

2
]

≤ L2 ‖η̂n − η‖2 .

Using the boundary sequence at n, u(ψ,2)
n , to control the forth term is immediate. We can tackle the

fifth and final term by writing∣∣En[ψ(W, η)]2 − E[ψ(W, η)]2
∣∣ ≤ ∣∣∣∣(E[ψ(W, η)]− u(ψ,1)

n

)2

− E[ψ(W, η)]2
∣∣∣∣

≤
(
u(ψ,1)
n

)2

+ 2
∣∣∣u(ψ,1)
n E[ψ(W, η)]

∣∣∣
≤
(
u(ψ,1)
n

)2

+ 2|τ |u(ψ,1)
n ≤

(
u(ψ,1)
n

)2

+ 2τ̃u(ψ,1)
n .

Collecting the terms above will yield the theorem statement.
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Proof of Corollary 1. Since ψ(W, η) is assumed to be λ sub-Gaussian, Lemma 1 implies that
ψ2(W, η) is 4

√
2λ2 sub-exponential with scale c = 2λ. Hence, Lemma 4 guarantees that

u(ψ,1)
n = un(λ, 0) and u(ψ,2)

n = un(4
√

2λ2, 4λ),

with the un(λ, c) defined in Lemma 4, are boundary sequences at level α for
|EDn [ψ(W, η)]− E[ψ(W, η)]| and

∣∣EDn [ψ(W, η)]2 − E[ψ(W, η)]2
∣∣, respectively. Substitut-

ing these expressions into Theorem 1 yields

P
(
∀n ≥ 1

∣∣σ̂2(Dn)− σ2
∣∣ ≤ 2L2 ‖η̂(Dηn)− η‖2 + un(4

√
2λ2, 4λ) + (un(λ, 0))

2
+ 2τ̃un(λ, 0)

)
≥ 1− 3α.

We can glean some intuition by expanding the boundary functions as

un(4
√

2λ2, 4λ) + un(λ, 0)2 + 2τ̃un(λ, 0) =
γ1/4 + γ−1/4

√
2n

√
(4
√

2λ2n ∨m)`(4
√

2λ2n ∨m)

+ 4λ

√
γ + 1

n
`(4
√

2λ2n ∨m)

+
(γ1/4 + γ−1/4)2

2n2
(λn ∨m)`(λn ∨m)

+ 2τ̃
γ1/4 + γ−1/4

√
2n

√
(λn ∨m)`(λn ∨m).

Letting λ′ = λ ∨ 4
√

2λ2 and assuming that n ≥ m/λ′, we can simplify to

un(4
√

2λ2, 4λ) + un(λ, 0)2 + 2τ̃un(λ, 0) ≤ λ`(λ′n)

n

(
4(
√
γ + 1) +

(γ1/4 + γ−1/4)2

2

)
+ (1 + 2τ̃)

γ1/4 + γ−1/4

√
2n

√
λ′`(λ′n).

The second term will dominate quickly because it scales with 1/
√
n. Hence, for

√
n ≥

√
λ′`(λ′n)√

2(1 + 2τ̃)

(
8(
√
γ + 1)

γ1/4 + γ−1/4
+ γ1/4 + γ−1/4

)
∨
√
m

λ′
,

we have

un(4
√

2λ2, 4λ) + un(λ, 0)2 + 2τ̃un(λ, 0) ≤ 2(1 + 2τ̃)
γ1/4 + γ−1/4

√
2n

√
λ′`(λ′n) =

3 + 6τ̃√
n

√
λ′`(λ′n),

where the last equality was from the simple choice γ = 4. With this value of γ and noting that
(1 + 2τ̃)−1 ≤ 1, a direct calculation shows that it suffices to take the lower bound on n to be

n ≥ 91λ′`(λ′n) ∨ m
λ′
.

Coming even closer to a concrete bound, we evaluate the bound for h(k) = ηsk

1−η−s , as suggested by
Howard et al. [10]. Then, choosing s = 2, γ = 4 ensuring that h(k) = 2k+1, we have

`(v) = log (h(log4(v/m))) + log(1/α) =
(

log4

( v
m

)
+ 1
)

log(2) + log(1/α)

≤ 1

2
log(v/m) + log(2) + log(1/α).

The total bound is then

un(4
√

2λ2, 4λ) + un(λ, 0)2 + 2τun(λ, 0) ≤ (3 + 6τ̃)

√
λ′

n

(
1

2
log

(
λ′n

m

)
+ log

2

α

)
for any n ≥ (91λ′(log(λ′n/m) + log(1/α))) ∨ (m/λ′).

20



E.1 Proofs from Section 4

For convenience, we reproduce the theorem statements.

Define the random variable βk(n) to be the (potentially random) confidence width returned by
CSUpdate for estimator k after n updates. For the remainder of the section, we assume that we have
access to functions Bk(n, δ) which have, for all δ > 0,

P(βk(n) ≤ Bk(n, δ)) ≥ 1− δ.
That is, Bk are deterministic upper bounds. We assume that βk(n) is independent of βj(m) for all
j 6= k. We also recall the definitions that ∆k = ckσ

2
k − ck∗σ2

k∗ and a ∧ b = min{a, b}. Finally, let
C be the event that all the confidence intervals for all estimators and all rounds of the algorithm are
correct.
Theorem 3. Assume that the conditions of Theorem 1 hold and that the confidence sequences
uηk,n, u

(ψ,1)
k,n , u

(ψ,2)
k,n → 0 for all k ∈ [K] and are all level δ/3K. Then both CS-LUCB and CS-SE

with uk = (uηk, u
(ψ,1)
k , u

(ψ,2)
k ) return an (ε, δ)-PAC index.

If we have a deterministic upper bound Bk(n, δ) such that, for all δ > 0, P(βk(n) ≤ Bk(n, δ)) ≥
1− δ, then both algorithms terminate in at most

∑
k∈[K] min

{
n : Bk(n, δ/K) ≤ ∆k

4 ∨ ε
2

}
samples.

If, additionally, there exists constants νη, ν(ψ,1), and ν(ψ,2) such that uθk,n ≤ O(n−νθ log (nK/δ))

for all θ ∈ {η, (ψ, 1), (ψ, 2)} and all k ∈ [K], then the sample complexity is

O
(

K∑
k=1

(∆k ∨ ε)−1/ν

(
log

K

δ(∆k ∨ ε)1/ν

)1/ν
)
,

with probability at least 1 − δ, where ν = min{2νη, ν(ψ,1), ν(ψ,2)}. In particular, if ψ(W, η) is
sub-Gaussian, we recover the sample complexity results (up to log factors) of [4, 17] under the mild
condition of νη ≥ 1/4.

Proof. Throughout the proof, define let C be the event of all three confidence sequences being correct;
under the assumptions of the theorem, the probability of the three confidence sequences for every
estimator being simultaneously correct is at least 1−K(α/K3 +α/K3 +α/K3) = 1− δ when we
take α = δ/3K. Without loss of generality, we also assume that estimators are sorted in ascending
order, that is c1σ2

1 ≤ c2σ2 ≤ . . . ≤ cKσ2
K .

CS-LUCB: Correctness is a trivial consequence of the termination rule and the confidence sequence
guarantees; if the confidence sequences are all correct, then the optimal arm cannot be eliminated.
Since the widths go to zero, eventually we will either eliminate all the arms or identify the optimal
arm within any arbitrarily small ε.

Adapting the original LUCB proof of [17] is difficult in our general setting as we do not assume a
specific rate of decay of Bk(n, δ). Instead, we will follow the simplified analysis from [12].

We will also need to define Nk(n) to be the (random) number of times estimator k was sampled
through round n and σ̂2

k(n) to be the variance estimate returned after updating the estimator n times.
Define v = (c1σ

2
1 + c2σ

2
2)/2. Generally, we will expect c1σ̂2

1 − β1(n) ≥ v and ckσ̂2
k − βk(n) ≤ v

for all other k. Let En be the set of estimators at round n that are likely to make an error or have
insufficient samples, defined as follows. We include all estimators with confidence bounds that
erroneously include v or have not been sampled enough times to have βk(Nk(n)) ≤ ε/2; precisely,
En includes estimator 1 if c1σ̂2

1 + β1(N1(n)) > v or β1(N1(n)) ≥ ε/2 and estimator k 6= 1 if
ckσ̂

2
k(n)− βk(Nk(n)) < v or βk(Nk(n)) ≥ ε/2.

Let C be the event where all confidence bounds are correct. By construction and our choice of α,
Pr(C) ≥ 1− δ. By Kalyanakrishnan et al. [17, Lemma 2], we have that if C holds (the confidence
bounds are correct), then in a round n when the algorithm has not terminated, either ln or un must be
in En (the original proof carefully checks all the cases); that is,

C ∩ {clnσ2
ln + βln(n) ≥ cunσ2

un + βun(n)− ε} ⇒ {ln ∈ En} or {un ∈ En}.
Hence, under C, we can bound the game length by looking at the number of rounds where ln or un
are in En.
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To this end, define Tk := min{n : Bk(n, δ/K) ≤ ∆k

4 ∧ ε
2}, i.e. the minimum number of samples

before we can guarantee, with probability 1− δ/K, that βk(Tk) ≤ ∆k

4 ∧ ε
2 . Then, for any k 6= 1 and

n ≥ Tk,

ckσ̂
2
k(n)− β(n, δ/K) ≥ ckσ2

k − 2β(n, δ/K)

≥ ckσ2
k − 2B(n, δ/K)

≥ v +
ckσ

2
k − c1σ2

1

2
+
ckσ

2
k − c2σ2

2

2
− 2B(n, δ/K)

≥ v +
∆k

2
− 2B(n, δ/K).

There are two cases; if ∆k ≤ ε/2, then B(n, δ/K) ≤ ∆k/4 by construction and

ckσ̂
2
k(n)− β(n, δ/K) ≥ v +

∆k

2
− 2B(n, δ/K) ≥ v.

If ∆k ≥ ε/2, then B(n, δ/K) ≤ ε/2, leading to

ckσ̂
2
k(n)− β(n, δ/K) ≥ v +

∆k

2
− ε ≥ v.

In either case, we have that if n ≥ Tk, then k /∈ En with high probability. An analogous argument
can be made for k = 1. These statements as a whole show that, with n ≥ Tk, we will not have any
estimators in En with high probability.

We can then conclude that∑
n

1 {{ln, un} ∩ En 6= ∅} =
∑
n

∑
k∈[K]

1 {un = k or ln = k}1 {i ∈ En}

=
∑
k∈[K]

∑
n

1 {un = k or ln = k}1 {Nk(n) ≤ Tk} ≤
∑
k

Tk,

where the last line is because estimator k can only be chosen Tk times before Nk(n) > Tk. Adding
these terms up, we see that ∑

k∈[K]

min
{
n : Bk(n, δ/K) ≤ ∆k

4
∨ ε

2

}
,

is a bound on the sample complexity under event C, as claimed.

Successive Elimination: We now turn to CS-SE. Recall the definition of C as the event where the
confidence sequeces are correct and that, without loss of generality, we assumed that estimator 1 is
optimal.

Recall that the algorithm terminates when either |S| = 1 or max{βk : k ∈ S} ≤ ε/2. Under C, we
will argue that, in either case, S contains the optimal arm. Hence, every arm in S is ε-sub-optimal.

By way of contradiction, assume that the optimal arm was eliminated before the algorithm terminates.
This must have happened on a round with ck∗(σ̂2

k∗ + βk∗) ≤ c1(σ̂2
1 − β1), where k∗ corresponds to

the minimum ckσ̂
2
k on that round. However, if the confidence bounds are correct, then this inequality

would imply that
ck∗σ

2
k∗ ≤ ck∗(σ̂2

k∗ + βk∗) ≤ c1(σ̂2
1 − β1) ≤ c1σ2

1 ,

which is a contradiction. Hence, with probability 1− δ, the best arm is not eliminated.

Now, let k̂ be the arm returned by the algorithm. Because the best arm must be in S, we have

ck̂σ
2
k̂
≤ ĉk̂σ̂2

k̂
+ βk̂ ≤ c1σ̂2

1 + βk̂ ≤ c1σ2
1 + β1 + βk̂,

and hence ck̂σ
2
k̂
≤ c1σ2

1 + ε.

Since we assumed the setting of Theorem 1 and that uηk,n, u
(ψ,1)
k,n , u

(ψ,1)
k,n → 0, we must have

|σ̂2
k(Dn) − σ2

k| → 0. Thus, there exists an nk such that βk ≤ ε/2, which it turn implies that
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by at most
∑
k nk samples, each estimator will have received enough samples to either be eliminated

or for the algorithm to terminate. Hence, CS-SE is (ε, δ)-PAC.

We now turn to the sample complexity, bounding it separately for every arm. If arm k is eliminated
(as opposed to surviving until all βk ≤ ε/2), it is sufficient that the event Ek = {c1(σ̂2

1 + β1) ≤
ck(σ̂2

k − βk)} occurs (the arm may be eliminated on a round where k̂ 6= 1 earlier, so this calculation
will be an upper bound). Because

c1(σ2
1 + 2β1) ≥ c1(σ̂2

1 + β1) and ck(σ̂2
k − βk) ≥ ck(σ2

k − 2βk),

Ek must happen if c1(σ2
1 + 2β1) ≤ ck(σ2

k − 2βk), which can be rearranged to

β1 + βk ≤
1

2
(ckσ

2
k − c1σ2

1) =
1

2
∆k.

Recall that βk(n, α) was the confidence interval width after n rounds of the algorithm (i.e. σ̂2
k

was updated n times) that holds with probability α. Similarly define S(n) to be S after n rounds.
The algorithm will terminate if all arms except one are eliminated or if βk(n, δ/K) ≤ ε/2 for all
k ∈ S(n). Thus, a sufficient condition for the algorithm’s termination is that, for all k, either

β1(n) + βk(n, δ/K) ≤ ∆k

2
or βk(n) ≤ ε

2
∀k ∈ S(n). (8)

One can see that if βk(n) ≤ ∆k

4 ∨ ε
2 for all k, then the condition Eq. (8) is satisfied. Hence, it is

sufficient that Bk(n, δ/K) ≤ ∆k

4 ∨ ε
2 for all k for a total of∑

k

min
{
n : Bk(n) ≤ ∆k

4
∨ ε

2

}
samples, as claimed.

This sample complexity is a complicated function of the boundary sequences. To establish a connec-
tion with the typical bounds in the bandit literature, we will evaluate the complexity for the typical
Hoeffding-like tail behavior assuming uθk,n = O (n−νθ log(K/δ)) for all θ ∈ {η, (ψ, 1), (ψ, 2)}.
This implies that βk = O (n−ν log(nK/δ)) for ν = min{2νη, ν(ψ,1), ν(ψ,2)}. Then, picking

n = O
(

(∆k ∨ ε)−1/ν
(

log K
δ(∆k∨ε)1/ν

)1/ν
)

is sufficient because

Bk(n, δ/K) = O
(
n−ν log(nK/δ)

)
= O

(
(∆k ∨ ε)1/ν

(
log

K

δ(∆k ∨ ε)

)−1

log

(
K

δ
(∆k ∨ ε)1/ν

(
log

K

δ(∆k ∨ ε)

)−1/ν
))

= O(∆k ∨ ε),
where we have ignored log-log terms. We obtain the total sample complexity bound by summing
over k.

F Confidence sequences without an UIF

A more explicit version of Theorem 2 is given and proved below.
Theorem 6. Consider an asymptotically linear estimator τ̂n with L-Lipschitz influence function
φ, and let τ̃ be an upper bound on |τ |. For a sequence of datasets D1 ⊆ D2 ⊆ . . . with folds
Dn = Dηn ∪ Dτn ∪ Dσn, and Dηn−1 ⊆ Dηn, Dτn−1 ⊆ Dτn, and Dσn−1 ⊆ Dσn. Assume the following
boundary sequences hold:

1. P
(
∀n ≥ 1 :

∣∣EDσn [φ(W, η, τ)]− E[φ(W, η, τ)]
∣∣ ≤ u(φ,1)

n

)
≥ 1− α,

2. P
(
∀n ≥ 1 :

∣∣EDσn [φ(W, η, τ)2]− E[φ(W, η, τ)2]
∣∣ ≤ u(φ,2)

n

)
≥ 1− α,

3. P (∀n ≥ 1 : ‖η̂(Dηn)− η‖ ≤ uηn) ≥ 1− α, and
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4. P (∀n ≥ 1 : |τ̂n(Dτn, η̂(Dηn))− τ | ≤ uτn) ≥ 1− α.

Then, for the estimator defined by Eq. (1),

P
(
∀n ≥ 1 :

∣∣σ̂2(Dn)− σ2
∣∣ ≤ L2(uηn + uτn)2 + u(φ,2)

n +
(
u(φ,1)
n

)2

+ 2τ̃u(φ,1)
n

)
≥ 1− 4α.

Proof. We aim to decompose |σ̂2(Dn)−σ2| into the terms with confidence sequences, then apply the
confidence sequences and a union bound. Throughout the proof we use the shorthand η̂n := η̂(Dηn)
and τ̂n := τ̂(Dτn, η̂n). Also, let En denote the empirical expectation w.r.t. Dσn.

We can reuse the analysis framework of the UIF case by defining ψ(W, η, τ) := φ(W, η, τ) + τ so
that E[ψ(W, η, τ)] = τ and var(ψ(W, η, τ) = E[φ(W, η, τ)2]; in the UIF case, ψ was not a function
of τ . Using the identity varn[ψ(W, η̂n, τ̂n)] = En[ψ(W, η̂n, τ̂n)2] − En[ψ(W, η̂n, τ̂n)]2, we can
expand σ̂2(Dn)− σ2 as

σ̂2(Dn)− σ2 = varn[ψ(W, η̂n, τ̂n)]− var[ψ(W, η, τ)]

= En[ψ(W, η̂n, τ̂n)2]− E[ψ(W, η, τ)2]− En[ψ(W, η̂n, τ̂n)]2 + E[ψ(W, η, τ)]2

= En[ψ(W, η̂n, τ̂n)2]− En[ψ(W, η, τ)2]− En[ψ(W, η̂n, τ̂n)]2 + En[ψ(W, η, τ)]2

+
(
En[ψ2(W, η, τ)]− E[ψ(W, η, τ)2]

)
+
(
En[ψ(W, η, τ)]2 − E[ψ(W, η, τ)]2

)
= En

[
(ψ(W, η̂n, τ̂n)− ψ(W, η, τ))2

]
+ 2En [ψ(W, η, τ)(ψ(W, η̂n, τ̂n)− ψ(W, η, τ))]

− En[ψ(W, η̂n, τ̂n)− ψ(W, η, τ)]En[ψ(W, η̂n, τ̂n) + ψ(W, η, τ)]

+
(
En[ψ(W, η, τ)2]− E[ψ(W, η, τ)2]

)
+
(
En[ψ(W, η, τ)]2 − E[ψ(W, η, τ)]2

)
.

Rearranging the second and third terms and using Cauchy-Schwarz, we have

|2En [ψ(W, η, τ)(ψ(W, η̂n, τ̂n)− ψ(W, η, τ))]− En[ψ(W, η̂n, τ̂n)− ψ(W, η, τ)]En[ψ(W, η̂n, τ̂n) + ψ(W, η, τ)]|
= |En [(2ψ(W, η, τ)− En[ψ(W, η̂n, τ̂n) + ψ(W, η, τ)]) (ψ(W, η̂n, τ̂n)− ψ(W, η, τ))]|

≤
√

En
[
(2ψ(W, η, τ)− En[ψ(W, η̂n, τ̂n) + ψ(W, η, τ)])

2
]√

En
[
(ψ(W, η̂n, τ̂n)− ψ(W, η, τ))

2
]

=

√
En
[
(ψ(W, η, τ)− ψ(W, η̂n, τ̂n))

2
]√

En
[
(ψ(W, η̂n, τ̂n)− ψ(W, η, τ))

2
]

= En
[
(ψ(W, η̂n, τ̂n)− ψ(W, η, τ))

2
]
.

With the triangle inequality, we have

|σ̂2(Dn)− σ2| ≤ 2En
[
(ψ(W, η̂n, τ̂n)− ψ(W, η, τ))2

]
+
∣∣En[ψ(W, η, τ)2]− E[ψ(W, η, τ)2]

∣∣
+
∣∣En[ψ(W, η, τ)]2 − E[ψ(W, η, τ)]2

∣∣ .
For the first term, we use the Lipschitz property of ψ, providing∣∣En [(ψ(W, η̂n, τ̂n)− ψ(W, η, τ))2

]∣∣ ≤ L2(‖η̂n − η‖+ |τ̂n − τ |)2. (9)

The second term is easily bounded by the assumptions, since∣∣En[ψ2(W, η, τ)]− E[ψ(W, η, τ)2]
∣∣ =

∣∣En[φ2(W, η, τ)]− E[φ(W, η, τ)2]
∣∣ ≤ u(φ,2)

n .

We can tackle the third term by using a similar expansion. Recalling that E[ψ(W, η, τ)] = τ ,∣∣En[ψ(W, η, τ)]2 − E[ψ(W, η, τ)]2
∣∣

≤
∣∣(En[ψ(W, η, τ)]− E[ψ(W, η, τ)])2 + 2E[ψ(W, η, τ)](En[ψ(W, η, τ)]− E[ψ(W, η, τ)]

∣∣
=
∣∣(En[φ(W, η, τ)]− E[φ(W, η, τ)])2 + 2τ(En[ψ(W, η, τ)]− E[ψ(W, η, τ)]

∣∣
≤
(
u(φ,1)
n

)2

+ 2τ̃u(φ,1)
n .

Collecting the terms above will yield the theorem statement.
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While the theorem in stated explicitly in terms of the convergence rate of |τ̂n − τ |, bounding this
term by quantities depending on ‖η̂n − η‖2 is the study of much of the double machine learning
literature. In particular, one can notice that τ̂n is fit via Empirical Risk Minimization, as long as
one associates the influence function with a loss function, the results from Foster and Syrgkanis [5,
Section 4] provide explicit convergence rates provided that φ is convex in τ and the complexity of the
nuisance function class is bounded. Taken as a whole, the width of the confidence sequence scales
with O(‖η̂(Dηn)− η‖2).
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