
Appendix
Organization of the Appendix

In Appendix 7 we present a detailed summary of our results and of the different assumptions. In
Appendix 8 we prove Lemma 4 and 5 which enable to obtain the main SGD recursions. Then in
Appendix 9 we prove our main results: Theorems 1, 2 and 3.

7 Detailed summary of the results and of the different assumptions

7.1 Capacity and Source Conditions and Results

Summary on the assumptions. All the assumptions we discussed in the article are summarized
in Tables 2 and 3. It clearly shows that the assumptions go stricter and stricter revealing a finer
description of the problem. Note also that they can be paired two by two, one sequence corresponding
to the features and the other one to the optimum: Assumption 1 with 2, Assumption 3 with 4 and
Assumption 5 with 6. The case β ∈ (−1, 0), when the optimum is non-attainable, is left aside in the
panels for the sake of clarity.

Assumption Name Condition

Assumption 1 Fourth Moment Condition E
[
‖X‖2 XX>

]
4 RH

⇑ ⇑
Assumption 3 Features log-regularity E

[〈
X, ln (H−1)X

〉
XX>

]
4 RlnH

⇑ ⇑
Assumption 5 Capacity condition E

[∥∥H−α/2X∥∥2 XX>] 4 RαH,α ∈ (0, 1)

Table 2: Table showing conditions and implications for each Assumption on the features.

Assumption Name Condition Finite constant
Assumption 2 Attainable case ‖θ∗‖H < +∞ ‖θ∗‖H

⇑ ⇑
Assumption 4 Optimum log-regularity Tr(M0 ln(H

−1)) < +∞ Cln

⇑ ⇑
Assumption 6 Source condition Tr(M0H

−β) < +∞, β > 0 Cβ

Table 3: Table showing conditions and implications for each Assumption on the optimum.

Summary on the results. Each pair of assumptions (on the features and on the optimum) corresponds
to a given rate of convergence. This is what is summarized in the Table 4. Stricter assumptions
naturally lead to enhanced convergence rates or bigger step-sizes. Going from a theorem to the next
one, the only difference is that we strengthen the assumptions to improve either the convergence rate
or the step-size. Every theorem is a bound on the expected risk given by the last iterate of the SGD
recursion with constant step size γ: ER(θT ) = 1

2ETr
[
(θT − θ∗) (θT − θ∗)>H

]
, where E stands

for the expectation with respect to the stream of data used by the SGD algorithm until time T . Only
for the Theorem 1, for which the assumptions are the weakest, we allow the step-size to depends
on the finite horizon T (through its logarithm). All the theorems are stated with respect to finite
constants defined thanks to the different assumptions. The reader can refer to Tables 2 and 3 for a
concise summary of them. All the proofs have been written in Appendix 9.

Details on log-regularity. We have stated Assumption 3 with a reference λo such that λo ≥ 7Rln

for a better presentation of the results. Here we try to give a more detailed description on the choice
of λ0. Lets make an assumption without any dependence on λo: there exists a constant R̃ln ≥ 0 such
that:

E
[〈
X, ln

(
H−1

)
X
〉
XX>

]
4 R̃lnH. (14)
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Assumptions→ Theorem Rate Step-size
Assumption 1, 2→ Theorem 1 ln(T )/T O(1/ ln(T ))

⇑
Assumption 3, 4→ Theorem 2 1/T O(1)

⇑
Assumption 5, 6→ Theorem 3 1/T 1+α O(1)

Table 4: Table showing different upper-bounds for the convergence of the SGD final iterate given
different assumptions.

Note that this assumption is stricter than Assumption 1 and hence there exists R̃ > 0 such that
E
[∥∥X∥∥2XX>] 4 R̃H . Thus,

E
[〈
X, ln

(
λoH

−1)X〉XX>] = E
[〈
X, ln

(
H−1

)
X
〉
XX>

]
+ lnλo E

[∥∥X∥∥2XX>]
4
(
R̃ lnλo + R̃ln

)
H.

Hence with Rln = R̃ lnλo + R̃ln, it satisfies Assumption 3. Now coming to the condition, we need

7
(
R̃ lnλo + R̃ln

)
≤ λo.

Without loss of generality assume R̃ln ≥ R̃, ln
(
ln R̃ln

)
≤ ln R̃ln and ln R̃ln ≥ 1. Let λo =

50R̃ln ln R̃ln, then

7
(
R̃ lnλo + R̃ln

)
6 7

(
R̃ln ln

(
50R̃ln ln R̃ln

))
+ 7R̃ln

≤ 7 ln 50R̃ln + 7R̃ln ln R̃ln + 7R̃ln ln
(
ln R̃ln

)
+ 7R̃ln

≤ (7 ln 50 + 21)R̃ln ln R̃ln ≤ 50R̃ln ln R̃ln = λo.

which satisfies the required condition. Hence we can always find such a λo if R̃ln is finite.

Capacity condition and eigenvalue decay. In our comments on Assumptions 1,3,5, we make a
few observations about the connection between the capacity conditions and the eigenvalue decay.
Here, we give a detailed description between them. For example, let us assume Assumption 5,

E
[〈
X,H−αX

〉
XX>

]
4 RαH,

Tr
(
E
[〈
X,H−αX

〉
XX>H−α

])
6 Tr

(
RαH

1−α), as H is PSD

E
[〈
X,H−αX

〉
Tr(XX>H−α)

]
6 RαTr

(
H1−α), using Tr(XX>H−α) =

〈
X,H−αX

〉
,

E
[〈
X,H−αX

〉2] ≤ RαTr(H1−α).
Now using Cauchy-Schwarz we have,(
TrH1−α)2 = Tr

(
E
[
XX>

]
H−α

)2
= E

[〈
X,H−αX

〉]2 ≤ E
[〈
X,H−αX

〉2] ≤ RαTr(H1−α).
So from Assumption 5 we have TrH1−α 6 Rα. Using the fact that the eigen values are enumerated
in sorted non-increasing order, we have

iλ1−αi ≤
∑
j6i

λ1−αj 6 TrH1−α 6 Rα

which gives that λi is of order O(1/i
1

1−α ).

Similarly, if we do similar analysis for Assumption 3, it implies that Tr
(
H ln(λ0H

−1)
)
≤ Rln and

hence, λi is of order O( 1
i ln i ).
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8 Proofs of the SGD recursions: Lemma 4 and 5

8.1 Proof of Lemma 4

First recall that for t > 1, Eq. (9) gives that

Mt+1 = (I − γH)Mt (I − γH) + γ2E
[(
H − xtx>t

)
Mt

(
H − xtx>t

)]
.

Lets compute E
[(
H − xtx>t

)
Mt

(
H − xtx>t

)]
. Using that E[xtx>t ] = H , we first write,

E
[(
H − xtx>t

)
Mt

(
H − xtx>t

)]
= E [HMtH]− E

[
xtx
>
t MtH

]
− E

[
HMtxt x

>
t

]
+ E

[
xtx
>
t Mt xtx

>
t

]
= HMtH −HMtH −HMtH + E

[
x>t Mtxt xtx

>
t

]
= E

[
x>t Mtxt xtx

>
t

]
−HMtH.

Now using this in Eq. (9) we have

Mt+1 = (I − γH)Mt (I − γH) + γ2
[
E
[
x>t Mtxt xtx

>
t

]
−HMtH

]
=Mt − γHMt − γMtH + γ2E

[
x>t Mtxt xtx

>
t

]
.

Now we project the above term on viv>i

v>i Mt+1vi = v>i Mtvi − γv>i HMtvi − γv>i MtHvi + γ2v>i E
[
x>t Mtxt xtx

>
t

]
vi

= v>i Mtvi − 2γλiv
>
i Mtvi + γ2E

[
〈vi, xt〉2 x>t Mtxt

]
. Using Hvi = λivi.

Hence, using the notation fti = E
[
〈vi, xt〉2 x>t Mtxt

]
, and recalling that v>i Mtv

>
i = mt

i, we have
the following recursion,

mt+1
i = mt

i − 2γλim
t
i + γ2E

[
〈vi, xt〉2 x>t Mtxt

]
.

This proves the first part of Lemma 4.

For the second part, we prove the recursion Eq. (12) using an induction argument. For the base case
t = 1 we can see that the Lemma holds directly from Eq. (11). Assume that the Lemma holds for
k = t− 1. We know from Eq. (11) that

mt
i = (1− 2γλi)m

t−1
i + γ2fti ,

and from the induction hypothesis, we have

mt−1
i = (1− 2γλi)

t−1
m0
i + γ2

t−2∑
k=0

λi (1− 2γλi)
t−k−2 fki .

Merging these above two equalities we have,

mt
i = (1− 2γλi)

(
(1− 2γλi)

t−1
m0
i + γ2

t−2∑
k=0

λi (1− 2γλi)
t−k−2 fki

)
+ γ2λif

k
i

= (1− 2γλi)
t
m0
i + γ2

t−1∑
k=0

λi (1− 2γλi)
t−k−1 fki .

This completes the proof of Lemma 4.

8.2 Proof of Lemma 5

Here we prove the Lemma 5. First note that from Eq. (12) of Lemma 4 we have the following
recursion,

mt
i = (1− 2γλi)

t
m0
i + γ2

t−1∑
k=0

(1− 2γλi)
t−k−1 fki . (15)
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We take γ ≤ (4λmax)
−1 to get a cleaner version of the recursion. It can be easily verified that the

maximal learning rate specified in each of the theorems will satisfy this. We have,

λim
t
i ≤ λi (1− 2γλi)

t
m0
i + 2γ2

t−1∑
k=0

λi (1− 2γλi)
t−k fki . (16)

For x ∈ (0, 1), we have x(1− x)t ≤ xe−xt ≤ 1/t. Now using the following natural bounds, we get

λi(1− 2γλi)
t−k 6

1

2γ(t− k)

λim
t
i ≤

m0
i

2γt
+ γ

t−1∑
k=0

fki
t− k

.

Hence,

2ft =
∑
i

λim
t
i 6

∑
i

m0
i

2γt
+ γ

t−1∑
k=0

(∑
i

fki

)
1

t− k
. (17)

Now lets compute the sum below. Recalling fti = E
[
〈vi, xt〉2 x>t Mtxt

]
, we have

∑
i

fti =
∑
i

E
[
〈vi, xt〉2 x>t Mtxt

]
= E

[(∑
i

〈vi, xt〉2
)
x>t Mtxt

]
= E

[∥∥xt∥∥2 Tr(xtx>t Mt

)]
= Tr

[
E
[∥∥xt∥∥2 xtx>t ]Mt

]
.

Note for any two PSD matrices A,B if A 4 B then Tr(AM) ≤ Tr(BM), for any PSD matrix M .
From Assumption 1, E

[∥∥xt∥∥2 xtx>t ] 4 RH and we thus have
∑
i f
t
i 6 RTr(MtH) = 2R ft. Now

replacing the sum in Eq. (17), we get finally,

ft ≤
Tr(M0)

4γt
+ γ R

t−1∑
k=0

fk
t− k

.

This proves Lemma 5.

9 Proofs of the main results

9.1 Proof of Theorem 1

From Lemma 5, we have for all t > 1,

ft 6
Tr(M0)

4γt
+ γR

t−1∑
k=0

fk
t− k

.
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And then, the technique we use throughout all the proofs of this section rest on a control of the second
term

∑t−1
k=0

fk
(t−k) using the recursion. Indeed, by summing,

T−1∑
t=0

ft
T − t

6
f0
T

+
Tr(M0)

4γ

T−1∑
t=1

1

t(T − t)
+ γR

T−1∑
t=1

t−1∑
k=0

fk
(t− k)(T − t)

6
f0
T

+
Tr(M0)

4γ

T−1∑
t=1

1

t(T − t)
+ γR

T−1∑
t=1

t−1∑
k=0

fk
(t− k)(T − t)

=
f0
T

+
Tr(M0)

4γT

T−1∑
t=1

[
1

t
+

1

T − t

]
+ γR

T−2∑
k=0

fk

T−1∑
t=k+1

1

(t− k)(T − t)

6
f0
T

+
Tr(M0) ln(T )

2γT
+ 2γR ln(T )

T−1∑
k=0

fk
T − k

.

Noting that f0 =
∑
i λim

0
i 6 λmaxTr(M0) 6

Tr(M0)
2γ , for T > 2,

T−1∑
t=0

ft
T − t

6
Tr(M0) ln(T )

γT
+ 2γR ln(T )

T−1∑
k=0

fk
T − k

(1− 2γR ln(T ))

T−1∑
t=0

ft
T − t

6
Tr(M0) ln(T )

γT
.

Hence, for γ = (4R ln(T ))−1, we have

T−1∑
t=0

ft
T − t

6
2Tr(M0) ln(T )

γT
,

and, hence, for all T > 2,

fT 6
Tr(M0)

4γT
+ γR

T−1∑
k=0

fk
T − k

6
RTr(M0) ln(T )

T
+

2RTr(M0) ln(T )

T

6 3RTr(M0)
ln(T )

T
.

That concludes the proof of Theorem 1.

9.2 Proof of Theorem 2

The proof of this theorem follows the same principle but uses slightly better estimations. Indeed, we
replace the previous 1/n bound by a finer bound. This is the statement of the following lemma. For
this, we define the following summation Sn(x) for some x ∈ (0, 1/4] and n ≥ 2,

Sn(x) :=

n−1∑
k=0

(1− x)k

n− k
. (18)

Lemma 6 For any x ∈ (0, 1/4], n ≥ 1, we have the following bound

xS(x) 6
7 ln(1/x)

n
. (19)

Proof
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In the first step, we slightly reformulate this expression, then try to bound that expression by a
continuous integral which gives the desired result. From Eq. (18), we have

Sn(x) =

n−1∑
k=0

(1− x)k

n− k
= (1− x)n

n−1∑
k=0

(1− x)k−n

n− k

(1− x)−nSn(x) =
n∑
k=1

(1− x)−k

k

We compute (1− x)−nSn(x). Note that g(y) = (1− x)−y/y is convex for y > 0. For any convex
function g, we have that for any integer k ≥ 2, y ∈ [k, k + 1] we have that g(k) ≤ g(y) + g(y − 1).
Indeed, if g is in the increasing phase then g(y) dominates g(k), else g(y − 1) dominates in the
decreasing phase. Using this we can see that for k = 2 · · ·n,

g(k) ≤
∫ k+1

k

(g(y) + g(y − 1)) dy

n−1∑
k=2

(1− x)−k

k
≤
∫ n

2

(g(y) + g(y − 1)) dy.

Hence,

(1− x)−nSn(x) =
n∑
k=1

(1− x)−k

k
≤ (1− x)−1 + 2

∫ n

1

(1− x)−y

y
+

(1− x)−n

n
dy. (20)

This leads us to try to bound the integral
∫ n+1

1
(1−x)−y

y . Using the change of variable (1−x)−y = et.
We can rewrite the above integral as follows:

∫ n

1

(1− x)−y

y
dy =

−n ln (1−x)∫
− ln (1−x)

et

t
dt.

For the sake of clearer notations, let us define a := − ln (1− x) such that as 0 < x < 1, we have
a > 0. The equation simplifies to the following∫ n

1

(1− x)−y

y
≤
∫ na

a

et

t
dt

≤
∫ 1

a

et

t
dt+

∫ na

1

et

t
dt

For t ≤ 1, we can see that et/t ≤ e/t, where as for t ≥ 2 we use the bound et/t ≤ 2et(t− 1)/t2.
Using these bounds,∫ n

1

(1− x)−y

y
≤ e

∫ 1

a

1

t
dt+

∫ 2

1

et

t
+ 2

∫ na

2

(t− 1)et

t2
dt

≤ e ln 1

a
+ e2 − e+ 2

[
ex

x

]na
2

≤ e ln 1

a
+ e2 − e+ 2

[
ena

na
− e2

2

]
≤ e ln 1

a
+ 2

ena

na

Re-substituting, a = − ln (1− x), we can see the a > x and hence,∫ n

1

(1− x)−y

y
≤ e ln 1

x
+ 2

(1− x)−n

nx
,
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such that we can write

(1− x)−nSn(x) ≤ (1− x)−1 + 2

[
e ln

1

x
+ 2

(1− x)−n

nx

]
+

(1− x)−n

n

Sn(x) ≤ (1− x)n−1 + 2e ln
1

x
(1− x)−n +

4

n
+

1

n

xSn(x) ≤ x(1− x)n−1 + 2e x(1− x)−n ln
1

x
+

4

n
+
x

n
.

Now we use the fact that x(1 − x)n ≤ xe−nx ≤ 1/(en). Leveraging also that x ≤ 1/4, so that
ln 1

x > 1 and (1− x)−1 ≤ 4/3. We can finally bound,

xSn(x) ≤
4

3e

1

n
+

1

4n
+

4

n
+ 2

1

n
ln

1

x
≤ 7

n
ln

1

x
.

This completes the proof.

Using the above we prove Theorem 2. Recall that for all t > 1, from Eq.(12) and γ ≤ (4λmax)
−1

mt
i 6 (1− 2γλi)

t
m0
i + 2γ2

t−1∑
k=0

(1− 2γλi)
t−k fki .

The technique we use in this section rests on a control of the second term using the recursion. For
this, we will use carefully the bound in Lemma 6. As said before, the only difference with the proof
of the previous theorem is the special care in estimations to avoid the logarithm at the price of a
slightly more stringent assumption. Indeed, ∀i,

T−1∑
t=0

mt
i

T − t
=

T−1∑
t=0

(1− 2γλi)
t

T − t
m0
i + 2γ2

T−1∑
t=0

t−1∑
k=0

(1− 2γλi)
t−k fki

6
m0
i

T
+

T−1∑
t=1

(1− 2γλi)
t

T − t
m0
i + 2γ2

T−2∑
k=0

fki

T−1∑
t=k+1

(1− 2γλi)
t−k

T − t
T−1∑
t=0

λim
t
i

T − t
6
λim

0
i

T
+

T−1∑
t=1

(1− 2γλi)
t

T − t
m0
i + γ

T−2∑
k=0

fki

T−k−1∑
t=1

(2γλi)
(1− 2γλi)

t

T − k − t

6
λim

0
i

T
+
m0
i

2γ
(2γλi)ST (2γλi) + γ

T−1∑
k=0

fki (2γλi)ST−k(2γλi).

And then, by applying Lemma 6 :
T−1∑
t=0

λim
t
i

T − t
6
λim

0
i

T
+

7m0
i

2γ
ln

(
1

2γλi

)
1

T
+ 7γ

T−1∑
k=0

fki ln

(
1

2γλi

)
1

T − k
.

For now lets assume that λo be such that 2γλo > 1, we will check this later at the end. We have,
T−1∑
t=0

λim
t
i

T − t
6
λim

0
i

T
+

7m0
i

2γ
ln

(
λo
λi

)
1

T
+ 7γ

T−1∑
k=0

fki ln

(
λo
λi

)
1

T − k
.

Now summing over i, we get
T−1∑
t=0

∑
i

λim
t
i

T − t
6
∑
i

λim
0
i

T
+
∑
i

7m0
i

2γ
ln

(
λo
λi

)
1

T
+ 7γ

T−1∑
k=0

(∑
i

fki ln

(
λo
λi

))
1

T − k
. (21)

Note from Eq.(10), we have
∑
i λim

t
i = 2ft. Lets calculate the remaining terms∑

i

fti ln

(
λo
λi

)
=
∑
i

ln

(
λo
λi

)
E
[(
〈vi, xt〉2

)
x>t Mtxt

]
= E

[(∑
i

ln

(
λo
λi

)
〈vi, xt〉2

)
x>t Mtxt

]
= E

[〈
xt, ln

(
λoH

−1)xt〉 Tr
(
xtx
>
t Mt

)]
= Tr

[
E
[〈
xt, ln

(
λoH

−1)xt〉 xtx>t ]Mt

]
.
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Hence, as in the previous case, using Assumption 3, we have
∑
i f
t
i ln

(
λo

λi

)
6 2Rlnft. From

Assumption 4, we recognize the second term of Eq. (21),
∑
im

0
i ln

(
λo

λi

)
= Tr

(
M0 ln

(
λoH

−1)) =
Cln. Substituting all that in Eq. (21) we get,

T−1∑
t=0

ft
T − t

≤ f0
T

+
7Cln

4T
+ 7γRln

T−1∑
t=0

ft
T − t

.

And like in the previous proof, f0 =
∑
i λim

0
i 6 λmax

∑
im

0
i 6

1
γ

∑
im

0
i ln(1/(γλi)) ≤ Cln/γ.

T−1∑
t=0

ft
T − t

6
3Cln

γT
+ 7γRln

T−1∑
k=0

fk
T − k

.

Hence, for γ = (14Rln)
−1, we have

T−1∑
t=0

ft
T − t

6
6Cln

γT
,

and, hence, we conclude like for the previous theorems. We know that Assumption 3 is stricter than

Assumption 1 i.e there exists a constant R
′
=
(
ln
(

λo

λmax

))−1
Rln such that Assumption 1 holds

with this. Indeed, this allows us to use Lemma 5, for all T > 1,

ft 6
Tr(M0)

4γT
+ γR

′
T−1∑
k=0

fk
T − k

6
14RlnTr(M0)

4T
+

6R
′
Cln

T

6
4RlnTr(M0)

T
+

6R
′
Cln

T
.

We can always choose λo large enough such that
(
ln
(

λo

λmax

))
> 1. With this we note that

Tr(M0) 6 Cln and Tr(H) 6 Rln. Hence,

ft 6
10RlnCln

T
.

That concludes the proof of Theorem 2.

Note that we have 2λoγ > 1 for γ = (14Rln)
−1 , as we chose λo such that 7Rln 6 λo.

9.3 Proof of Theorem 3

Once again we proceed with the same technique as above. The aim here is to tighten the estimation
for both the first and the second term with the capacity and source assumptions of the problem
(Assumptions 5 and 6).

This estimation rests on the inequality stated in the following Lemma.

Lemma 7 For x ∈ (0, 1) and t > 1, for r > 0 we have the following inequality

xr(1− x)t ≤ rr

tr
. (22)

Proof Let x ∈ (0, 1), t > 1 and r > 0. It is standard to note that (1− x)t 6 e−tx. Hence,

xr(1− x)t 6 xre−tx.
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Now, a rapid look at the maximum of the function x→ xre−tx gives us that it attains its maximum
for x = r/t. Hence

xr(1− x)t 6 xre−tx 6
(r
t

)r
e−r 6

rr

tr
,

and this proves the Lemma.

Again, recall that for all t > 1, from Eq.(12) and γ ≤ (4λmax)
−1, ∀i,

mt
i 6 (1− 2γλi)

t
m0
i + 2γ2

t−1∑
k=0

(1− 2γλi)
t−k fki ,

λim
t
i 6 λ1+βi (1− 2γλi)

t
λ−βi m0

i + 2γ2λ−αi

t−1∑
k=0

λ1+α (1− 2γλi)
t−k fki .

Thanks to Lemma 7, we can bound the above expression as,

λim
t
i 6

(
1 + β

2γt

)1+β

λ−βi m0
i + 2γ2

t−1∑
k=0

(
1 + α

2γt

)1+α

λ−αi fki .

Summing across i’s we get

∑
i

λim
t
i 6

(
1 + β

2γt

)1+β∑
i

λ−βi m0
i + 2−αγ1−α (1 + α)

1+α
t−1∑
k=0

1

t1+α

∑
i

λ−αi fki .

Note from Eq.(10), we have
∑
i λim

t
i = 2ft. Lets calculate the remaining terms∑

i

fti λi
−α =

∑
i

λi
−αE

[(
〈vi, xt〉2

)
x>t Mtxt

]
= E

[(∑
i

λi
−α 〈vi, xt〉2

)
x>t Mtxt

]
= E

[〈
xt, H

1−αxt
〉
Tr
(
xtx
>
t Mt

)]
= Tr

[
E
[〈
xt, H

1−αxt
〉
xtx
>
t

]
Mt

]
.

From Assumption 5, we thus have,
∑
i f
t
iλi
−α 6 2Rαft. And we get from Assumption 6 that∑

im
0
iλ
−β
i = Tr

(
M0H

−β) = Cβ . Substituting the above computed terms, we get the following

ft 6
Cβ
2

(
1 + β

2γt

)1+β

+ 2−α (1 + α)
1+α

γ1−αRα

t−1∑
k=0

fk

(t− k)1+α
. (23)

And from this, we use the same technique as for the previous theorems to bound the second term
of the right side of the inequality. To accomplish this we need a bound on the following sum. For
β > −1, α ∈ (0, 1), T > 2,

ST (α, β) :=
T−1∑
t=1

1

t1+β(T − t)1+α

This is the aim of the Lemma below.

Lemma 8 For β > −1, α ∈ (0, 1), T > 2, we have the following upper-bound,

ST (α, β) 6
22+α∧βξα∨β
T 1+α∧β ,

where, for u > 0, ξu :=
∑
k>1

1
k1+u and we use the following classical notations: α∧β = min(α, β)

and α ∨ β = max(α, β) > 0.
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Proof Let us assume that β 6 α, we have,

ST (α, β) =
T−1∑
t=1

1

t1+β(T − t)1+α
=

T−1∑
t=1

1

(t(T − t))1+β
1

(T − t)α−β

=
1

T 1+β

[
T−1∑
t=1

1

(T − t)α−β

(
1

t
+

1

T − t

)1+β
]

=
21+β

T 1+β

[
T−1∑
t=1

1

(T − t)α−βt1+β
+

T−1∑
t=1

1

(T − t)α+1

]
.

Now the second term is trivially upper bounded by ξα. And for the first term, we use Young’s
inequality with coefficient (p, q) = ( 1+αα−β ,

1+α
1+β ):

T−1∑
t=1

1

(T − t)α−βt1+β
6

1

p

T−1∑
t=1

1

(T − t)(α−β)p
+

1

q

T−1∑
t=1

1

t(1+β)q

=
1

p

T−1∑
t=1

1

t1+α
+

1

q

T−1∑
t=1

1

t1+α

=

T−1∑
t=1

1

t1+α
6 ξα.

This concludes the proof is the case where β 6 α.

Symmetrically, if α 6 β, by a change of variable t→ T − t,

ST (α, β) =
T−1∑
t=1

1

t1+β(T − t)1+α
=

T−1∑
t=1

1

t1+α(T − t)1+β
= ST (β, α),

and the proof follows.

Thanks to the Lemma we continue the proof of Theorem 3. Recall Eq. (23): for T > 2,

ft 6
Cβ
2

(
1 + β

2γt

)1+β

+ 2

(
1 + α

2

)1+α

γ1−αRα

t−1∑
k=0

fk

(t− k)1+α
.

Hence, we proceed like previously,

T−1∑
t=0

ft
(T − t)1+α

6
f0

T 1+α
+
Cβ
2

(
1 + β

2γ

)1+β T−1∑
t=1

1

t1+β(T − t)1+α

+ 2−α(1 + α)1+αγ1−αRα

T−1∑
t=1

t−1∑
k=0

fk

(t− k)1+α (T − t)1+α

6
f0

T 1+α
+
Cβ
2

(
1 + β

2γ

)1+β

ST (α, β)

+ 2−α(1 + α)1+αγ1−αRα

T−1∑
k=1

fk

T−1∑
t=k+1

1

(t− k)1+α (T − t)1+α

6
f0

T 1+α
+
Cβ
2

(
1 + β

2γ

)1+β

ST (α, β) + 2−α(1 + α)1+αγ1−αRα

T−1∑
k=1

fkST−k(α, α).
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And applying Lemma 8, and the fact that f0
T 1+α 6 Cβ

γβT 1+α∧β ,

T−1∑
t=0

ft
(T − t)1+α

6
f0

T 1+α
+
Cβ
2

(
1 + β

2γ

)1+β
22+α∧βξα∨β
T 1+α∧β

+ 2−α(1 + α)1+αγ1−αRα2
2+αξα

T−1∑
k=1

fk
(T − t)1+α

6 2Cβ

(
1 + β

γ

)1+β
ξα∨β
T 1+α∧β

+ 4(1 + α)1+αξαγ
1−αRα

T−1∑
k=1

fk
(T − t)1+α

.

Now, for γ such that 4(1 + α)1+αξαγ
1−αRα 6 1/2, i.e., for simplicity,

γ1−α 6 (32ξαRα)
−1,

then, we have,

T−1∑
t=0

ft
(T − t)1+α

6 4Cβ

(
1 + β

γ

)1+β
ξα∨β
T 1+α∧β ,

and, hence, we conclude like for the previous theorems. Indeed, for all T > 1, recalling Eq. (23): for
T > 2,

fT 6
Cβ
2

(
1 + β

2γT

)1+β

+ 2−α (1 + α)
1+α

γ1−αRα

T−1∑
k=0

ft

(T − t)1+α

6
Cβ
2

(
1 + β

2γT

)1+β

+
1

8ξα

T−1∑
t=0

ft

(T − t)1+α

6
Cβ
2

(
1 + β

2γT

)1+β

+
1

2ξα
Cβ

(
1 + β

γ

)1+β
ξα∨β
T 1+α∧β

6
Cβ
2

(
1 + β

2γT

)1+β

+
Cβ
2

(
1 + β

γ

)1+β
1

T 1+α∧β

6 2Cβ

(
1 + β

γ

)1+β
1

T 1+α∧β .

That concludes the proof of Theorem 3.
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