
A Theoretical results

This section contains details on our theoretical results.

A.1 Invariance to hyperparameters rescaling

Based on properties (1a) and (1b), we derive a simple yet useful proposition tying together different
hyperparameter settings of initialization x0, learning rate η, and weight decay coefficient λ. This
proposition provides grounds for fixing the initialization scale in our experiments and iterating
over learning rates and weight decay coefficients when studying the dependence of the behavior of
scale-invariant neural networks on hyperparameters.

Proposition 4 Given f(x) is scale-invariant and optimized according to Eq. (2), settings (x0, η, λ)
and (x′

0, η
′, λ′) = (cx0, c

2η, λ/c2), c > 0 lead to equivalent dynamics in function space.

Proof. Eq. (2) and property (1b) give xt+1 = ∥xt∥
[
(1− ηλ) xt

∥xt∥ − η̃t∇f(xt/ ∥xt∥)
]
, where

η̃t =
η

∥xt∥2 is the effective learning rate. Since the term in square brackets does not depend on the
scale of xt provided that the effective learning rate and ηλ product are unchanged, by induction, from
x′
t = cxt we have x′

t+1 = cxt+1, hence f(x′
t+1) = f(xt+1). ■

A.2 Derivations

Parameters norm dynamics (3)

ρ2t+1 = ⟨xt+1, xt+1⟩ = {Eq. (2)} = (1− ηλ)2ρ2t + η2g2t + 2η(1− ηλ) ⟨∇f(xt), xt⟩ =
= {property (1a)} = (1− ηλ)2ρ2t + η2g2t = {property (1b), i.e., gt = g̃t/ρt} =

= (1− ηλ)2ρ2t + η2g̃2t /ρ
2
t

Cosine distance between adjacent iterates (8)

cos(xt, xt+1) =
⟨xt, xt+1⟩
ρtρt+1

= {Eq. (2)} =
(1− ηλ) ⟨xt, xt⟩ − η ⟨∇f(xt), xt⟩

ρtρt+1
=

= {property (1a)} =
(1− ηλ)ρt

ρt+1
= {Eq. (3)} =

(
1 +

η2g̃2t
(1− ηλ)2ρ4t

)−1/2

δ-jump conditions (9)

1− cos(xt, xt+1) > δ ⇐⇒ {Eq. (8)} ⇐⇒
(
1 +

η2g̃2t
(1− ηλ)2ρ4t

)−1/2

< 1− δ ⇐⇒

⇐⇒ 1 +
η2g̃2t

(1− ηλ)2ρ4t
>

1

(1− δ)2
= 1 + 2δ +O(δ2) ⪆ 1 + 2δ.

Omitting O(δ2) leaves the condition necessary and also approximately sufficient for small δ:

1− cos(xt, xt+1) > δ =⇒ η2g̃2t
(1− ηλ)2ρ4t

> 2δ ⇐⇒ ρ2t <
ηg̃t

(1− ηλ)
√
2δ

.

A.3 Proof of Proposition 1

For the convenience of reading, we defer the derivation details of all equations to Appendix A.2.

Proof. Using property (1a) and Eq. (3), we obtain the exact value of the cosine between adjacent
iterates:

cos(xt, xt+1) =

(
1 +

η2g̃2t
(1− ηλ)2ρ4t

)−1/2

. (8)

From Eq. (8) we deduce the following δ-jump condition:

1− cos(xt, xt+1) > δ =⇒ ρ2t <
ηg̃t

(1− ηλ)
√
2δ

. (9)

13

During the derivation, we omitted O(δ2) terms. This implies that the right inequality represents not
only the necessary but also (approximately) the sufficient condition for a δ-jump when δ is small.

Assuming (1 − ηλ) ⪅ 1 and substituting the effective gradient bounds ℓ and L into Eq. (9) in
place of g̃t finally yields the approximate necessary and sufficient δ-jump conditions (4a) and (4b),
respectively. ■

A.4 On β-undetermined recurrent sequences

Here we provide some results related to convergence of sequences of the following kind:

xt+1 = (1− α)xt +
βt

xt
, (10)

where α is a fixed coefficient, and βt may vary from iteration to iteration. We assume x0 > 0,
0 < α < 0.5, and βt ∈ [a, b], ∀t, where 0 ≤ a ≤ b < +∞ are some fixed values. We call sequences
of type (10) β-undetermined recurrent sequences.

A.4.1 β-determined sequences

To derive the basic properties of β-undetermined sequences (10), we first consider β-determined
recurrent sequences:

xt+1 = (1− α)xt +
β

xt
, (11)

where β is now a fixed non-negative value.

If β = 0, (11) boils down to a classical linear sequence converging to zero at rate 1 − α. Assume

now that β > 0. First of all, x∗ =
√

β
α is the only stationary point of sequence (11). This holds from

solving the following equation:

xt+1 = xt ⇐⇒ xt = x∗ =

√
β

α
.

Suppose xt = γtx
∗. By dividing the left and right sides of Eq. (11) by x∗, we can derive the formula

for γt+1 as a function of γt which we denote as φ(γt):

γt+1 = φ(γt) = (1− α)γt +
α

γt
. (12)

The sequence induced by (12) is a special case of Eq. (11) with a stationary point γ∗ = 1. One
important property is that γt+1 does not depend on β explicitly, only on γt and α. This unifies the
convergence analysis for sequences with different β coefficients.

For function (12) the following facts hold (see Figure 8 for an illustration):

γt < 1 =⇒ γt+1 > γt: the sequence is increasing once it’s below x∗, (13a)
γt > 1 =⇒ 1 < γt+1 < γt: the sequence is decreasing once it’s above x∗, (13b)

γt+1 = 1 ⇐⇒ γt =
α

1− α
∨ γt = 1: pre-stationary conditions, (13c)

γt+1 < 1 ⇐⇒ γt ∈
(

α

1− α
, 1

)
: conditions for staying below the stationary point, (13d)

φ(γt) is a decreasing function for γt <
√

α

1− α
, (13e)

φ(γt) is an increasing function for γt >
√

α

1− α
, (13f)

γt+1 = min
γt

φ(γt) = 2
√
α(1− α) ⇐⇒ γt =

√
α

1− α
: the lowest achievable value. (13g)

Note that for 0 < α < 0.5 we have
α

1− α
<

√
α

1− α
< 2

√
α(1− α) < 1.

14

0.5 1.0 1.5 2.0
γt

0.5

1.0

1.5

2.0

γ t
+

1

Dependence of γt+ 1 on γt

γt+ 1 =φ(γt)
γt+ 1 = γt
(α

1 −α , 1)
(1, 1)
(√ α

1 −α , 2√α(1 −α))

Figure 8: Dependence of γt+1 on γt from Eq. (12) for α = 0.1.

Properties (13b) and (13d) imply that xt+1 can “hop” over x∗ if only xt <
α

1−αx
∗. Otherwise, xt is

monotonically approaching its stationary point. That is an important threshold that will help derive
the convergence of β-undetermined sequences to a specific equilibrium interval.

The derivative of φ(γt) can help estimate the convergence rate of the sequence (11) to its stationary
point. Specifically, using the mean value theorem, we obtain that

xt+1 − x∗ = x∗ (γt+1 − 1) = x∗ (φ(γt)− φ(1)) = x∗φ′(ξ) (γt − 1) , (14)

where ξ is some point between 1 and γt. Therefore, by bounding the derivative φ′(γt), we can also
bound the xt convergence to x∗.

Suppose that γ0 > 1. From (13b) it follows that γt > 1, ∀t. In this case, we can bound the derivative
of φ(γt) for γt > 1 and obtain the approximate convergence rates for (11):

1− 2α < φ′(γt) = (1− α)− α

γ2
t

< 1− α, γt > 1,

which, after recursively applying (14), yields

(1− 2α)t(γ0 − 1) < γt − 1 < (1− α)t(γ0 − 1), t ≥ 1,

or equivalently, formulating this for (11) as a lemma:

Lemma 1 For an arbitrary β-determined sequence (11) with β ≥ 0, given x∗ =
√

β
α and x0 > x∗,

the following bounds on its convergence rate hold:

(1− 2α)t(x0 − x∗) ≤ xt − x∗ ≤ (1− α)t(x0 − x∗), ∀t.

This is the main result concerning the convergence of β-determined sequences (11). Note that
Lemma 1 also covers the case of β = 0 because then x∗ = 0 and xt = (1− α)tx0.

A.4.2 β-undetermined sequences convergence bounds

Now, we can return back to the β-undetermined sequences (10) and derive its convergence bounds.
The following lemma allows to bound an arbitrary β-undetermined sequence with β-determined ones.

Lemma 2 For an arbitrary β-undetermined sequence of type (10) with 0 ≤ a ≤ βt ≤ b < +∞ the
following β-determined bounds hold.

1. Let xa,t be a β-determined sequence (11) with β = a and xa,0 = x0. Then xa,t ≤ xt, ∀t.
2. Let xb,t be a β-determined sequence (11) with β = b and xb,0 = x0. Then, if xt >√

b
1−α , t = 0, . . . , T , we have xt ≤ xb,t, t = 0, . . . , T + 1.

Proof. We will prove the first statement since the second one can be proved similarly.

15

Let
√

a
1−α < xa,t ≤ xt. Then the following inequalities hold:

xa,t+1 ≤ (1− α)xt +
a

xt
≤ xt+1.

The first inequality holds since xa,t+1 is a monotonically increasing function of xa,t due to (13f).
The second one is valid because a ≤ βt.

Note that due to (13g) and
√

α
1−α < 2

√
α(1− α), we have

√
a

1−α < xa,t, t ≥ 1, plus, as a ≤ β0,
xa,1 ≤ x1, hence, induction is valid for all t for the lower bound (in contrast with the upper bound

case, where we explicitly demand xt >
√

b
1−α for T consecutive timesteps). ■

Remark 2 An important special case when the upper bound xb,t is valid for all t is if α
1−α

√
b ≤ √

a

and x0 >
√

b
α . Then, while xt ≥

√
b
α >

√
b

1−α the bound is valid due to the second statement of

the lemma. As soon as xt crosses the
√

b
α threshold, it can never “hop” over it again due to (13d)

and xt ≥ xa,t >
√

a
α ≥

√
αb

1−α , ∀t; at the same time, xb,t >
√

b
α , ∀t due to (13b).

Based on the convergence results of β-determined sequences, the following corollary allows estimat-
ing the convergence rates of β-undetermined sequences.

Corollary 2 Given Lemma 1, Lemma 2, and the reasoning from Remark 2, we obtain the following
bounds on convergence rates of an arbitrary β-undetermined sequence (10):

1. if x0 >
√

a
α , then (1− 2α)t

(
x0 −

√
a
α

)
≤ xt −

√
a
α , ∀t;

2. if x0 >
√

b
α , then xt −

√
b
α ≤ (1− α)t

(
x0 −

√
b
α

)
while xt ≥

√
αb

1−α .

Our final important result about the β-undetermined sequences convergence is a case of convergence
to the interval determined by the stationary points of the bounding β-determined sequences xa,t and
xb,t. We formulate it in the following proposition (see Figure 9 for an illustration).

Proposition 5 An arbitrary β-undetermined sequence (10), given α
1−α

√
b ≤ √

a, converges to the
following interval: √

a

α
≤ xt ≤

√
b

α
, t ≫ 1.4

Furthermore, if x0 >
√

b
α , then xt converges to the interval linearly in O(1/α) time.

Proof. Due to the first statement of Lemma 2, xt ≥ xa,t →
√

a
α , hence, we deduce that the

lower bound will eventually hold for t → ∞. Since α
1−α

√
b ≤ √

a and due to the reasoning in

Remark 2, when
√

a
α ≤ xt is fulfilled, the series either stays in the stated interval (if xt ≤

√
b
α) and

never crosses it or approaches it from above thanks to the upper β-deterministic bounding sequence

xt ≤ xb,t →
√

b
α , so the upper bound is also (asymptotically) valid.

If x0 >
√

b
α , Corollary 2 allows us to enclose xt (while it is above

√
b
α) between two linear

sequences converging to
√

a
α and

√
b
α , respectively, with one-minus-rate proportional to α. This

is consistent with the convergence time O(1/α) since the convergence time of linear sequences is
inversely proportional to the one-minus-rate value. ■

4These bounds are, in general, asymptotic, so, for complete correctness, t ≫ 1 must be substituted with
t → ∞; however, excluding the degenerate cases, we can often observe that xt reaches the interval in finite time.

16

0 20 40 60 80 100
t

0

5

10

15

20

25
Dynamics of a β-undetermined sequence

xt
xa, t
xb, t

√a
α + (1 − 2α)t(x0 − √a

α)

√b
α + (1 −α)t(x0 − √b

α)

[√a
α , √b

α]
√αb
1 −α

Figure 9: β-undetermined sequence (10) convergence to the
[√

a
α ,

√
b
α

]
interval (Proposition 5).

Setting: α = 0.1, a = 1, b = 10, βt ∼ U(a, b).

A.5 Proof of Proposition 2

We prove Proposition 2 using the general convergence theory for so-called β-undetermined recurrent
sequences of type xt+1 = (1− α)xt +

βt

xt
, where 0 < α < 0.5 and 0 ≤ a ≤ βt ≤ b < +∞, ∀t (see

Appendix A.4). Note that the parameters norm dynamics (3) is a special case of such a sequence
with xt := ρ2t , βt := η2g̃2t , a := η2ℓ2, b := η2L2, and α := 2ηλ (recall that we suppress O

(
(ηλ)2

)
terms).

Proof. Denote κ =
√

η
2λ .

In the notation of β-undetermined sequences, the condition ρ20 > κℓ translates into x0 >
√

a
α . Thus,

by applying Corollary 2, we can bound the convergence of parameters norm from below with the
following linear sequence:

κℓ+ (1− 4ηλ)t
(
ρ20 − κℓ

)
≤ ρ2t .

The necessary δ-jump condition (4a) can be equivalently reformulated as an upper bound on δ:

κℓ <
ηL√
2δ

⇐⇒ δ < ηλ
L2

ℓ2
.

If this condition is fulfilled, we can estimate the minimal time required for a δ-jump — the moment
when the lower bound on ρ2t intersects the ηL√

2δ
threshold. If ρ20 ≤ ηL√

2δ
, obviously, tmin = 0, else, by

solving the following equation for t:√
η

2λ
ℓ+ (1− 4ηλ)t

(
ρ20 −

√
η

2λ
ℓ

)
=

ηL√
2δ

,

we obtain (5).

Again, ρ20 > κL is equivalent to x0 >
√

b
α and, due to Corollary 2, the following upper bound on ρ2t

holds (at least while ρ2t ≥ κL):

ρ2t ≤ κL+ (1− 2ηλ)t
(
ρ20 − κL

)
.

Now, if δ is so small that the sufficient condition for a jump (4b) is fulfilled before ρ2t converges to
κL, i.e.,

κL <
ηℓ√
2δ

⇐⇒ δ < ηλ
ℓ2

L2
,

we can similarly estimate the maximal required time for a δ-jump (6) as the moment when the upper
bound on ρ2t intersects the ηℓ√

2δ
threshold. ■

17

A.6 Proof of Proposition 3

As in the previous section, we prove Proposition 3 using the general theory on β-undetermined
sequences (see Appendix A.4). We remarked above that the parameters norm dynamics (3) is a
special case of such a sequence with parameters a := η2ℓ2, b := η2L2, and α := 2ηλ.

Proof. According to Proposition 5, if for a β-undetermined sequence xt the condition α
1−α

√
b ≤ √

a

is fulfilled, then one can show that xt ∈
[√

a
α ,

√
b
α

]
, t ≫ 1; furthermore, if x0 >

√
b
α , then

xt converges to the interval linearly in O(1/α) time. For the parameters norm dynamics, the
condition α

1−α

√
b ≤ √

a is equivalent (up to O
(
(ηλ)2

)
terms) to 2ηλL ≤ ℓ as α

1−α = 2ηλ
1−2ηλ =

2ηλ+O
(
(ηλ)2

)
. Now, if it holds, we can apply Proposition 5 and conclude the proof. ■

Remark 3 We can reformulate the same result in terms of the effective learning rate η̃t = η/ρ2t :

2ηλL ≤ ℓ ≤ g̃t ≤ L =⇒
√
2ηλ

L
≤ η̃t ≤

√
2ηλ

ℓ
, t ≫ 1.

A.7 Discussion on 2ηλL ≤ ℓ condition

In this section, we discuss the assumption 2ηλL ≤ ℓ made in Proposition 3, implying that the lower
and the upper effective gradient norm bounds must not differ too much. First of all, we would like to
remark that this condition is generally fulfilled in practice for small ηλ product even when the bounds
ℓ and L are taken globally, i.e., they satisfy ℓ ≤ g̃t ≤ L, ∀t. We also note that Wan et al. [26] made a
very close assumption in their main Theorem 1 (Assumption 3). However, even if it is not fulfilled,
our generalized parameters norm equilibrium result is still valid to some extent.

First, consider the case when 0 < ℓ < 2ηλL. Then, according to the general β-undetermined
sequences theory presented in Appendix A.4, the lower bound κℓ ≤ ρ2t remains valid for large t.
If ρ2t falls below 2ηλL, it can potentially “hop” over the upper bound of the interval κL. However,
due to g̃t ≤ L and property (13e) of β-determined sequences (see Appendix A.4.1) ρ2t is still upper
bounded by the value (1− ηλ)2κℓ+ η2L2

κℓ . Hence, globally, the parameters norm stays bounded even
when 2ηλL ≤ ℓ does not hold. Furthermore, according to the second statement of Corollary 2, once
ρ2t exceeds the κL value, it immediately starts converging to it again. So the same [κℓ, κL] interval
of attraction is still preserved.

Now, we argue that setting ℓ = 0, i.e., bounding the effective gradient norm from below with zero, is
vacuous.5 Again, we remark that the assumption about separating ℓ from zero was made, e.g., by Wan
et al. [26]. Arora et al. [1] show that effective gradients (in case of learning without WD) decay
sublinearly, which by itself means that in finite time horizon, it is always reasonable to set ℓ > 0.
Moreover, as we show, parameters norm evolves linearly, i.e., faster than the effective gradients;
therefore, it must quickly acclimate to local ℓ, L changes and hence respect the boundaries from
Proposition 3. But even based on general results on gradient-based optimization, we anticipate that,
in general, ℓ should not approach zero. We can rewrite the expression for ρ2t (3) in the following way:

ρ2t = (1− ηλ)2ρ2t−1 + η2g2t−1 = · · · = (1− ηλ)2tρ20 + η2
t−1∑
t′=0

(1− ηλ)2(t−t′−1)g2t′ = (15)

= (1− ηλ)2tρ20 + η2
1− (1− ηλ)2

1− (1− ηλ)2t
ḡ2t ≈ {t ≫ 1} ≈ (1− ηλ)2tρ20 + Cḡ2t , (16)

where ḡt is an exponential moving average of the gradient norm and C = 2η3λ + O
(
(ηλ)2

)
is

constant. It is well-known that for first-ordered methods, the lower gradient norm bound generally
decays sublinearly [4]. Note that the cosine between adjacent iterates (8) depends only on the
g2t /ρ

2
t ratio. For large t, this ratio, due to (16), is determined only by the g2t /ḡ

2
t ratio since the first

term decays linearly, i.e., faster than g2t . It is reasonable to conjecture that gt oscillates around its
mean value ḡt hence hindering stabilization of the training dynamics which, in turn, implies that the
effective gradient does not vanish. Thus, implying ℓ > 0 seems to be a reasonable assumption.

5Excluding, perhaps, some exceptional degenerate cases when the function and hyperparameters are chosen
so that the dynamics converge to a stationary point in a finite number of steps.

18

0 20k 40k 60k 80k 100k
GD steps

10−4

10−2

100

Train loss

0 20k 40k 60k 80k 100k
GD steps

40

50

60

70

80

90
Test error, %

0 20k 40k 60k 80k 100k
GD steps

101

102

SI weight norm ρt

10−4 10−3 10−2 10−1

effective learning rate ̃ηt

10−2

100

102

ef
f.

gr
ad

ie
nt

 n
or

m

̃
g t

Phase diagram

Weight
decay
λ= 0.0001

Learning
rate η

5.0
1.0
0.1

starting pointsstarting points

Figure 10: Periodic behavior of scale-invariant ConvNet on CIFAR-10 trained using full-batch GD
with the weight decay of 0.0001 and different learning rates.

B Experimental details

Datasets and architectures. We conduct experiments with two convolutional architectures, namely
a three-layer convolutional neural network (ConvNet) and ResNet-18, on CIFAR-10 [15] and CIFAR-
100 [16] datasets. We use the implementation of both architectures available at https://github.
com/g-benton/hessian-eff-dim. CIFAR datasets are distributed under the MIT license, and the
code is under Apache-2.0 License. To make the majority of neural network weights scale-invariant,
we insert additional BN layers according to Appendix C of Li and Arora [18]. We use the standard
PyTorch initialization for all layers. We use ResNet of standard width. For ConvNet, we use the
width factor of 32 for fully scale-invariant networks on CIFAR-10 and the width factor of 64 for all
experiments on CIFAR-100 and experiments with practical modifications on CIFAR-10.

Fully scale-invariant setup. Most of the experiments are conducted with the scale-invariant mod-
ifications of both architectures obtained using the approach of Li and Arora [18]. In addition to
inserting extra BN layers, we fix all non-scale-invariant weights, i.e., BN parameters and the last
layer’s parameters. For BN layers, we use zero mean and unit variance. We fix the bias vector at
random initialization and the weight matrix at rescaled random initialization for the last layer. In
most of the experiments, we rescale the last layer’s weight matrix so that its norm equals 10, but we
discuss other scales in Appendix G.

Training. We train all networks using SGD with a batch size of 128 and various weight decays and
learning rates. In the experiments with momentum, we use the momentum of 0.9. In the experiments
with data augmentation, we use standard CIFAR augmentations: random crop (size: 32, padding: 4)
and random horizontal flip. All models were trained on NVidia Tesla V100 or NVidia GeForce GTX
1080. Obtaining the results reported in the paper took approximately 1K GPU hours.

Full-batch GD experiments. Full-batch GD training experiments are conducted on the 4.5K-sized
random subset of the train dataset. The test set in this experiment consists of 5K randomly chosen
test objects.

Logging. In all experiments except Figures 4, 11, and 13 we log all metrics after each epoch,
computing train loss and its gradients by making an additional pass through the training dataset. We
log all metrics after each (S)GD step in three specified figures, computing train loss and its gradients
over a batch.

C Full-batch gradient descent

In the main paper, we presented the periodic behavior results for SGD. In this section, we show
that the periodic behavior is observed for full-batch GD training and hence is not a consequence of
stochastic training. We replicate all experiments of Section 4: Figure 10 visualizes training dynamics
for different learning rate values, Figure 11 presents a closer look at one period of training (see also
Figure 13 for the plots of cosines between adjacent steps), and Figure 12 replicates the ablation
experiment with fixing the weight norm. All the effects discussed in the main text for the SGD case
hold for the GD case. We note that phase B is longer for full-batch GD training because the absence
of stochasticity allows stable training at lower train loss, and destabilization occurs later.

19

https://github.com/g-benton/hessian-eff-dim
https://github.com/g-benton/hessian-eff-dim

Figure 11: A closer look at one training period for scale-invariant ConvNet on CIFAR-10 trained
using full-batch GD with weight decay of 0.001 and the learning rate of 0.5. Three phases of the
training period are highlighted.

Fix weight norm at initialization Fix weight norm before destabilization

0 20k 40k 60k 80k 100k
GD steps

10−4

10−2

100

Train loss

Fix SI weight norm / effective learning rate at:
5.8 / 3e-2 10.0 / 1e-2 18.3 / 3e-3

0 20k 40k 60k 80k 100k
GD steps

40

60

80

Test error, %

40k 60k 80k 100k
GD steps

10−4

10−2

100

Train loss

initial
experiment

fix SI weight norm
at step 34480

fix SI weight norm
at step 34500

40k 60k 80k 100k
GD steps

40

60

80

Test error, %

Figure 12: The absence of the periodic behavior for training with the fixed weight norm. Scale-
invariant ConvNet on CIFAR-10 trained using full-batch GD with weight decay of 0.0001 and
learning rate of 1.0. Left pair: the weight norm is fixed at random initialization of different scales.
Right pair: the weight norm is fixed at some step of regular training before destabilization.

D Bounds on the effective gradient norm and δ-jumps

In Section 4, we compared cosine distance between weights at adjacent SGD steps of phase B with
theoretically derived bounds for δ-jumps from Section 5.1. In Figure 13, right pair, we present a
similar comparison for the full-batch GD case: the effect of both bounds and the cosine metric itself
growing in the second half of the phase is even more prominent for the GD case than for SGD. Below
we describe how we choose the local bounds ℓ and L on the effective gradient norm g̃t which are
used in the theoretical bounds. All bounds are visualized in Figure 13.

In both GD and SGD cases, we chose ℓ(t) and L(t) as smooth functions of t. Note that taking such
dynamical bounds does not contradict our theoretical results (see Remark 1). For the SGD case, we
chose ℓ(t) = c

t−t0
and L(t) = C

t−t0
, where t0 is the first iteration of the considered training period.

For the GD case we used the same approach, but had to take ℓ(t) = c
(t−t0)2

to better mimic the
behavior of the lower envelope of the effective gradients norm. We handpick constants 0 < c < C
and iteration tvalid separately for SGD and GD cases so that

ℓ(t) ≤ g̃t ≤ L(t) (17)

for all t ⩾ tvalid in phase B.

E Optimization of common scale-invariant functions with weight decay

In this section, we show that periodic behavior may be observed not only when training neural
networks but also during gradient decent optimization of common scale-invariant functions with
weight decay and a constant learning rate. As an example we consider a function of two variables
f(x, y) = x2

x2+y2 , which is naturally scale-invariant. The minimum value of f equals 0 and is
achieved at any point with x = 0.

20

SGD Full-batch GD

Figure 13: Effective gradient norm and cosine distance between weights at adjacent (S)GD steps,
presented along with their smoothed trends. Phase B of one period of training scale-invariant
ConvNet on CIFAR-10 is shown. Weight decay / learning rate: 0.001 / 0.01 for SGD, 0.0001 / 0.5 for
GD. δ-jump bounds are obtained using the bounds on the effective gradient norm.

No weight decay – convergence

−0.010 −0.005 0.000 0.005 0.010
x

1.000

1.002

1.004

1.006

y

GD optimization trajectory

starting point
0 25 50 75 100

optimization step t

10−5

10−4
f(xt, yt)

0 25 50 75 100
optimization step t

1.000

1.002

1.004

1.006

Weight norm ρt

9.85 × 10−1 9.95 × 10−1 100

effective learning rate ̃ηt

10−2

ef
f.

gr
ad

ie
nt

 n
or

m

̃ g t

Phase diagram

starting point

Weight decay λ = 0.01 – periodic behavior

−0.1 0.0 0.1
x

0.90

0.95

1.00

1.05

y

GD optimization trajectory

starting point
0 25 50 75 100

optimization step t

10−4

10−3

10−2

f(xt, yt)

0 25 50 75 100
optimization step t

0.95

1.00

1.05

Weight norm ρt

8.8 × 10−1 100 1.2 × 100

effective learning rate ̃ηt

10−2

10−1
ef

f.
gr

ad
ie

nt
 n

or
m

̃ g t

Phase diagram

starting point

Weight decay λ = 0.01 – phases of a single period

−0.1 0.0 0.1
x

0.90

0.95

1.00

1.05

y

GD opWiPizDWion WrDjecWory

sWDrWing poinW (W 14)

20 30 40
opWiPizDWion sWep t

10−4

10−3

10−2

f(xt, yt)

20 30 40
opWiPizDWion sWep t

0.95

1.00

1.05

WeighW norP ρt

8.8×10−1 100 1.2×100

effecWive leDrning rDWe ̃ηt

10−2

10−1

ef
f.
gr
DG
ie
nW
 n
or
P

̃ g t

3hDse GiDgrDP

sWDrWing poinW (W 14)

A

B C

Figure 14: Minimization of a simple scale-invariant function f(x, y) = x2/(x2 + y2) with and
without weight decay. For all experiments the initial point (x0, y0) = (0.01, 1.0), learning rate η = 1.

If we minimize f without weight decay, the optimization procedure converges to a stationary point
since its effective learning rate monotonically decays, as can be seen in the top row of Figure 14.
This behavior accords with the results of Arora et al. [1].

However, with weight decay we can observe the same periodicity of the optimization dynamics as
demonstrated by experiments with neural networks (see the middle row of Figure 14). Moreover, in
this case, the optimization experiences the same three phases in the period (see the bottom row of
Figure 14, which is analogous to Figure 4 in the main text).

This confirms that the periodicity of optimization dynamics is a general property of scale-invariant
functions optimized with weight decay and is not specific to neural networks.

21

Fixed product η × λ = 1e− 3

0 200 400 600 800 1000
epoch

10−4

10−3

10−2

10−1

100

101
Train loss

0 200 400 600 800 1000
epoch

20

30

40

50

60

Test error, %

0 200 400 600 800 1000
epoch

100

101

102
SI weight norm ρt

10−5 10−4 10−3

effective learning rate ̃ηt

10−1

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram
Fixed product
η× λ= 1e− 3

Learning
rate η

1.0
0.1
0.01
0.001

starting pointsstarting points

Fixed product η × λ = 1e− 4

0 200 400 600 800 1000
epoch

10−4

10−3

10−2

10−1

100

101
Train loss

0 200 400 600 800 1000
epoch

20

30

40

50

60

Test error, %

0 200 400 600 800 1000
epoch

100

101

102
SI weight norm ρt

10−5 10−4 10−3

effective learning rate ̃ηt

10−1

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram
Fixed product
η× λ= 1e− 4

Learning
rate η

1.0
0.1
0.01
0.001

starting pointsstarting points

Fixed product η × λ = 1e− 5

0 200 400 600 800 1000
epoch

10−4

10−3

10−2

10−1

100

101
Train loss

0 200 400 600 800 1000
epoch

20

30

40

50

60

Test error, %

0 200 400 600 800 1000
epoch

100

101

102
SI weight norm ρt

10−5 10−4 10−3

effective learning rate ̃ηt

10−1

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram
Fixed product
η× λ= 1e− 5

Learning
rate η

1.0
0.1
0.01
0.001

starting pointsstarting points

Fixed product η × λ = 1e− 6

0 200 400 600 800 1000
epoch

10−4

10−3

10−2

10−1

100

101
Train loss

0 200 400 600 800 1000
epoch

20

30

40

50

60

Test error, %

0 200 400 600 800 1000
epoch

100

101

102
SI weight norm ρt

10−5 10−4 10−3

effective learning rate ̃ηt

10−1

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram
Fixed product
η× λ= 1e− 6

Learning
rate η

1.0
0.1
0.01
0.001

starting pointsstarting points

Figure 15: Training dynamics of scale-invariant ConvNet on CIFAR-10 trained with fixed learning
rate – weight decay products. Axes limits are the same in each column for convenient comparison.

Fixed product η × λ = 1e− 4 Fixed product η × λ = 1e− 5

0 200 400 600 800 1000
epoch

10−5

10−4

10−3

Effective learning rate ̃ηt

Learning rate η : 1.0 0.1 0.01 0.001

0 200 400 600 800 1000
epoch

10−1

100

101

102

Mean eff. gradient norm ̃gt

0 200 400 600 800 1000
epoch

10−5

10−4

10−3

Effective learning rate ̃ηt

Learning rate η : 1.0 0.1 0.01 0.001

0 200 400 600 800 1000
epoch

10−1

100

101

102

Mean eff. gradient norm ̃gt

Figure 16: A closer look at dynamics of the effective learning rate and mean effective gradient norm
of scale-invariant ConvNet on CIFAR-10 trained with two different fixed learning rate – weight decay
products. Axes limits are the same for corresponding metrics for convenient comparison.

F Influence of learning rate and weight decay on the periodic behavior of
scale-invariant networks

F.1 Fixed learning rate – weight decay product

In this section, we discuss the effect of the learning rate – weight decay product on the training process.
Figure 15 visualizes training progress for different values of the product (plot rows) and variable ratio
of two specified hyperparameters (different lines in each row). We observe that training converges
to similar consistent behavior with the fixed learning rate – weight decay product. Specifically, the
frequency of the periods, the minimal achieved train loss and test error, and the ranges of the effective

22

ConvNet on CIFAR-100

0 200 400 600 800 1000
epoch

10−2

10−1

100

Train loss

0 200 400 600 800 1000
epoch

50

60

70

80

90

Test error, %

0 200 400 600 800 1000
epoch

101

2 × 101

3 × 101
4 × 101

SI weight norm ρt

10−5 10−4 10−3

effective learning rate ̃ηt

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Weight
decay
λ= 0.001

Learning
rate η

1.0
0.03
0.01
0.001

starting pointsstarting points

ResNet-18 on CIFAR-10

0 200 400 600 800 1000
epoch

10−5

10−3

10−1

Train loss

0 200 400 600 800 1000
epoch

20

30

40

50

60

Test error, %

0 200 400 600 800 1000
epoch

101

SI weight norm ρt

10−6 10−5 10−4 10−3 10−2

effective learning rate ̃ηt

10−1

101

103

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Weight
decay
λ= 0.001

Learning
rate η

0.3
0.03
0.01
0.001

starting pointsstarting points

ResNet-18 on CIFAR-100

0 200 400 600 800 1000
epoch

10−3

10−2

10−1

100

Train loss

0 200 400 600 800 1000
epoch

40

60

80

100
Test error, %

0 200 400 600 800 1000
epoch

101

6 × 100

2 × 101

3 × 101
4 × 101

SI weight norm ρt

10−6 10−5 10−4

effective learning rate ̃ηt

100

101

102

103

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Weight
decay
λ= 0.001

Learning
rate η

0.3
0.03
0.01
0.001

starting pointsstarting points

Figure 17: Training dynamics of scale-invariant networks trained with fixed weight decay and
different learning rates.

gradient norm and the effective learning rate are similar across different lines in one row. The
last-mentioned ranges are visualized in more detail for selected setups in Figure 16. The described
empirical results agree with Remark 3 in Appendix A.6. Mainly, the remark states that with a fixed
learning rate – weight decay product and bounded effective gradient norm, training converges to a
bounded effective learning rate, and the effective learning rate bounds depend only on the effective
gradient norm bounds. In practice, we observe that the last-mentioned bounds are similar across
different ratios of weight decay and learning rate (see Figure 16). Thus, the effective learning rate
bounds are also similar across different ratios (see Figure 16).

However, although the characteristics of the consistent periodic behavior are similar across different
ratios of the learning rate and the weight decay when their product is fixed, the length of the warm-up
stage may vary. The reason is that we use the standard initialization for all networks, i.e., the same
initial weight norm for all combinations of hyperparameters. At the same time, given different ratios
of weight decay and learning rate, the weight norm converges to different ranges (see Figure 15 and
Proposition 3). The final weight norm may substantially differ from the initial weight norm, and the
larger the difference, the longer the warm-up stage.

We note, however, that, according to Proposition 4 in Appendix A.1, if we fixed the direction of
initialization (i.e., the point on the unit sphere) and then appropriately rescaled it (proportionally to
the square root of the learning rate), the training dynamics would be exactly the same for different
ratios of learning rate and weight decay, given their product is unchanged, including the warm-up
stage.

F.2 Fixed weight decay and different learning rates

Figure 17 supplements Figure 3 and shows how the learning rate affects the periodic behavior for
different dataset-architecture pairs when the weight decay is fixed. For CIFAR-100, we had to
increase the ConvNet’s width factor up to 64 and the last layer’s weight norm up to 20 to ensure the
network is able to learn the train dataset and achieve low train loss. The general picture is the same
as described in Section 6: the periodic behavior is absent for too low or too high learning rates and
present for a range of learning rate values, which also allow lower test error. Interestingly, for ResNet
on CIFAR-10 with the learning rate of 0.03, phase A is noisy and quite long because of the relatively

23

ConvNet on CIFAR-10

0 200 400 600 800 1000
epoch

10−3

10−1

101
Train loss

0 200 400 600 800 1000
epoch

20

30

40

50

60

Test error, %

0 200 400 600 800 1000
epoch

101

2 × 100

3 × 100
4 × 100

6 × 100

SI weight norm ρt

10−4 10−3

effective learning rate ̃ηt

10−1

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Learning
rate
η= 0.01

Weight
decay λ

0.1
0.003
0.001
0.0001

starting pointsstarting points

ConvNet on CIFAR-100

0 200 400 600 800 1000
epoch

10−2

10−1

100

Train loss

0 200 400 600 800 1000
epoch

50

60

70

80

90

Test error, %

0 200 400 600 800 1000
epoch

101

4 × 100

6 × 100

2 × 101

SI weight norm ρt

10−4

effective learning rate ̃ηt

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Learning
rate
η= 0.01

Weight
decay λ

0.1
0.003
0.001
0.0001

starting pointsstarting points

ResNet-18 on CIFAR-10

0 200 400 600 800 1000
epoch

10−5

10−3

10−1

Train loss

0 200 400 600 800 1000
epoch

20

30

40

50

60

Test error, %

0 200 400 600 800 1000
epoch

100

101

SI weight norm ρt

10−5 10−4 10−3 10−2

effective learning rate ̃ηt

10−1

101

103

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Learning
rate
η= 0.01

Weight
decay λ

0.03
0.003
0.001
0.0001

starting pointsstarting points

ResNet-18 on CIFAR-100

0 200 400 600 800 1000
epoch

10−3

10−2

10−1

100

Train loss

0 200 400 600 800 1000
epoch

40

60

80

Test error, %

0 200 400 600 800 1000
epoch

101

SI weight norm ρt

10−5 10−4

effective learning rate ̃ηt

100

101

102

103

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Learning
rate
η= 0.01

Weight
decay λ

0.03
0.003
0.001
0.0001

starting pointsstarting points

Figure 18: Training dynamics of scale-invariant networks trained with the fixed learning rate and
different weight decays.

high learning rate, but training still proceeds to phase B, while for larger learning rate, training gets
stuck at high train loss.

F.3 Fixed learning rate and different weight decays

Figure 18 shows the periodic behavior when the learning rate is fixed, and the weight decay is varied
for different dataset-architecture pairs. The general observations are the same as when the learning
rate is varied with the fixed weight decay. Notably, the periodic behavior is absent for too low or
too high weight decay coefficients and present for a range of weight decay values, which also allow
reaching lower test error. Further, using a larger weight decay increases the frequency of the periods.

G Influence of the last layer weight matrix norm

In scale-invariant neural networks, we fix the weights of the last layer. Moreover, we renormalize the
weight matrix to the specified weight norm, which becomes a new hyperparameter. This hyperpa-
rameter determines the level of the neural network’s confidence in its predictions, and, in the main
text, we set it to a large value (10) to achieve high confidence and to make our setup closer to the
conventional neural network training (when all parameters are trained). In this section, we discuss
the influence of the specified hyperparameter on periodic behavior.

Figure 19 shows results for ConvNet on CIFAR-10 and ResNet on CIFAR-100 and different values
of the last layer’s weight norm. The lowest presented last layer’s weight norms are close to the norms
obtained at random initialization without rescaling. Using low last layer’s weight norm leads to
low network’s confidence which prohibits reaching low train loss and may result in the absence of

24

ConvNet on CIFAR-10 (η = 0.03, λ = 0.001)

0 200 400 600 800 1000
epoch

10−3

10−2

10−1

100

Train loss

0 200 400 600 800 1000
epoch

20

30

40

50

60

Test error, %

0 200 400 600 800 1000
epoch

101

3 × 100

4 × 100

6 × 100

SI weight norm ρt

10−3

effective learning rate ̃ηt

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram

Norm of
the last layer
weights:

2
5
10

starting pointsstarting points

ResNet-18 on CIFAR-100 (η = 0.03, λ = 0.001)

0 200 400 600 800 1000
epoch

10−3

10−2

10−1

100

Train loss

0 200 400 600 800 1000
epoch

40

60

80

100
Test error, %

0 200 400 600 800 1000
epoch

101

6 × 100

2 × 101

3 × 101
4 × 101

SI weight norm ρt

10−4 10−3

effective learning rate ̃ηt

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram

Norm of
the last layer
weights:

5
10
20

starting pointsstarting points

Figure 19: Influence of the last layer weight matrix norm on the periodic behavior.

ConvNet on CIFAR-100 ResNet-18 on CIFAR-10

400 600 800 1000
epoch

40

45

50

Ensemble test error, %

Initial
exp.

Ensemble/cos with
anchor checkpoint

Ensemble/cos with
independent network

anchor checkpointanchor checkpoint
400 600 800 1000

epoch

0.00

0.25

0.50

0.75

1.00
Cosine sim. between checkpoints

400 600 800 1000
epoch

12

14

16

18
Ensemble test error, %

Initial
exp.

Ensemble/cos with
anchor checkpoint

Ensemble/cos with
independent network

anchor checkpointanchor checkpoint
400 600 800 1000

epoch

0.00

0.25

0.50

0.75

1.00
Cosine sim. between checkpoints

Figure 20: Similarity in the weight space (cosine sim.) and in the functional space (ensemble test
error) for different checkpoints of training scale-invariant ConvNet on CIFAR-100 (left pair) and
ResNet on CIFAR-10 (right pair) using SGD with weight decay of 0.001 and learning rate of 0.03.

the periodic behavior. In the main text, we use larger values of the last layer’s weight norm, which
circumvents this issue.

H Minima achieved at different training periods

Figure 20 supplements Figure 6 for analyzing the weight/functional similarity of optima achieved
at different training periods. The general observations are the same as in Section 6. Interestingly,
the ensemble of two models spawned by optima from different periods can reach the error of two
independent networks ensemble for both architectures on the CIFAR-10 dataset and does not reach
one on the CIFAR-100 dataset (in given epochs budget).

I Practical modifications

Figure 21 supplements Figure 7 and shows the presence of the periodic behavior in a more practical
setting, i.e., with trainable non-scale-invariant parameters, momentum, and data augmentation, for
ConvNet on CIFAR-100 and ResNet on CIFAR-10 and CIFAR-100. For a more detailed discussion,
see Section 7 in the main text.

We also consider training neural networks with a more sophisticated optimizer, Adam [13], and show
the presence of the periodic behavior for ConvNet on CIFAR-10 in Figure 23.

In order to show that our results extrapolate to other normalization approaches besides batch normal-
ization, we train ConvNet on CIFAR-10 using layer normalization [2] and instance normalization [24]
and demonstrate the presence of the periodic behavior in this setting in Figure 22.

25

ConvNet on CIFAR-100

0 200 400 600 800 1000
epoch

10−1

100

Train loss

Weight decay 0.0001, learning rate:
0.03 0.01 0.003

0 200 400 600 800 1000
epoch

30

35

40

45
Test error, %

ResNet-18 on CIFAR-10 ResNet-18 on CIFAR-100

0 200 400 600 800 1000
epoch

10−2

10−1

100

Train loss

Weight decay 0.0001, learning rate:
0.01 0.003 0.001

0 200 400 600 800 1000
epoch

6

8

10

12

14

Test error, %

0 200 400 600 800 1000
epoch

10−1

100

Train loss

Weight decay 0.0001, learning rate:
0.03 0.01 0.003 0.001

0 200 400 600 800 1000
epoch

30

40

50
Test error, %

Figure 21: Training dynamics of networks trained with more practical modifications, i.e., with
learnable non-scale-invariant parameters, momentum, and augmentation (all modifications together).

Layer Normalization

0 200 400 600 800 1000
epoch

10−3

10−2

10−1

100

101
Train loss

0 200 400 600 800 1000
epoch

20

40

60

80

Test error, %

0 200 400 600 800 1000
epoch

101

102

SI weight norm ρt

10−5 10−4 10−3

effective learning rate ̃ηt

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Weight
decay
λ= 0.001

Learning
rate η

1.0
0.03
0.01
0.001

starting pointsstarting points

Instance Normalization

0 200 400 600 800 1000
epoch

10−3

10−2

10−1

100

Train loss

0 200 400 600 800 1000
epoch

20

40

60

80

Test error, %

0 200 400 600 800 1000
epoch

101

SI weight norm ρt

10−5 10−4 10−3

effective learning rate ̃ηt

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Weight
decay
λ= 0.001

Learning
rate η

1.0
0.03
0.01
0.001

starting pointsstarting points

Figure 22: Training dynamics of scale-invariant ConvNet with other normalization approaches on
CIFAR-10.

0 100 200 300
epoch

10−3

10−2

10−1

100

Train loss

0 100 200 300
epoch

20

30

40

Test error, %

0 100 200 300
epoch

101

2 × 101

3 × 101
4 × 101

6 × 101

SI weight norm ρt

10−6

effective learning rate ̃ηt

100

101

102

m
ea

n
ef

f.
gr

ad
ie

nt
 n

or
m

̃

g t Phase diagram Weight
decay
λ= 0.0001

Learning
rate η

0.003
0.001
0.0003
3e-05

starting pointsstarting points

Figure 23: Training dynamics of scale-invariant ConvNet on CIFAR-10 trained using Adam.

26

J Comparison with previous works

In this section, we compare our experimental setup with that of the prior art and point out the main
factors for why previous experiments mostly do not show periodic behavior.

As we stated in Section 7, periodic behavior is not usually observed when training normalized neural
networks due to a relatively small epochs budget and usage of learning rate schedules. Moreover,
some hyperparameters settings can make periods too slow or even unreachable, which both hinder
observation of the periodic behavior in practice (see, e.g., the smallest and the highest learning rate
curves in Figure 3). Finally, the use of data augmentation and/or models that are too simple to learn a
given dataset does not allow even the first period to be completed within a reasonable time frame.
These are the key reasons periodic behavior was mainly not reported in the literature previously.
Below we discuss the particular aspects of several most related works.

One of the works closest to ours, Li et al. [19], discovers the unstable behavior of full-batch GD
training of scale-invariant networks and at the same time reports convergence to a constant equilibrium
when training with SGD. We suppose that the experiments of Li et al. [19] with full-batch GD depict
exactly our periodic behavior. Speaking of SGD experiments, we suspect that, despite a large epochs
budget, Li et al. [19] did not encounter periodic behavior in most of their experiments due to data
augmentation, different hyperparameters settings, and learning rate schedules. In other words, they
mainly observed a prolonged phase A in their experiments without reaching the end of even the first
period, which may seem like convergence to a stable equilibrium.

Wan et al. [26], who also study the convergence of scale-invariant parameters dynamics to the
equilibrium (which, however, is now dynamical, i.e., depends on the behavior of effective gradients,
in par with our work), did not find periods in their experiments as well. This can also be attributed to
data augmentation and learning rate schedules but most importantly to short training, which does
not allow finishing phase A of the first period, as seen by the increasing effective gradients norm
throughout training in Figure 2 therein.

As mentioned in the main text, Li et al. [17] discovered that training weight-normalized neural
networks with improperly selected weight decay may become unstable and even result in training
failure since the numerical gradient updates are beyond the representation of float. This is the extreme
case of destabilization in phase C when scale-invariant parameters approach the origin too close and
the gradients blow up so that training is already unable to recover due to numerical issues. In our
experiments, such situations did not occur, however, we hypothesize that they can be encountered
when training very large networks equipped with both weight normalization and feature normalization,
which may amplify the destabilization effect of approaching the origin. Other experiments of Li
et al. [17] did not reveal the periodic behavior for the same reasons as above: data augmentation,
insufficient training duration, and learning rate schedules.

27

	Theoretical results
	Invariance to hyperparameters rescaling
	Derivations
	Proof of Proposition 1
	On -undetermined recurrent sequences
	-determined sequences
	-undetermined sequences convergence bounds

	Proof of Proposition 2
	Proof of Proposition 3
	Discussion on 2 L condition

	Experimental details
	Full-batch gradient descent
	Bounds on the effective gradient norm and -jumps
	Optimization of common scale-invariant functions with weight decay
	Influence of learning rate and weight decay on the periodic behavior of scale-invariant networks
	Fixed learning rate – weight decay product
	Fixed weight decay and different learning rates
	Fixed learning rate and different weight decays

	Influence of the last layer weight matrix norm
	Minima achieved at different training periods
	Practical modifications
	Comparison with previous works

