A Omitted Proofs: Upper Bound

This section contains omitted proofs from Section 3.
Lemma (Lemma 1). Let $\ell: \mathcal{R} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$ be a discrete target loss and suppose the surrogate $L: \mathbb{R}^{d} \rightarrow$ $\mathbb{R}_{+}^{\mathcal{Y}}$ and link $\psi: \mathbb{R}^{d} \rightarrow \mathcal{R}$ are calibrated for ℓ. Then for any $p \in \Delta \mathcal{Y}$, there exists $\alpha_{p} \geq 0$ such that, for all $u \in \mathbb{R}^{d}$,

$$
R_{\ell}(\psi(u), p) \leq \alpha_{p} R_{L}(u, p)
$$

Proof. Fix $p \in \Delta \mathcal{Y}$. Let $C_{p}=\max _{r \in \mathcal{R}} R_{\ell}(r, p)$. The maximum exists because ℓ is discrete, i.e. \mathcal{R} is finite. Meanwhile, recall that, when defining calibration, we let $B_{L, \psi, \ell}(p)=\left\{R_{L}(u, p): \psi(u) \notin\right.$ $\gamma(p)\}$. Let $B_{p}=\inf B_{L, \psi, \ell}(p)$. By definition of calibration, we have $B_{p}>0$.
To combine these bounds, let $\alpha_{p}=\frac{C_{p}}{B_{p}}$. Let $u \in \mathbb{R}^{d}$. There are two cases. If $\psi(u) \in \gamma(p)$, then $R_{\ell}(\psi(u), p)=0 \leq R_{L}(u, p)$ immediately. If $\psi(u) \notin \gamma(p)$, then

$$
\begin{aligned}
R_{\ell}(\psi(u), p) & \leq C_{p} \\
& =\alpha_{p} \cdot B_{p} \\
& \leq \alpha_{p} R_{L}(u, p)
\end{aligned}
$$

Lemma (Lemma 2). If (L, ψ) indirectly elicits ℓ, then $\Gamma=\operatorname{prop}[L]$ refines $\gamma=\operatorname{prop}[\ell]$ in the sense that, for all $u \in \mathbb{R}^{d}$, there exists $r \in \mathcal{R}$ such that $\Gamma_{u} \subseteq \gamma_{r}$.

Proof. For any u, let $r=\psi(u)$. By indirect elicitation, $u \in \Gamma(p) \Longrightarrow r \in \gamma(p)$. So $\Gamma_{u}=$ $\{p: u \in \Gamma(p)\} \subseteq\{p: r \in \gamma(p)\}=\gamma_{r}$.

Lemma (Lemma 3). Suppose (L, ψ) indirectly elicits ℓ and let $\Gamma=\operatorname{prop}[L]$. Then for any fixed $u, u^{*} \in \mathbb{R}^{d}$ and $r \in \mathcal{R}$, the functions $R_{L}(u, \cdot)$ and $R_{\ell}(r, \cdot)$ are linear in their second arguments on $\Gamma_{u^{*}}$.

Proof. Let $u^{*} \in \mathbb{R}^{d}$ and $p \in \Gamma_{u^{*}}$. By definition, for all $p \in \Gamma_{u^{*}}, \underline{L}(p)=\left\langle p, L\left(u^{*}\right)\right\rangle$. So for fixed u,

$$
R_{L}(u, p)=\langle p, L(u)\rangle-\left\langle p, L\left(u^{*}\right)\right\rangle=\left\langle p, L(u)-L\left(u^{*}\right)\right\rangle
$$

a linear function of p on $\Gamma_{u^{*}}$. Next, by Lemma 2, there exists r^{*} such that $\Gamma_{u^{*}} \subseteq \gamma_{r^{*}}$. By the same argument, for fixed $r, R_{\ell}(r, p)=\left\langle p, \ell(r)-\ell\left(r^{*}\right)\right\rangle$, a linear function of p on $\gamma_{r^{*}}$ and thus on $\Gamma_{u^{*}}$.

Lemma (Lemma 4). If $L: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$ is polyhedral, then $\Gamma=\operatorname{prop}[L]$ has a finite set of level sets that union to $\Delta_{\mathcal{Y}}$. Moreover, these level sets are polytopes.

Proof. This statement can be deduced from the embedding framework of [10]. In particular, Lemma 5 of [10] states that if L is polyhedral, then its Bayes risk \underline{L} is concave polyhedral, i.e. is the pointwise minimum of a finite set of affine functions. It follows that there exists a finite set $U \subset \mathbb{R}^{d}$ such that

$$
\begin{equation*}
\underline{L}(p)=\min _{u \in \mathbb{R}^{d}}\langle p, L(u)\rangle=\min _{u \in U}\langle p, L(u)\rangle . \tag{4}
\end{equation*}
$$

We claim the level sets of U witness the claim. First, it is known (e.g. from theory of power diagrams, [2]) that if \underline{L} is a polyhedral function represented as (4) and $u \in U$, then $\Gamma_{u}=\left\{p \in \Delta_{\mathcal{Y}}:\langle p, L(u)\rangle=\right.$ $\underline{L}(p)\}$ is a polytope. Finally, suppose for contradiction that there exists $p \in \Delta_{\mathcal{Y}}, p \notin \cup_{u \in U} \Gamma_{u}$. Then there must be some $u^{\prime} \notin U$ with $p \in \Gamma_{u^{\prime}}$, implying that $\left\langle p, L\left(u^{\prime}\right)\right\rangle>\max _{u \in U}\langle p, L(u)\rangle$, contradicting (4).

Theorem (Theorem 3). Suppose the surrogate loss $L: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$ and link $\psi: \mathbb{R}^{d} \rightarrow \mathcal{R}$ are consistent for the target loss $\ell: \mathcal{R} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$. If L is polyhedral, then (L, ψ) guarantee a linear regret transfer for ℓ, i.e. there exists $\alpha \geq 0$ such that, for all \mathcal{D} and all measurable $h: \mathcal{X} \rightarrow \mathbb{R}^{d}$,

$$
R_{\ell}(\psi \circ h ; \mathcal{D}) \leq \alpha R_{L}(h ; \mathcal{D})
$$

Proof. We first recall that by Fact 1, consistency implies that (L, ψ) are calibrated for ℓ and that (L, ψ) indirectly elicit ℓ. Next, by Observation 1 , it suffices to show a linear conditional regret transfer, i.e. for all $p \in \Delta_{\mathcal{Y}}$ and $u \in \mathbb{R}^{d}$, we show $R_{\ell}(\psi(u), p) \leq \alpha R_{L}(u, p)$.

By Lemma 4, the polyhedral loss L has a finite set $U \subset \mathbb{R}^{d}$ of predictions such that (a) for each $u \in U$, the level set Γ_{u} is a polytope, and (b) $\cup_{u \in U} \Gamma_{u}=\Delta_{\mathcal{Y}}$. Let $\mathcal{Q}_{u} \subset \Delta_{\mathcal{Y}}$ be the finite set of vertices of the polytope Γ_{u}, and define the finite set $\mathcal{Q}=\cup_{u \in U} \mathcal{Q}_{u}$.
By Lemma 1, for each $q \in \mathcal{Q}$, there exists $\alpha_{q} \geq 0$ such that $R_{\ell}(\psi(u), q) \leq \alpha_{q} R_{L}(u, q)$ for all u. We choose

$$
\alpha=\max _{q \in \mathcal{Q}} \alpha_{q}
$$

To prove the conditional regret transfer, consider any $p \in \Delta \mathcal{Y}$ and any $u \in \mathbb{R}^{d}$. There exists $u \in U$ such that $p \in \Gamma_{u}$, a polytope. So we can write p as a convex combination of its vertices, i.e.

$$
p=\sum_{q \in \mathcal{Q}_{u}} \beta(q) q
$$

for some probability distribution β. Recall that $\mathcal{Q}_{u} \subseteq \Gamma_{u}$ and R_{L} and R_{ℓ} are linear in p on Γ_{u} by Lemma 3. So, for any u^{\prime} :

$$
\begin{aligned}
R_{\ell}\left(\psi\left(u^{\prime}\right), p\right) & =R_{\ell}\left(\psi\left(u^{\prime}\right), \sum_{q \in \mathcal{Q}_{u}} \beta(q) q\right) \\
& =\sum_{q \in \mathcal{Q}_{u}} \beta(q) R_{\ell}\left(\psi\left(u^{\prime}\right), q\right) \\
& \leq \sum_{q \in \mathcal{Q}_{u}} \beta(q) \alpha_{q} R_{L}\left(u^{\prime}, q\right) \\
& \leq \alpha \sum_{q \in \mathcal{Q}_{u}} \beta(q) R_{L}\left(u^{\prime}, q\right) \\
& =\alpha R_{L}\left(u^{\prime}, p\right) .
\end{aligned}
$$

B Omitted Proofs: Lower Bound

This section contains omitted proofs from Section 4.
Theorem (Theorem 4). Suppose the surrogate loss L and link ψ satisfy a regret transfer of ζ for a target loss ℓ. If L, ψ, and ℓ satisfy Assumption 1, then there exists $c>0$ such that, for some $\epsilon^{*}>0$, for all $0 \leq \epsilon<\epsilon^{*}, \zeta(\epsilon) \geq c \sqrt{\epsilon}$.

Proof outline: By assumption we have a boundary report u_{0} which is L-optimal for a distribution p_{0}. We have some r, r^{\prime} which are both optimal for p_{0}, and $\psi\left(u_{0}\right)=r^{\prime}$. First, we will choose a p_{1} where r is uniquely optimal, hence u_{0} is a strictly suboptimal choice. We then consider a sequence of distributions $p_{\lambda}=(1-\lambda) p_{0}+\lambda p_{1}$, approaching p_{0} as $\lambda \rightarrow 0$. For all such p_{λ}, it will happen that r is optimal while u_{0} and $r^{\prime}=\psi\left(u_{0}\right)$ are strictly suboptimal. We show that $R_{\ell}\left(r^{\prime}, p_{\lambda}\right)=c_{\ell} \lambda$ for some constant c_{ℓ} and all small enough λ. Meanwhile, we will show that $R_{L}\left(u_{0}, p_{\lambda}\right) \leq O\left(\lambda^{2}\right)$, proving the result. The last fact will use the properties of strong smoothness and strong convexity in a neighborhood of u_{0}.

Proof. Obtain $\alpha, u_{0}, p_{0}, r, r^{\prime}$, and an open neighborhood of u_{0} from Assumption 1 and the definition of boundary report. Assume without loss of generality that $\psi\left(u_{0}\right)=r^{\prime}$; otherwise, swap the roles of r and r^{\prime}.

Linearity of $R_{\ell}\left(r^{\prime}, p_{\lambda}\right)$. As ℓ is non-redundant by assumption, there exists some $p_{1} \in \dot{\gamma}_{r}$, the relative interior of the full-dimensional level set γ_{r}. We therefore have $R_{\ell}\left(r^{\prime}, p_{1}\right)=\left\langle p_{1}, \ell\left(r^{\prime}\right)-\right.$ $\ell(r)\rangle=: c_{\ell}>0$, and $R_{\ell}\left(r^{\prime}, p_{0}\right)=0$. Let $p_{\lambda}:=(1-\lambda) p_{0}+\lambda p_{1}$. By convexity of γ_{r}, we have $p_{\lambda} \in \gamma_{r}$ for all $\lambda \in[0,1]$, which gives $R_{\ell}\left(r^{\prime}, p_{\lambda}\right)=\lambda c_{\ell}$.

Obtaining the global minimizer u_{λ} of L_{λ}. Let $L_{\lambda}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$be given by $L_{\lambda}(u)=$ $\left\langle p_{\lambda}, L(u)\right\rangle=(1-\lambda)\left\langle p_{0}, L(u)\right\rangle+\lambda\left\langle p_{1}, L(u)\right\rangle$. Let $\delta>0$ such that the above open neighborhood of u_{0} contains the Euclidean ball $B_{\delta}\left(u_{0}\right)$ of radius δ around u_{0}. Let $u_{1} \in \Gamma\left(p_{1}\right)$. We argue that for all small enough $\lambda, L_{\lambda}(u)$ is uniquely minimized by some $u_{\lambda} \in B_{\delta}\left(u_{0}\right)$. For any $u \notin B_{\delta}\left(u_{0}\right)$, we have, using local strong convexity and the optimality of u_{1},

$$
\begin{aligned}
L_{\lambda}(u)-L_{\lambda}\left(u_{0}\right) & =(1-\lambda)\left(L_{0}(u)-L_{0}\left(u_{0}\right)\right)+\lambda\left(L_{1}(u)-L_{1}\left(u_{0}\right)\right) \\
& \geq(1-\lambda)\left(\frac{\alpha}{2} \delta^{2}\right)+\lambda\left(L_{1}\left(u_{1}\right)-L_{1}\left(u_{0}\right)\right) \\
& >0
\end{aligned}
$$

if $\lambda<\lambda^{*}:=\alpha \delta^{2} /\left(2 \alpha \delta^{2}+4 L_{1}\left(u_{0}\right)-4 L_{1}\left(u_{1}\right)\right)$. For the remainder of the proof, let $\lambda<\lambda^{*}$. Then any $u \notin B_{\delta}\left(u_{0}\right)$ has $L_{\lambda}(u)>L_{\lambda}\left(u_{0}\right)$, hence is suboptimal. By α-strong convexity of L_{0} on $B_{\delta}\left(u_{0}\right)$, L_{λ} is strictly convex on $B_{\delta}\left(u_{0}\right)$. So it has a unique minimizer u_{λ}, and by the above argument this is the global minimizer of L_{λ}. Then $\underline{L}\left(p_{\lambda}\right)=L_{\lambda}\left(u_{\lambda}\right)$, and thus $R_{L}\left(u_{0}, p_{\lambda}\right)=L_{\lambda}\left(u_{0}\right)-L_{\lambda}\left(u_{\lambda}\right)$. We also observe here that $R_{L}\left(u_{0}, p_{\lambda}\right)$ is continuous in λ, e.g. because the Bayes risk of L is continuous in p as is $\left\langle p, L\left(u_{0}\right)\right\rangle$. It is also zero when $\lambda=0$.

Showing R_{L} is quadratic in λ. By assumption, the gradient of L_{y} is locally Lipschitz for all $y \in \mathcal{Y}$. We will apply this fact to the compact set $\mathcal{C}=\left\{u \in \mathbb{R}^{d}:\left\|u-u_{1}\right\| \leq\left\|u_{0}-u_{1}\right\|+\delta\right\}$. By compactness, we have a finite subcover of open neighborhoods; let β be the minimum Lipschitz constant over this finite set of neighborhoods. We thus have that L_{y} is β-strongly smooth on \mathcal{C}, and hence so is L_{λ} for any $\lambda \in[0,1]$.
We now upper bound $\left\|u_{\lambda}-u_{0}\right\|_{2}$, and then apply strong smoothness to upper bound $R_{L}\left(u_{0}, p_{\lambda}\right)=$ $L_{\lambda}\left(u_{0}\right)-L_{\lambda}\left(u_{\lambda}\right)$. Consider the first-order optimality condition of L_{λ} :

$$
\begin{gathered}
0=\nabla L_{\lambda}\left(u_{\lambda}\right)=(1-\lambda) \nabla L_{0}\left(u_{\lambda}\right)+\lambda \nabla L_{1}\left(u_{\lambda}\right) \\
\Longrightarrow(1-\lambda)\left\|\nabla L_{0}\left(u_{\lambda}\right)\right\|_{2}=\lambda\left\|\nabla L_{1}\left(u_{\lambda}\right)\right\|_{2} .
\end{gathered}
$$

By optimality of u_{0} and u_{1}, strong convexity of L_{0} and strong smoothness of L_{1}, and the triangle inequality, we have

$$
\begin{aligned}
\left\|\nabla L_{0}\left(u_{\lambda}\right)\right\|_{2} & =\left\|\nabla L_{0}\left(u_{\lambda}\right)-\nabla L_{0}\left(u_{0}\right)\right\|_{2} \geq \alpha\left\|u_{\lambda}-u_{0}\right\|_{2}, \\
\left\|\nabla L_{1}\left(u_{\lambda}\right)\right\|_{2} & =\left\|\nabla L_{1}\left(u_{\lambda}\right)-\nabla L_{1}\left(u_{1}\right)\right\|_{2} \leq \beta\left\|u_{\lambda}-u_{1}\right\|_{2} \\
& \leq \beta\left(\left\|u_{\lambda}-u_{0}\right\|_{2}+\left\|u_{0}-u_{1}\right\|_{2}\right) .
\end{aligned}
$$

Combining,

$$
\begin{aligned}
(1-\lambda) \alpha\left\|u_{\lambda}-u_{0}\right\|_{2} & \leq(1-\lambda)\left\|\nabla L_{0}\left(u_{\lambda}\right)\right\|_{2} \\
& =\lambda\left\|\nabla L_{1}\left(u_{\lambda}\right)\right\|_{2} \\
& \leq \lambda \beta\left(\left\|u_{\lambda}-u_{0}\right\|_{2}+\left\|u_{0}-u_{1}\right\|_{2}\right)
\end{aligned}
$$

Now rearranging and taking $\lambda \leq \frac{1}{2} \frac{\alpha}{\alpha+\beta}$, we have

$$
\left\|u_{\lambda}-u_{0}\right\|_{2} \leq \frac{\lambda \beta}{(1-\lambda) \alpha-\lambda \beta}\left\|u_{0}-u_{1}\right\|_{2} \leq \lambda \frac{2 \beta}{\alpha}\left\|u_{0}-u_{1}\right\|_{2}
$$

Finally, from strong smoothness of L_{λ} and optimality of u_{λ},

$$
L_{\lambda}\left(u_{0}\right)-L_{\lambda}\left(u_{\lambda}\right) \leq \frac{\beta}{2}\left\|u_{0}-u_{\lambda}\right\|_{2}^{2} \leq \frac{\beta}{2}\left(\lambda \frac{2 \beta}{\alpha}\left\|u_{0}-u_{1}\right\|_{2}\right)^{2}=c_{L} \lambda^{2}
$$

where $c_{L}=\frac{2 \beta^{3}}{\alpha^{2}}\left\|u_{0}-u_{1}\right\|_{2}^{2}>0$.
To conclude: we have found a $\lambda^{*}>0$ and shown that for all $0 \leq \lambda<\lambda^{*}, R_{\ell}\left(r^{\prime}, p_{\lambda}\right)=c_{\ell} \lambda$ and $R_{L}\left(u_{0}, p_{\lambda}\right) \leq c_{L} \lambda^{2}$. In particular, let $\epsilon^{*}=\sup _{0 \leq \lambda<\lambda^{*}} R_{L}\left(u_{0}, p_{\lambda}\right)$. Then for all $0 \leq \epsilon<\epsilon^{*}$, by continuity, we can choose $\lambda<\lambda^{*}$ such that $R_{L}\left(u_{0}, p_{\lambda}\right)=\epsilon \leq c_{L} \lambda^{2}$. Meanwhile, $R_{\ell}\left(\psi\left(u_{0}\right), p_{\lambda}\right)=$ $c_{\ell} \lambda \geq \frac{c_{\ell}}{\sqrt{c_{L}}} \sqrt{\epsilon}$. Recalling that $\zeta\left(R_{L}\left(u_{0}, p_{\lambda}\right)\right) \geq R_{\ell}\left(\psi\left(u_{0}\right), p_{\lambda}\right)$ by definition, this implies $\zeta(\epsilon) \geq$ $c \sqrt{\epsilon}$ for all $\epsilon<\epsilon^{*}$, with $c=\frac{c_{\ell}}{\sqrt{c_{L}}}$.

C Omitted Proofs: Constant Derivation

This section contains omitted proofs from Section 5.

C. 1 Hoffman constants

First we appeal to a known fact, the existence of Hoffman constants for systems of linear inequalities. See Zalinescu [35] for a modern treatment.

Theorem 7 (Hoffman constant [14]). Given a matrix $A \in \mathbb{R}^{m \times n}$, there exists some smallest $H(A) \geq 0$, called the Hoffman constant (with respect to $\|\cdot\|_{\infty}$), such that for all $b \in \mathbb{R}^{m}$ and all $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
d_{\infty}(x, S(A, b)) \leq H(A)\left\|(A x-b)_{+}\right\|_{\infty} \tag{5}
\end{equation*}
$$

where $S(A, b)=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}$ and $(u)_{+} \doteq \max (u, 0)$ component-wise.
Lemma (Lemma 5). Let $L: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$ be a polyhedral loss with $\Gamma=\operatorname{prop}[L]$. Then for any fixed p, there exists some smallest constant $H_{L, p} \geq 0$ such that $d_{\infty}(u, \Gamma(p)) \leq H_{L, p} R_{L}(u, p)$ for all $u \in \mathbb{R}^{d}$.

Proof. Since L is polyhedral, there exist $a_{1}, \ldots, a_{m} \in \mathbb{R}^{d}$ and $c \in \mathbb{R}^{m}$ such that we may write $\langle p, L(u)\rangle=\max _{1 \leq j \leq m} a_{j} \cdot u+c_{j}$. Let $A \in \mathbb{R}^{m \times d}$ be the matrix with rows a_{j}, and let $b=\underline{L}(p) \mathbb{1}-c$, where $\mathbb{1} \in \mathbb{R}^{m}$ is the all-ones vector. Then we have

$$
\begin{aligned}
S(A, b) & \doteq\left\{u \in \mathbb{R}^{d} \mid A u \leq b\right\} \\
& =\left\{u \in \mathbb{R}^{d} \mid A u+c \leq \underline{L}(p) \mathbb{1}\right\} \\
& =\left\{u \in \mathbb{R}^{d} \mid \forall i(A u+c)_{i} \leq \underline{L}(p)\right\} \\
& =\left\{u \in \mathbb{R}^{d} \mid \max _{i}(A u+c)_{i} \leq \underline{L}(p)\right\} \\
& =\left\{u \in \mathbb{R}^{d} \mid\langle p, L(u)\rangle \leq \underline{L}(p)\right\} \\
& =\Gamma(p) .
\end{aligned}
$$

Similarly, we have $\max _{i}(A u-b)_{i}=\langle p, L(u)\rangle-\underline{L}(p)=R_{L}(u, p) \geq 0$. Thus,

$$
\begin{aligned}
\left\|(A u-b)_{+}\right\|_{\infty} & =\max _{i}\left((A u-b)_{+}\right)_{i} \\
& =\max \left((A u-b)_{1}, \ldots,(A u-b)_{m}, 0\right) \\
& =\max \left(\max _{i}(A u-b)_{i}, 0\right) \\
& =\max _{i}(A u-b)_{i} \\
& =R_{L}(u, p)
\end{aligned}
$$

Now applying Theorem 7, we have

$$
\begin{aligned}
d_{\infty}(u, \Gamma(p)) & =d_{\infty}(u, S(A, b)) \\
& \leq H(A)\left\|(A u-b)_{+}\right\|_{\infty} \\
& =H(A) R_{L}(u, p)
\end{aligned}
$$

C. 2 Separated links

Lemma (Lemma 6). Let polyhedral surrogate $L: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$, discrete loss $\ell: \mathcal{R} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$, and link $\psi: \mathbb{R}^{d} \rightarrow \mathcal{R}$ be given such that (L, ψ) is calibrated with respect to ℓ. Then there exists $\epsilon>0$ such that ψ is ϵ-separated with respect to $\Gamma \doteq \operatorname{prop}[L]$ and $\gamma \doteq \operatorname{prop}[\ell]$.

Proof. Suppose that ψ is not ϵ-separated for any $\epsilon>0$. Then letting $\epsilon_{i} \doteq 1 / i$ we have sequences $\left\{p_{i}\right\}_{i} \subset \Delta_{\mathcal{Y}}$ and $\left\{u_{i}\right\}_{i} \subset \mathbb{R}^{d}$ such that for all $i \in \mathbb{N}$ we have both $\psi\left(u_{i}\right) \notin \gamma\left(p_{i}\right)$ and $d_{\infty}\left(u_{i}, \Gamma\left(p_{i}\right)\right) \leq \epsilon_{i}$. First, observe that there are only finitely many values for $\gamma\left(p_{i}\right)$ and $\Gamma\left(p_{i}\right)$,
as \mathcal{R} is finite and L is polyhedral. Thus, there must be some $p \in \Delta \mathcal{Y}$ and some infinite subsequence indexed by $j \in J \subseteq \mathbb{N}$ where for all $j \in J$, we have $\psi\left(u_{j}\right) \notin \gamma(p)$ and $\Gamma\left(p_{j}\right)=\Gamma(p)$.
Next, observe that, as L is polyhedral, the expected $\operatorname{loss}\langle p, L(u)\rangle$ is β-Lipschitz in $\|\cdot\|_{\infty}$ for some $\beta>0$. Thus, for all $j \in J$, we have

$$
\begin{aligned}
d_{\infty}\left(u_{i}, \Gamma(p)\right) \leq \epsilon_{j} & \Longrightarrow \exists u^{*} \in \Gamma(p)\left\|u_{j}-u^{*}\right\|_{\infty} \leq \epsilon_{j} \\
& \Longrightarrow\left|\left\langle p, L\left(u_{j}\right)\right\rangle-\left\langle p, L\left(u^{*}\right)\right\rangle\right| \leq \beta \epsilon_{j} \\
& \Longrightarrow\left|\left\langle p, L\left(u_{j}\right)\right\rangle-\underline{L}(p)\right| \leq \beta \epsilon_{j}
\end{aligned}
$$

Finally, for this p, we have

$$
\inf _{u: \psi(u) \notin \gamma(p)}\langle p, L(u)\rangle \leq \inf _{j \in J}\left\langle p, L\left(u_{j}\right)\right\rangle=\underline{L}(p),
$$

contradicting the calibration of ψ.

C. 3 Combining the loss and link

Lemma 7. Let $\ell: \mathcal{R} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$ be a discrete target loss, $L: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$ be a polyhedral surrogate loss, and $\psi: \mathbb{R}^{d} \rightarrow \mathcal{R}$ a link function. If (L, ψ) indirectly elicit ℓ and ψ is ϵ-separated, then for all u and p,

$$
R_{\ell}(\psi(u), p) \leq \frac{C_{\ell} H_{L, p}}{\epsilon} R_{L}(u, p)
$$

Proof. If $\psi(u) \in \gamma(p)$, then $R_{\ell}(u, p)=0$ and we are done. Otherwise, applying the definition of ϵ-separated and Lemma 5,

$$
\begin{aligned}
\epsilon & <d_{\infty}(u, \Gamma(p)) \\
& \leq H_{L, p} R_{L}(u, p)
\end{aligned}
$$

So $R_{\ell}(\psi(u), p) \leq C_{\ell} \leq \frac{C_{\ell} H_{L, p}}{\epsilon} R_{L}(u, p)$.
Theorem (Constructive linear transfer, Theorem 5). Let $\ell: \mathcal{R} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$ be a discrete target loss, $L: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}^{\mathcal{Y}}$ be a polyhedral surrogate loss, and $\psi: \mathbb{R}^{d} \rightarrow \mathcal{R}$ a link function. If (L, ψ) are consistent for ℓ, then

$$
(\forall h, \mathcal{D}) \quad R_{\ell}(\psi \circ h ; \mathcal{D}) \leq \frac{C_{\ell} H_{L}}{\epsilon_{\psi}} R_{L}(h ; \mathcal{D})
$$

The proof closely mirrors the proof of the nonconstructive upper bound, Theorem 1.
Proof. By Lemma 6, ψ is separated and ϵ_{ψ} well-defined. By Lemma 7, for each $p \in \mathcal{Q}$, $R_{\ell}(\psi(u), p) \leq \frac{C_{\ell} H_{L}}{\epsilon_{\psi}} R_{L}(u, p)$ for all u. Now consider a general p, which is in some full-dimensional polytope level set Γ_{u}. Write $p=\sum_{q \in \mathcal{Q}_{u}} \beta(q) q$ for some probability distribution β, where \mathcal{Q}_{u} is the set of vertices of Γ_{u}. By Lemma 3, R_{L} and R_{ℓ} are linear in p on Γ_{u}, so for any u^{\prime},

$$
\begin{aligned}
R_{\ell}\left(\psi\left(u^{\prime}\right), p\right) & =\sum_{q \in \mathcal{Q}_{u}} \beta(q) R_{\ell}\left(\psi\left(u^{\prime}\right), q\right) \\
& \leq \sum_{q \in \mathcal{Q}_{u}} \beta(q) \frac{C_{\ell} H_{L, p}}{\epsilon_{\psi}} R_{L}\left(u^{\prime}, q\right) \\
& \leq \frac{C_{\ell} H_{L}}{\epsilon_{\psi}} \sum_{q \in \mathcal{Q}_{u}} \beta(q) R_{L}\left(u^{\prime}, q\right) \\
& \leq \frac{C_{\ell} H_{L}}{\epsilon_{\psi}} R_{L}\left(u^{\prime}, p\right)
\end{aligned}
$$

By Observation 1, this conditional regret transfer implies a full regret transfer, with the same constant.

