A Omitted Proofs: Upper Bound

This section contains omitted proofs from Section 3.

Lemma (Lemma 1). Let $\ell : \mathcal{R} \to \mathbb{R}^{\mathcal{Y}}_+$ be a discrete target loss and suppose the surrogate $L : \mathbb{R}^d \to \mathbb{R}^{\mathcal{Y}}_+$ and link $\psi : \mathbb{R}^d \to \mathcal{R}$ are calibrated for ℓ . Then for any $p \in \Delta_{\mathcal{Y}}$, there exists $\alpha_p \ge 0$ such that, for all $u \in \mathbb{R}^d$,

$$R_{\ell}(\psi(u), p) \le \alpha_p R_L(u, p).$$

Proof. Fix $p \in \Delta_{\mathcal{Y}}$. Let $C_p = \max_{r \in \mathcal{R}} R_{\ell}(r, p)$. The maximum exists because ℓ is discrete, i.e. \mathcal{R} is finite. Meanwhile, recall that, when defining calibration, we let $B_{L,\psi,\ell}(p) = \{R_L(u,p) : \psi(u) \notin \gamma(p)\}$. Let $B_p = \inf B_{L,\psi,\ell}(p)$. By definition of calibration, we have $B_p > 0$.

To combine these bounds, let $\alpha_p = \frac{C_p}{B_p}$. Let $u \in \mathbb{R}^d$. There are two cases. If $\psi(u) \in \gamma(p)$, then $R_\ell(\psi(u), p) = 0 \leq R_L(u, p)$ immediately. If $\psi(u) \notin \gamma(p)$, then

$$R_{\ell}(\psi(u), p) \leq C_{p}$$

= $\alpha_{p} \cdot B_{p}$
 $\leq \alpha_{p} R_{L}(u, p).$

Lemma (Lemma 2). If (L, ψ) indirectly elicits ℓ , then $\Gamma = \text{prop}[L]$ refines $\gamma = \text{prop}[\ell]$ in the sense that, for all $u \in \mathbb{R}^d$, there exists $r \in \mathcal{R}$ such that $\Gamma_u \subseteq \gamma_r$.

Proof. For any u, let $r = \psi(u)$. By indirect elicitation, $u \in \Gamma(p) \implies r \in \gamma(p)$. So $\Gamma_u = \{p : u \in \Gamma(p)\} \subseteq \{p : r \in \gamma(p)\} = \gamma_r$.

Lemma (Lemma 3). Suppose (L, ψ) indirectly elicits ℓ and let $\Gamma = \text{prop}[L]$. Then for any fixed $u, u^* \in \mathbb{R}^d$ and $r \in \mathcal{R}$, the functions $R_L(u, \cdot)$ and $R_\ell(r, \cdot)$ are linear in their second arguments on Γ_{u^*} .

Proof. Let $u^* \in \mathbb{R}^d$ and $p \in \Gamma_{u^*}$. By definition, for all $p \in \Gamma_{u^*}$, $\underline{L}(p) = \langle p, L(u^*) \rangle$. So for fixed u,

$$R_L(u,p) = \langle p, L(u) \rangle - \langle p, L(u^*) \rangle = \langle p, L(u) - L(u^*) \rangle,$$

a linear function of p on Γ_{u^*} . Next, by Lemma 2, there exists r^* such that $\Gamma_{u^*} \subseteq \gamma_{r^*}$. By the same argument, for fixed r, $R_\ell(r, p) = \langle p, \ell(r) - \ell(r^*) \rangle$, a linear function of p on γ_{r^*} and thus on Γ_{u^*} . \Box

Lemma (Lemma 4). If $L : \mathbb{R}^d \to \mathbb{R}^{\mathcal{Y}}_+$ is polyhedral, then $\Gamma = \text{prop}[L]$ has a finite set of level sets that union to $\Delta_{\mathcal{Y}}$. Moreover, these level sets are polytopes.

Proof. This statement can be deduced from the embedding framework of [10]. In particular, Lemma 5 of [10] states that if L is polyhedral, then its Bayes risk \underline{L} is concave polyhedral, i.e. is the pointwise minimum of a finite set of affine functions. It follows that there exists a finite set $U \subset \mathbb{R}^d$ such that

$$\underline{L}(p) = \min_{u \in \mathbb{D}^d} \langle p, L(u) \rangle = \min_{u \in U} \langle p, L(u) \rangle .$$
(4)

We claim the level sets of U witness the claim. First, it is known (e.g. from theory of power diagrams, [2]) that if \underline{L} is a polyhedral function represented as (4) and $u \in U$, then $\Gamma_u = \{p \in \Delta_{\mathcal{Y}} : \langle p, L(u) \rangle = \underline{L}(p)\}$ is a polytope. Finally, suppose for contradiction that there exists $p \in \Delta_{\mathcal{Y}}, p \notin \bigcup_{u \in U} \Gamma_u$. Then there must be some $u' \notin U$ with $p \in \Gamma_{u'}$, implying that $\langle p, L(u') \rangle > \max_{u \in U} \langle p, L(u) \rangle$, contradicting (4).

Theorem (Theorem 3). Suppose the surrogate loss $L : \mathbb{R}^d \to \mathbb{R}^{\mathcal{Y}}_+$ and link $\psi : \mathbb{R}^d \to \mathcal{R}$ are consistent for the target loss $\ell : \mathcal{R} \to \mathbb{R}^{\mathcal{Y}}_+$. If L is polyhedral, then (L, ψ) guarantee a linear regret transfer for ℓ , i.e. there exists $\alpha \geq 0$ such that, for all \mathcal{D} and all measurable $h : \mathcal{X} \to \mathbb{R}^d$,

$$R_{\ell}(\psi \circ h; \mathcal{D}) \leq \alpha R_L(h; \mathcal{D}).$$

Proof. We first recall that by Fact 1, consistency implies that (L, ψ) are calibrated for ℓ and that (L, ψ) indirectly elicit ℓ . Next, by Observation 1, it suffices to show a linear *conditional* regret transfer, i.e. for all $p \in \Delta_{\mathcal{Y}}$ and $u \in \mathbb{R}^d$, we show $R_{\ell}(\psi(u), p) \leq \alpha R_L(u, p)$.

By Lemma 4, the polyhedral loss L has a finite set $U \subset \mathbb{R}^d$ of predictions such that (a) for each $u \in U$, the level set Γ_u is a polytope, and (b) $\cup_{u \in U} \Gamma_u = \Delta_{\mathcal{Y}}$. Let $\mathcal{Q}_u \subset \Delta_{\mathcal{Y}}$ be the finite set of vertices of the polytope Γ_u , and define the finite set $\mathcal{Q} = \bigcup_{u \in U} \mathcal{Q}_u$.

By Lemma 1, for each $q \in Q$, there exists $\alpha_q \ge 0$ such that $R_\ell(\psi(u), q) \le \alpha_q R_L(u, q)$ for all u. We choose

$$\alpha = \max_{q \in \mathcal{Q}} \alpha_q.$$

To prove the conditional regret transfer, consider any $p \in \Delta_{\mathcal{Y}}$ and any $u \in \mathbb{R}^d$. There exists $u \in U$ such that $p \in \Gamma_u$, a polytope. So we can write p as a convex combination of its vertices, i.e.

$$p = \sum_{q \in \mathcal{Q}_u} \beta(q) q$$

for some probability distribution β . Recall that $Q_u \subseteq \Gamma_u$ and R_L and R_ℓ are linear in p on Γ_u by Lemma 3. So, for any u':

$$R_{\ell}(\psi(u'), p) = R_{\ell}\left(\psi(u'), \sum_{q \in \mathcal{Q}_{u}} \beta(q)q\right)$$
$$= \sum_{q \in \mathcal{Q}_{u}} \beta(q)R_{\ell}(\psi(u'), q)$$
$$\leq \sum_{q \in \mathcal{Q}_{u}} \beta(q)\alpha_{q}R_{L}(u', q)$$
$$\leq \alpha \sum_{q \in \mathcal{Q}_{u}} \beta(q)R_{L}(u', q)$$
$$= \alpha R_{L}(u', p).$$

B Omitted Proofs: Lower Bound

This section contains omitted proofs from Section 4.

Theorem (Theorem 4). Suppose the surrogate loss L and link ψ satisfy a regret transfer of ζ for a target loss ℓ . If L, ψ , and ℓ satisfy Assumption 1, then there exists c > 0 such that, for some $\epsilon^* > 0$, for all $0 \le \epsilon < \epsilon^*$, $\zeta(\epsilon) \ge c\sqrt{\epsilon}$.

Proof outline: By assumption we have a boundary report u_0 which is *L*-optimal for a distribution p_0 . We have some r, r' which are both optimal for p_0 , and $\psi(u_0) = r'$. First, we will choose a p_1 where r is uniquely optimal, hence u_0 is a strictly suboptimal choice. We then consider a sequence of distributions $p_{\lambda} = (1 - \lambda)p_0 + \lambda p_1$, approaching p_0 as $\lambda \to 0$. For all such p_{λ} , it will happen that r is optimal while u_0 and $r' = \psi(u_0)$ are strictly suboptimal. We show that $R_{\ell}(r', p_{\lambda}) = c_{\ell}\lambda$ for some constant c_{ℓ} and all small enough λ . Meanwhile, we will show that $R_L(u_0, p_{\lambda}) \leq O(\lambda^2)$, proving the result. The last fact will use the properties of strong smoothness and strong convexity in a neighborhood of u_0 .

Proof. Obtain α , u_0 , p_0 , r, r', and an open neighborhood of u_0 from Assumption 1 and the definition of boundary report. Assume without loss of generality that $\psi(u_0) = r'$; otherwise, swap the roles of r and r'.

Linearity of $R_{\ell}(r', p_{\lambda})$. As ℓ is non-redundant by assumption, there exists some $p_1 \in \mathring{\gamma_r}$, the relative interior of the full-dimensional level set γ_r . We therefore have $R_{\ell}(r', p_1) = \langle p_1, \ell(r') - \ell(r) \rangle =: c_{\ell} > 0$, and $R_{\ell}(r', p_0) = 0$. Let $p_{\lambda} := (1 - \lambda)p_0 + \lambda p_1$. By convexity of γ_r , we have $p_{\lambda} \in \gamma_r$ for all $\lambda \in [0, 1]$, which gives $R_{\ell}(r', p_{\lambda}) = \lambda c_{\ell}$.

Obtaining the global minimizer u_{λ} of L_{λ} . Let $L_{\lambda} : \mathbb{R}^d \to \mathbb{R}_+$ be given by $L_{\lambda}(u) = \langle p_{\lambda}, L(u) \rangle = (1 - \lambda) \langle p_0, L(u) \rangle + \lambda \langle p_1, L(u) \rangle$. Let $\delta > 0$ such that the above open neighborhood of u_0 contains the Euclidean ball $B_{\delta}(u_0)$ of radius δ around u_0 . Let $u_1 \in \Gamma(p_1)$. We argue that for all small enough λ , $L_{\lambda}(u)$ is uniquely minimized by some $u_{\lambda} \in B_{\delta}(u_0)$. For any $u \notin B_{\delta}(u_0)$, we have, using local strong convexity and the optimality of u_1 ,

$$L_{\lambda}(u) - L_{\lambda}(u_{0}) = (1 - \lambda) \left(L_{0}(u) - L_{0}(u_{0}) \right) + \lambda \left(L_{1}(u) - L_{1}(u_{0}) \right)$$

$$\geq (1 - \lambda) \left(\frac{\alpha}{2} \delta^{2} \right) + \lambda \left(L_{1}(u_{1}) - L_{1}(u_{0}) \right)$$

$$> 0$$

if $\lambda < \lambda^* := \alpha \delta^2 / (2\alpha \delta^2 + 4L_1(u_0) - 4L_1(u_1))$. For the remainder of the proof, let $\lambda < \lambda^*$. Then any $u \notin B_{\delta}(u_0)$ has $L_{\lambda}(u) > L_{\lambda}(u_0)$, hence is suboptimal. By α -strong convexity of L_0 on $B_{\delta}(u_0)$, L_{λ} is strictly convex on $B_{\delta}(u_0)$. So it has a unique minimizer u_{λ} , and by the above argument this is the global minimizer of L_{λ} . Then $\underline{L}(p_{\lambda}) = L_{\lambda}(u_{\lambda})$, and thus $R_L(u_0, p_{\lambda}) = L_{\lambda}(u_0) - L_{\lambda}(u_{\lambda})$. We also observe here that $R_L(u_0, p_{\lambda})$ is continuous in λ , e.g. because the Bayes risk of L is continuous in p as is $\langle p, L(u_0) \rangle$. It is also zero when $\lambda = 0$.

Showing R_L is quadratic in λ . By assumption, the gradient of L_y is locally Lipschitz for all $y \in \mathcal{Y}$. We will apply this fact to the compact set $\mathcal{C} = \{u \in \mathbb{R}^d : ||u - u_1|| \le ||u_0 - u_1|| + \delta\}$. By compactness, we have a finite subcover of open neighborhoods; let β be the minimum Lipschitz constant over this finite set of neighborhoods. We thus have that L_y is β -strongly smooth on \mathcal{C} , and hence so is L_λ for any $\lambda \in [0, 1]$.

We now upper bound $||u_{\lambda} - u_0||_2$, and then apply strong smoothness to upper bound $R_L(u_0, p_{\lambda}) = L_{\lambda}(u_0) - L_{\lambda}(u_{\lambda})$. Consider the first-order optimality condition of L_{λ} :

$$0 = \nabla L_{\lambda}(u_{\lambda}) = (1 - \lambda) \nabla L_0(u_{\lambda}) + \lambda \nabla L_1(u_{\lambda})$$

$$\implies (1 - \lambda) \| \nabla L_0(u_{\lambda}) \|_2 = \lambda \| \nabla L_1(u_{\lambda}) \|_2.$$

By optimality of u_0 and u_1 , strong convexity of L_0 and strong smoothness of L_1 , and the triangle inequality, we have

$$\begin{aligned} \|\nabla L_0(u_{\lambda})\|_2 &= \|\nabla L_0(u_{\lambda}) - \nabla L_0(u_0)\|_2 \ge \alpha \|u_{\lambda} - u_0\|_2 ,\\ \|\nabla L_1(u_{\lambda})\|_2 &= \|\nabla L_1(u_{\lambda}) - \nabla L_1(u_1)\|_2 \le \beta \|u_{\lambda} - u_1\|_2 \\ &\le \beta \left(\|u_{\lambda} - u_0\|_2 + \|u_0 - u_1\|_2\right) . \end{aligned}$$

Combining,

$$(1 - \lambda)\alpha \|u_{\lambda} - u_{0}\|_{2} \leq (1 - \lambda) \|\nabla L_{0}(u_{\lambda})\|_{2}$$

= $\lambda \|\nabla L_{1}(u_{\lambda})\|_{2}$
 $\leq \lambda \beta (\|u_{\lambda} - u_{0}\|_{2} + \|u_{0} - u_{1}\|_{2})$

Now rearranging and taking $\lambda \leq \frac{1}{2} \frac{\alpha}{\alpha + \beta}$, we have

$$\|u_{\lambda} - u_0\|_2 \leq \frac{\lambda\beta}{(1-\lambda)\alpha - \lambda\beta} \|u_0 - u_1\|_2 \leq \lambda \frac{2\beta}{\alpha} \|u_0 - u_1\|_2.$$

Finally, from strong smoothness of L_{λ} and optimality of u_{λ} ,

$$L_{\lambda}(u_{0}) - L_{\lambda}(u_{\lambda}) \leq \frac{\beta}{2} \|u_{0} - u_{\lambda}\|_{2}^{2} \leq \frac{\beta}{2} \left(\lambda \frac{2\beta}{\alpha} \|u_{0} - u_{1}\|_{2}\right)^{2} = c_{L}\lambda^{2},$$

where $c_L = \frac{2\beta^3}{\alpha^2} ||u_0 - u_1||_2^2 > 0.$

To conclude: we have found a $\lambda^* > 0$ and shown that for all $0 \le \lambda < \lambda^*$, $R_\ell(r', p_\lambda) = c_\ell \lambda$ and $R_L(u_0, p_\lambda) \le c_L \lambda^2$. In particular, let $\epsilon^* = \sup_{0 \le \lambda < \lambda^*} R_L(u_0, p_\lambda)$. Then for all $0 \le \epsilon < \epsilon^*$, by continuity, we can choose $\lambda < \lambda^*$ such that $R_L(u_0, p_\lambda) = \epsilon \le c_L \lambda^2$. Meanwhile, $R_\ell(\psi(u_0), p_\lambda) = c_\ell \lambda \ge \frac{c_\ell}{\sqrt{c_L}} \sqrt{\epsilon}$. Recalling that $\zeta(R_L(u_0, p_\lambda)) \ge R_\ell(\psi(u_0), p_\lambda)$ by definition, this implies $\zeta(\epsilon) \ge c\sqrt{\epsilon}$ for all $\epsilon < \epsilon^*$, with $c = \frac{c_\ell}{\sqrt{c_L}}$.

C Omitted Proofs: Constant Derivation

This section contains omitted proofs from Section 5.

C.1 Hoffman constants

First we appeal to a known fact, the existence of Hoffman constants for systems of linear inequalities. See Zalinescu [35] for a modern treatment.

Theorem 7 (Hoffman constant [14]). Given a matrix $A \in \mathbb{R}^{m \times n}$, there exists some smallest $H(A) \geq 0$, called the Hoffman constant (with respect to $\|\cdot\|_{\infty}$), such that for all $b \in \mathbb{R}^m$ and all $x \in \mathbb{R}^n$,

$$d_{\infty}(x, S(A, b)) \le H(A) \| (Ax - b)_{+} \|_{\infty} , \qquad (5)$$

where $S(A, b) = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ and $(u)_+ \doteq \max(u, 0)$ component-wise.

Lemma (Lemma 5). Let $L : \mathbb{R}^d \to \mathbb{R}^{\mathcal{Y}}_+$ be a polyhedral loss with $\Gamma = \text{prop}[L]$. Then for any fixed p, there exists some smallest constant $H_{L,p} \ge 0$ such that $d_{\infty}(u, \Gamma(p)) \le H_{L,p}R_L(u, p)$ for all $u \in \mathbb{R}^d$.

Proof. Since L is polyhedral, there exist $a_1, \ldots, a_m \in \mathbb{R}^d$ and $c \in \mathbb{R}^m$ such that we may write $\langle p, L(u) \rangle = \max_{1 \leq j \leq m} a_j \cdot u + c_j$. Let $A \in \mathbb{R}^{m \times d}$ be the matrix with rows a_j , and let $b = \underline{L}(p)\mathbb{1} - c$, where $\mathbb{1} \in \mathbb{R}^m$ is the all-ones vector. Then we have

$$S(A, b) \doteq \{u \in \mathbb{R}^d \mid Au \leq b\}$$

= $\{u \in \mathbb{R}^d \mid Au + c \leq \underline{L}(p)\mathbb{1}\}$
= $\{u \in \mathbb{R}^d \mid \forall i (Au + c)_i \leq \underline{L}(p)\}$
= $\{u \in \mathbb{R}^d \mid \max_i (Au + c)_i \leq \underline{L}(p)\}$
= $\{u \in \mathbb{R}^d \mid \langle p, L(u) \rangle \leq \underline{L}(p)\}$
= $\Gamma(p)$.

Similarly, we have $\max_i (Au - b)_i = \langle p, L(u) \rangle - \underline{L}(p) = R_L(u, p) \ge 0$. Thus,

$$|(Au - b)_+||_{\infty} = \max_i ((Au - b)_+)_i$$

= max((Au - b)_1, ..., (Au - b)_m, 0)
= max(max_i (Au - b)_i, 0)
= max_i (Au - b)_i
= R_L(u, p).

Now applying Theorem 7, we have

$$d_{\infty}(u, \Gamma(p)) = d_{\infty}(u, S(A, b))$$

$$\leq H(A) ||(Au - b)_{+}||_{\infty}$$

$$= H(A) R_{L}(u, p) .$$

		٦	
_			

C.2 Separated links

Lemma (Lemma 6). Let polyhedral surrogate $L : \mathbb{R}^d \to \mathbb{R}^{\mathcal{Y}}_+$, discrete loss $\ell : \mathcal{R} \to \mathbb{R}^{\mathcal{Y}}_+$, and link $\psi : \mathbb{R}^d \to \mathcal{R}$ be given such that (L, ψ) is calibrated with respect to ℓ . Then there exists $\epsilon > 0$ such that ψ is ϵ -separated with respect to $\Gamma \doteq \operatorname{prop}[L]$ and $\gamma \doteq \operatorname{prop}[\ell]$.

Proof. Suppose that ψ is not ϵ -separated for any $\epsilon > 0$. Then letting $\epsilon_i \doteq 1/i$ we have sequences $\{p_i\}_i \subset \Delta_{\mathcal{Y}}$ and $\{u_i\}_i \subset \mathbb{R}^d$ such that for all $i \in \mathbb{N}$ we have both $\psi(u_i) \notin \gamma(p_i)$ and $d_{\infty}(u_i, \Gamma(p_i)) \leq \epsilon_i$. First, observe that there are only finitely many values for $\gamma(p_i)$ and $\Gamma(p_i)$,

as \mathcal{R} is finite and L is polyhedral. Thus, there must be some $p \in \Delta_{\mathcal{Y}}$ and some infinite subsequence indexed by $j \in J \subseteq \mathbb{N}$ where for all $j \in J$, we have $\psi(u_j) \notin \gamma(p)$ and $\Gamma(p_j) = \Gamma(p)$.

Next, observe that, as L is polyhedral, the expected loss $\langle p, L(u) \rangle$ is β -Lipschitz in $\| \cdot \|_{\infty}$ for some $\beta > 0$. Thus, for all $j \in J$, we have

$$d_{\infty}(u_{i}, \Gamma(p)) \leq \epsilon_{j} \implies \exists u^{*} \in \Gamma(p) ||u_{j} - u^{*}||_{\infty} \leq \epsilon_{j}$$
$$\implies |\langle p, L(u_{j}) \rangle - \langle p, L(u^{*}) \rangle| \leq \beta \epsilon_{j}$$
$$\implies |\langle p, L(u_{j}) \rangle - \underline{L}(p)| \leq \beta \epsilon_{j} .$$

Finally, for this *p*, we have

$$\inf_{u:\psi(u)\notin\gamma(p)} \langle p, L(u) \rangle \le \inf_{j\in J} \langle p, L(u_j) \rangle = \underline{L}(p) ,$$

contradicting the calibration of ψ .

C.3 Combining the loss and link

Lemma 7. Let $\ell : \mathcal{R} \to \mathbb{R}^{\mathcal{Y}}_+$ be a discrete target loss, $L : \mathbb{R}^d \to \mathbb{R}^{\mathcal{Y}}_+$ be a polyhedral surrogate loss, and $\psi : \mathbb{R}^d \to \mathcal{R}$ a link function. If (L, ψ) indirectly elicit ℓ and ψ is ϵ -separated, then for all u and p,

$$R_{\ell}(\psi(u), p) \le \frac{C_{\ell}H_{L,p}}{\epsilon}R_L(u, p).$$

Proof. If $\psi(u) \in \gamma(p)$, then $R_{\ell}(u, p) = 0$ and we are done. Otherwise, applying the definition of ϵ -separated and Lemma 5,

$$\epsilon < d_{\infty}(u, \Gamma(p))$$

$$\leq H_{L,p} R_L(u, p).$$

So $R_{\ell}(\psi(u), p) \leq C_{\ell} \leq \frac{C_{\ell}H_{L,p}}{\epsilon}R_L(u, p).$

Theorem (Constructive linear transfer, Theorem 5). Let $\ell : \mathcal{R} \to \mathbb{R}^{\mathcal{Y}}_+$ be a discrete target loss, $L : \mathbb{R}^d \to \mathbb{R}^{\mathcal{Y}}_+$ be a polyhedral surrogate loss, and $\psi : \mathbb{R}^d \to \mathcal{R}$ a link function. If (L, ψ) are consistent for ℓ , then

$$(\forall h, \mathcal{D}) \quad R_{\ell}(\psi \circ h; \mathcal{D}) \le \frac{C_{\ell}H_L}{\epsilon_{\psi}}R_L(h; \mathcal{D})$$

The proof closely mirrors the proof of the nonconstructive upper bound, Theorem 1.

Proof. By Lemma 6, ψ is separated and ϵ_{ψ} well-defined. By Lemma 7, for each $p \in Q$, $R_{\ell}(\psi(u), p) \leq \frac{C_{\ell}H_L}{\epsilon_{\psi}}R_L(u, p)$ for all u. Now consider a general p, which is in some full-dimensional polytope level set Γ_u . Write $p = \sum_{q \in Q_u} \beta(q)q$ for some probability distribution β , where Q_u is the set of vertices of Γ_u . By Lemma 3, R_L and R_ℓ are linear in p on Γ_u , so for any u',

$$R_{\ell}(\psi(u'), p) = \sum_{q \in \mathcal{Q}_{u}} \beta(q) R_{\ell}(\psi(u'), q)$$

$$\leq \sum_{q \in \mathcal{Q}_{u}} \beta(q) \frac{C_{\ell} H_{L,p}}{\epsilon_{\psi}} R_{L}(u', q)$$

$$\leq \frac{C_{\ell} H_{L}}{\epsilon_{\psi}} \sum_{q \in \mathcal{Q}_{u}} \beta(q) R_{L}(u', q)$$

$$\leq \frac{C_{\ell} H_{L}}{\epsilon_{\psi}} R_{L}(u', p).$$

By Observation 1, this conditional regret transfer implies a full regret transfer, with the same constant. $\hfill\square$