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A Table of Notations

We collect in Table A.1 the notations of performance measures used in this paper.

X input space Y output space Z sample space

S training dataset n sample size zi i-th training example

f(w; z, z′) loss function FS training risk F population risk

w∗S arg minw FS(w) w∗ arg minw F (w) A(S) output of algorithm A to S

L smoothness parameter G Lipschitz parameter σ strong convexity parameter

ηt step size T largest iteration number it randomly selected index

b supz,z′∈Z f(0; z, z′) b′ supz,z′∈Z ‖∇f(0; z, z′)‖2 ρ probability measure
Table A.1: Table of Notations.

B Proof of Theorem 1

In this section, we prove Theorem 1 on the connection between on-average stability and generalization
bounds, following the arguments in [15]. To this aim, we require the following lemma on the self-
bounding property of smooth loss functions.

Lemma B.1 ([20]). Assume for all z, z′, the function w 7→ f(w; z, z′) is nonnegative and L-smooth.
Then ‖∇f(w; z, z′)‖22 ≤ 2Lf(w; z, z′).

Proof of Theorem 1. Part (a) was established in [16]. We only consider Part (b). According to the
symmetry between zi, zj and z′i, z

′
j , we know

E[F (A(S))− FS(A(S))] =
1

n(n− 1)

∑
i,j∈[n]:i 6=j

E
[
F (A(Si,j))− FS(A(S))

]
=

1

n(n− 1)

∑
i,j∈[n]:i 6=j

E
[
f(A(Si,j); zi, zj)− f(A(S); zi, zj)

]
, (B.1)
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where we have used Ezi,zj
[
f(A(Si,j); zi, zj)

]
= F (A(Si,j)) since zi, zj are independent of A(Si,j).

By the L-smoothness of f , we know

f(A(Si,j); zi, zj)− f(A(S); zi, zj) ≤ 〈A(Si,j)−A(S),∇f(A(S); zi, zj)〉+
L

2
‖A(Si,j)−A(S)‖22

≤ ‖A(Si,j)−A(S)‖2‖∇f(A(S); zi, zj)‖2 +
L

2
‖A(Si,j)−A(S)‖22

≤ γ

2
‖A(Si,j)−A(S)‖22 +

1

2γ
‖∇f(A(S); zi, zj)‖22 +

L

2
‖A(Si,j)−A(S)‖22

≤ L+ γ

2
‖A(Si,j)−A(S)‖22 +

L

γ
f(A(S); zi, zj)

≤ (L+ γ)‖A(Si,j)−A(Si)‖22 + (L+ γ)‖A(Si)−A(S)‖22 +
L

γ
f(A(S); zi, zj),

where we have used Lemma B.1 in the last second inequality and the following inequality in the last
step

‖A(Si,j)−A(S)‖22 ≤ 2‖A(Si,j)−A(Si)‖22 + 2‖A(Si)−A(S)‖22.
Since E[‖A(Si,j)−A(Si)‖22] = E[‖A(Sj)−A(S)‖22], we know

E
[
f(A(Si,j); zi, zj)− f(A(S); zi, zj)

]
≤ (L+ γ)E[‖A(Si)−A(S)‖22

]
+ (L+ γ)E[‖A(Sj)−A(S)‖22

]
+
L

γ
E[f(A(S); zi, zj)].

We can plug the above inequality back into (B.1), and get

E[F (A(S))− FS(A(S))] ≤ 1

n(n− 1)

∑
i,j∈[n]:i6=j

(
2(L+ γ)E[‖A(Si)−A(S)‖22

]
+
L

γ
E[f(A(S); zi, zj)]

)

=
2(L+ γ)

n

n∑
i=1

E[‖A(Si)−A(S)‖22
]

+
L

γ
E[FS(A(S))].

The proof is complete.

C Proof of Theorem 2

In this section, we prove Theorem 2. To this aim, we first introduce some lemmas. The following
lemma provides moment bounds for a summation of weakly dependent and mean-zero random
functions with bounded increments under a change of any single coordinate [1, 10]. We denote by
S\{zi} the set {z1, . . . , zi−1, zi+1, . . . , zn}. The Lp-norm of a real-valued random variable Z is

denoted by ‖Z‖p :=
(
E[|Z|p]

) 1
p , p ≥ 1.

Lemma C.1 ([1]). Let S = {z1, . . . , zn} be a set of independent random variables each taking
values in Z and M ≥ 0. Let h1, . . . , hn be some functions hi : Zn 7→ R such that the following
holds for any i ∈ [n]

1.
∣∣ES\{zi}[hi(S)]

∣∣ ≤M almost surely (a.s.),

2. Ezi
[
hi(S)

]
= 0 a.s.,

3. for any j ∈ [n] with j 6= i, and z′′j ∈ Z∣∣hi(S)− hi(z1, . . . , zj−1, z
′′
j , zj+1, . . . , zn)

∣∣ ≤ β. (C.1)

Then, for any p ≥ 2 ∥∥∥ n∑
i=1

hi(S)
∥∥∥
p
≤ 12

√
2pnβdlog2 ne+ 4M

√
pn.

The bounds on moments of random variables can be used to establish concentration inequalities, as
shown in the following lemma [1, 10].
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Lemma C.2. Let a, b ∈ R+ and δ ∈ (0, 1/e). Let Z be a random variable with ‖Z‖p ≤
√
pa+ pb

for any p ≥ 2. Then with probability at least 1− δ

|Z| ≤ e
(
a
√

log(e/δ) + b log(e/δ)
)
.

The following lemma relates F (A(S) − FS(A(S)) − E[F (A(S))] to ES′
[
f(A(S′); zi, zj)

]
. A

notable property is that A(S′) is independent of S and therefore can be considered as a fixed point,
which simplifies the application of concentration inequalities. Lemma C.3 is motivated by a recent
work in pointwise learning [10].
Lemma C.3. Let A be an ε-uniformly stable deterministic algorithm. Let S = {z1, . . . , zn}, S′ =
{z′1, . . . , z′n} be independent datasets. Then for any p ≥ 2 there holds∥∥∥F (A(S)−FS(A(S))−E[F (A(S))]+

1

n(n− 1)

∑
i 6=j

ES′
[
f(A(S′); zi, zj)

]∥∥∥
p
≤ 4ε+96

√
2pεdlog2 n/2e.

Proof. Let p ≥ 2 be any number. It was shown that [16]∣∣∣EZ,Z̃[f(A(S);Z, Z̃)
]
− 1

n(n− 1)

∑
i6=j

f(A(S); zi, zj)−
1

n(n− 1)

∑
i 6=j

gi,j(S)
∣∣∣ ≤ 4ε, (C.2)

where we introduce

gi,j(S) = Ez′i,z′j
[
EZ,Z̃

[
f(A(Si,j);Z, Z̃)

]
− f(A(Si,j); zi, zj)

]
, ∀i, j ∈ [n]

and Si,j is defined in Eq. (3.4). For any i 6= j ∈ [n], define

hi,j(S) := gi,j(S)− ES\{zi∪zj}gi,j(S),

from which and (C.2) we get the following inequality for any p ≥ 1∥∥∥F (A(S)− FS(A(S))− 1

n(n− 1)

∑
i 6=j

ES\{zi∪zj}gi,j(S)
∥∥∥
p
≤ 4ε+

1

n(n− 1)

∥∥∥∑
i 6=j

hi,j(S)
∥∥∥
p
.

(C.3)
We have the following representation of U-statistic [3]

1

n(n− 1)

∑
i 6=j

hi,j(S) =
1

n!

∑
π

1

bn2 c

bn2 c∑
i=1

hπ(i),π(i+bn2 c)(S),

where the sum is taken over all permutations π of {1, . . . , n}. It then follows from Jensen’s inequality
that

1

n(n− 1)

∥∥∑
i 6=j

hi,j(S)
∥∥
p
≤ 1

n!

∑
π

1

bn2 c

∥∥∥ bn2 c∑
i=1

hπ(i),π(i+bn2 c)(S)
∥∥∥
p

=
1

bn2 c

∥∥∥ bn2 c∑
i=1

hi,i+bn2 c(S)
∥∥∥
p
,

(C.4)
where the last identity is due to the symmetry of permutations (note ‖ · ‖p involves an expectation). It
is clear that

ES\{zi∪zi+bn
2
c}hi,i+bn2 c(S) = ES\{zi∪zi+bn

2
c}

[
gi,i+bn2 c(S)− ES\{zi∪zi+bn

2
c}gi,i+bn2 c(S)

]
= 0,

(C.5)
where ES\{zi∪zi+bn

2
c} denotes the expectation w.r.t. S\{zi ∪ zi+bn2 c}. Furthermore, there holds

Ezi∪zi+bn
2
c [gi,i+bn2 c(S)]

= Ezi∪zi+bn
2
cEz′i,z′i+bn

2
c

[
EZ,Z̃

[
f(A(Si,i+bn2 c);Z, Z̃)

]
− f(A(Si,i+bn2 c); zi, zi+b

n
2 c)
]

= 0.

(C.6)

For any k ∈ [bn2 c] with k 6= i and z′′k , z
′′
k+bn2 c

∈ Z , it is clear from the uniform stability of A that∣∣∣Ez′i,z′i+bn
2
c
EZ,Z̃

[
f(A(Si,i+bn2 c);Z, Z̃)

]
− Ez′i,z′i+bn

2
c
EZ,Z̃

[
f(A(S

(k,k+bn2 c)
i,i+bn2 c

);Z, Z̃)
]∣∣∣ ≤ 2ε,

3



where S(k,k+bn2 c)
i,i+bn2 c

is the set derived by replacing the k-th element of Si,i+bn2 c with z′′k and k+ bn2 c-th
element with z′′k+bn2 c

. In a similar way, one can show∣∣∣Ez′i,z′i+bn
2
c

[
f(A(Si,i+bn2 c); zi, zi+b

n
2 c)
]
− Ez′i,z′i+bn

2
c
[f(A(S

(k,k+bn2 c)
i,i+bn2 c

); zi, zi+bn2 c)
]∣∣∣ ≤ 2ε.

We can combine the above two inequalities together and get∣∣∣gi,i+bn2 c(S)− gi,i+bn2 c(S
(k,k+bn2 c))

∣∣∣ ≤ 4ε,

where S(k,k+bn2 c) is the set derived by replacing the k-th element of S with z′′k and k + bn2 c-th
element with z′′k+bn2 c

Similarly, one can show∣∣∣ES\{zi∪zi+bn
2
c}
[
gi,i+bn2 c(S)

]
− ES\{zi∪zi+bn

2
c}
[
gi,i+bn2 c(S

(k,k+bn2 c))
]∣∣∣ ≤ 4ε.

We can combine the above two inequalities together and get∣∣∣hi,i+bn2 c(S)− hi,i+bn2 c(S
(k,k+bn2 c))

∣∣∣ ≤ 8ε. (C.7)

According to (C.5), (C.6) and (C.7), we know that the conditions of Lemma C.1 hold with M =
0, n = bn2 c, β = 8ε, zi = zi ∪ zi+bn2 c and hi(S) = hi,i+bn2 c(S). Therefore, one can apply Lemma
C.1 to show that

1

bn2 c

∥∥∥ bn2 c∑
i=1

hi,i+bn2 c(S)
∥∥∥
p
≤ 96

√
2pεdlog2 n/2e.

We can plug the above inequality and (C.4) back into (C.3) and get the following inequality for any
p ≥ 2∥∥∥F (A(S)− FS(A(S))− 1

n(n− 1)

∑
i 6=j

ES\{zi∪zj}gi,j(S)
∥∥∥
p
≤ 4ε+ 96

√
2pεdlog2 n/2e. (C.8)

Furthermore, the symmetry between S and S′ implies (note ES′ [A(S′); zi, zj ] =
ES\{zi∪zj}Ez′i,z′j [f(A(Si,j); zi, zj)])

ES\{zi∪zj}[gi,j(S)] = ES\{zi∪zj}Ez′i,z′j
[
EZ,Z̃

[
f(A(Si,j);Z, Z̃)

]
− f(A(Si,j); zi, zj)

]
= E[F (A(S))]− ES′

[
f(A(S′); zi, zj)

]
.

The stated bound then follows by combining the above two inequalities together. The proof is
complete.

We require a Bernstein inequality for U-Statistic [3] (inequality A.1 on page 868) to prove Theorem
2.

Lemma C.4 (Bernstein inequality for U-Statistic). Let Z1, . . . , Zn be independent variables taking
values in Z and q : Z × Z 7→ R. Let B = supz,z̃ |q(z, z̃)| and σ2

0 be the variance of q(Z, Z̃). Then
for any δ ∈ (0, 1) with probability at least 1− δ∣∣∣ 1

n(n− 1)

∑
i,j∈[n]:i 6=j

q(Zi, Zj)− EZ,Z̃ [q(Z, Z̃)]
∣∣∣ ≤ 2B log(1/δ)

3bn/2c
+

√
2σ2

0 log(1/δ)

bn/2c
. (C.9)

Proof of Theorem 2. Let S = {z1, . . . , zn}, S′ = {z′1, . . . , z′n} be independent datasets. We have
the following error decomposition

F (A(S))− FS(A(S))− F (w∗) + FS(w∗) = ξ+

ES [F (A(S))]− F (w∗)− 1

n(n− 1)

∑
i6=j

ES′
[
f(A(S′); zi, zj)

]
+ FS(w∗),
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where

ξ = F (A(S)− FS(A(S))− ES [F (A(S))] +
1

n(n− 1)

∑
i6=j

ES′
[
f(A(S′); zi, zj)

]
.

Due to the symmetry between S and S′ we further get

F (A(S))−FS(A(S))−F (w∗)+FS(w∗) = ξ+ES′ [F (A(S′))]−F (w∗)−ES′ [FS(A(S′))]+FS(w∗)

and therefore

F (A(S))−FS(A(S))−F (w∗)+FS(w∗) = ξ+ES′
[
F (A(S′))−F (w∗)−FS(A(S′))+FS(w∗)

]
.

(C.10)
Note A(S′) is independent of S and can be considered as a fixed model if we only consider the
randomness induced from S. We now apply a concentration inequality to study the behavior of
ES′
[
F (A(S′))− F (w∗)− FS(A(S′)) + FS(w∗)]. For any z, z′, define

q(z, z′) = ES′ [f(A(S′); z, z′)]− f(w∗; z, z′).

Then it is clear

ES′
[
F (A(S′))− F (w∗)− FS(A(S′)) + FS(w∗)

]
= EZ,Z′ [q(Z,Z ′)]−

1

n(n− 1)

∑
i 6=j

q(zi, zj).

The variance of q can be bounded by

EZ,Z′ [q2(Z,Z ′)] ≤ EZ,Z′ES′
[(
f(A(S′);Z,Z ′)− f(w∗;Z,Z ′)

)2]
= EZ,Z′,S

[(
f(A(S);Z,Z ′)− f(w∗;Z,Z ′)

)2]
,

where we have used the symmetry between S and S′ as well as the Jensen’s inequality. We can apply
Lemma C.4 with the above q to show the following inequality with probability at least 1− δ/2

ES′
[
F (A(S′))− F (w∗)− FS(A(S′)) + FS(w∗)

]
≤ 2B log(2/δ)

3bn/2c
+

√
2σ2

0 log(2/δ)

bn/2c
.

Furthermore, Lemma C.3 implies that ‖ξ‖p ≤ 2pε
(
1 + 48

√
2dlog2 n/2e

)
for any p ≥ 2, from which

and Lemma C.2 we derive the following inequality with probability at least 1− δ/2

ξ ≤ 2eε
(
1 + 48

√
2dlog2 n/2e

)
log(2e/δ).

We can combine the above two inequalities and Eq. (C.10) together and derive the stated inequality
with probability at least 1− δ. The proof is complete.

D Optimization Errors

The following lemma provides the optimization error bounds of SGD for convex, strongly convex and
nonconvex problems. The optimization error analysis of SGD (Algorithm 1) for pairwise learning
is the same as that for pointwise learning. The underlying reason is that both algorithms build
an unbiased estimator (stochastic gradient) of the true gradient, and perform the update along the
negative direction of the stochastic gradient. Part (a) is standard, see, e.g., [17]. Part (b) was given in
[15]. Part (c) can be found in [7, 12]. Part (d) was given in [14]. Part (e) can be found in [9].

Lemma D.1. Let {wt}t be produced by (3.2) and w ∈ W be independent of SGD.

(a) Let w(1)
t =

(∑t
j=1 ηjwj

)
/
∑t
j=1 ηj . If FS is convex and Assumption 2 holds, then for all t ∈ N

EA[FS(w
(1)
t )]− FS(w) ≤

G2
∑t
j=1 η

2
j + ‖w‖22

2
∑t
j=1 ηj

. (D.1)
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(b) Let Assumptions 1, 3 hold. If ηt ≤ 1/(2L) and is nonincreasing, then for all t ∈ N

t∑
j=1

ηjEA[FS(wj)− FS(w)] ≤ (1/2 + Lη1)‖w‖22 + 2L

t∑
j=1

η2
jFS(w) (D.2)

and
t∑

j=1

η2
jEA[FS(wj)] ≤ η1‖w‖22 + 2

t∑
j=1

η2
jEA[FS(w)]. (D.3)

(c) Let FS be σ-strongly convex and ηt = 2/(σ(t+ 1)). Let w̄′t =
(∑t

j=1 jwj

)
/
∑t
j=1 j. If either

Assumption 3 or Assumption 2 holds, then

EA[FS(w̄′t)]− FS(w) = O
(
1/(tσ) + ‖w‖22/t2

)
. (D.4)

If Assumption 3 holds, then with probability at least 1− δ

FS(w̄′t)− FS(w) = O
(

log(1/δ)/(tσ)
)
. (D.5)

(d) Let Assumptions 3, 4 hold and ηj ≤ 1/(2L). For any δ ∈ (0, 1), the following inequality holds
with probability at least 1− δ

t∑
j=1

ηj‖∇FS(wj)‖22 = O
( t∑
j=1

η2
j + log(1/δ)

)
. (D.6)

Furthermore, the following inequality holds with probability at least 1− δ simultaneously for all
t = 1, . . . , T

‖wt+1‖2 = O
((

1 +

T∑
k=1

η2
k

) 1
2
(

1 +

t∑
k=1

ηk

) 1
2

log(1/δ)
)
. (D.7)

(e) Let Assumptions 3, 5 hold. If ηt = 2t+1
2β(t+1)2 , then

EA[FS(wt)]− inf
w

[FS(w)] = O
(
1/(tβ2)

)
. (D.8)

E Proofs on Smooth and Convex Problems

In this section, we present the proof related to stability and generalization for pairwise learning
with convex and smooth loss functions. The following lemma shows the gradient map w 7→
w − η∇f(w; z, z′) is nonexpansive, which is very useful to study the stability bounds.

Lemma E.1 ([6]). Assume for all z ∈ Z , the function w 7→ f(w; z, z′) is convex and L-smooth.
Then for all η ≤ 2/L and z, z′ ∈ Z there holds

‖w − η∇f(w; z, z′)−w′ + η∇f(w′; z, z′)‖2 ≤ ‖w −w′‖2.

Based on Lemma E.1, we can prove Theorem 3 on stability bounds.

Proof of Theorem 3. For any i ∈ [n], define Si as (3.3). Let {wt}, {w(i)
t } be produced by SGD

(Algorithm 1) w.r.t. S and Si , respectively. For any S and i ∈ [n], we denote

LS,i(w) =
∑

j∈[n]:j 6=i

(
f(w; zi, zj)+f(w; zj , zi)

)
, LSi,i(w) =

∑
j∈[n]:j 6=i

(
f(w; z′i, zj)+f(w; zj , z

′
i)
)
.

(E.1)
If it 6= i and jt 6= i, it follows from (3.2) that

‖wt+1 −w
(i)
t+1‖22 =

∥∥wt −w
(i)
t − ηt∇f(wt; zit , zjt) + ηt∇f(w

(i)
t ; zit , zjt)

∥∥2

2
≤ ‖wt −w

(i)
t ‖22,

6



where we have used Lemma E.1 in the last inequality. If it = i, it follows from (3.2) that

‖wt+1 −w
(i)
t+1‖22 =

∥∥wt −w
(i)
t − ηt∇f(wt; zi, zjt) + ηt∇f(w

(i)
t ; z′i, zjt)

∥∥2

2

≤ (1 + p)‖wt −w
(i)
t ‖22 + (1 + 1/p)η2

t ‖∇f(wt; zi, zjt)−∇f(w
(i)
t ; z′i, zjt)‖22

≤ (1 + p)‖wt −w
(i)
t ‖22 + 2(1 + 1/p)η2

t

(
‖∇f(wt; zi, zjt)‖22 + ‖∇f(w

(i)
t ; z′i, zjt)‖22

)
≤ (1 + p)‖wt −w

(i)
t ‖22 + 4L(1 + 1/p)η2

t

(
f(wt; zi, zjt) + f(w

(i)
t ; z′i, zjt)

)
,

where we have used the elementary inequality

(a+ b)2 ≤ (1 + p)a2 + (1 + 1/p)b2, ∀p > 0

and the self-bounding property (Lemma B.1). If jt = i, we can similarly show that

‖wt+1 −w
(i)
t+1‖22 ≤ (1 + p)‖wt −w

(i)
t ‖22 + 4L(1 + 1/p)η2

t

(
f(wt; zit , zi) + f(w

(i)
t ; zit , z

′
i)
)
.

Note the event it 6= i and jt 6= i happens with the probability (n−1)(n−2)
n(n−1) , and it = i, jt = j for

i 6= j happens with probability 1/(n(n− 1)). We can combine the above three cases together and
derive

Ekt [‖wt+1−w(i)
t+1‖22] ≤ (n− 1)(n− 2)

n(n− 1)
‖wt −w

(i)
t ‖22

+
1

n(n− 1)

∑
j∈[n]:j 6=i

(
(1 + p)‖wt −w

(i)
t ‖22 + 4L(1 + 1/p)η2

t

(
f(wt; zi, zj) + f(w

(i)
t ; z′i, zj)

))
+

1

n(n− 1)

∑
j∈[n]:j 6=i

(
(1 + p)‖wt −w

(i)
t ‖22 + 4L(1 + 1/p)η2

t

(
f(wt; zj , zi) + f(w

(i)
t ; zj , z

′
i)
))

=
(
1 + 2p/n

)
‖wt −w

(i)
t ‖22 +

4L(1 + 1/p)η2
t

n(n− 1)

(
LS,i(wt) + LSi,i(w

(i)
t )
)
,

where Ekt means the conditional expectation w.r.t. kt := (it, jt). It then follows that

1

n

n∑
i=1

Ekt [‖wt+1−w(i)
t+1‖22] ≤ 1

n

(
1+

2p

n

) n∑
i=1

‖wt−w(i)
t ‖22+

4L(1 + 1/p)η2
t

n2(n− 1)

n∑
i=1

(
LS,i(wt)+LSi,i(w

(i)
t )
)
.

We can take expectation over both sides and get

1

n

n∑
i=1

E[‖wt+1−w(i)
t+1‖22] ≤ 1

n

(
1+

2p

n

) n∑
i=1

E[‖wt−w(i)
t ‖22]+

8L(1 + 1/p)η2
t

n2(n− 1)

n∑
i=1

E
[
LS,i(wt)

]
,

where we have used the following identity due to the symmetry between zi and z′i

E[LSi,i(w
(i)
t )] = E

[
LS,i(wt)

]
.

According to the definition of LS,i we know
n∑
i=1

LS,i(w) =

n∑
i=1

∑
j∈[n]:j 6=i

(
f(w; zi, zj) + f(w; zj , zi)

)
= 2n(n− 1)FS(w).

We can combine the above two equations together and get

1

n

n∑
i=1

E[‖wt+1 −w
(i)
t+1‖22] ≤ 1

n

(
1 +

2p

n

) n∑
i=1

E[‖wt −w
(i)
t ‖22] +

16L(1 + 1/p)η2
t

n
E
[
FS(wt)

]
.

We can apply the above inequality recursively and get

1

n

n∑
i=1

E[‖wt+1 −w
(i)
t+1‖22] ≤ 16L(1 + 1/p)

n

t∑
j=1

(
1 +

2p

n

)t−j
η2
jE[FS(wj)].
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We can choose p = n/(2t) in the above inequality and note

(1 +
2p

n

)t−j
≤ (1 + 1/t)t ≤ e.

It then follows that

1

n

n∑
i=1

E[‖wt+1 −w
(i)
t+1‖22] ≤ 16L(1 + 2t/n)e

n

t∑
j=1

η2
jE[FS(wj)].

The proof is complete.

We now use the above stability bounds to prove generalization bounds in Theorem 4.

Proof of Theorem 4. We can plug the on-average argument stability bounds in Theorem 3 into
Theorem 1 with A(S) = wt and get

E[F (wt)] ≤
32L(L+ γ)(1 + 2t/n)e

n

t−1∑
j=1

η2
jE[FS(wj)] +

(
1 + L/γ

)
E[FS(wt)].

Multiplying both sides by ηt and taking a summation then gives

T∑
t=1

ηtE[F (wt)] ≤
(
1+L/γ

) T∑
t=1

ηtE[FS(wt)]+
32L(L+ γ)(1 + 2T/n)e

n

T∑
t=1

ηt

t−1∑
j=1

η2
jE[FS(wj)].

It then follows that

T∑
t=1

ηtE[F (wt)− FS(w)] ≤
(
1 + L/γ

) T∑
t=1

ηtE[FS(wt)− FS(w)]+

L/γ

T∑
t=1

ηtE[FS(w)] +
32L(L+ γ)(1 + 2T/n)e

n

T∑
t=1

ηt

t−1∑
j=1

η2
jE[FS(wj)].

According to (D.3) and ηt = η, the above inequality implies further

T∑
t=1

ηE[F (wt)− FS(w)] ≤
(
1 + L/γ

) T∑
t=1

ηE[FS(wt)− FS(w)]+

L/γTηE[FS(w)] +
32L(L+ γ)(1 + 2T/n)e

n

T∑
t=1

η
(
ηE[‖w‖22] + 2tη2E[FS(w)]

)
.

We can plug (D.2) into the above inequality and get

T∑
t=1

ηE[F (wt)− FS(w)] ≤
(
1 + L/γ

)(
(1/2 + Lη)E[‖w‖22] + 2L

T∑
t=1

η2E[FS(w)]
)

+

L/γTηE[FS(w)] +
32L(L+ γ)(1 + 2T/n)e

n

T∑
t=1

η
(
ηE[‖w‖22] + 2tη2E[FS(w)]

)
.

It then follows from the Jensen’s inequality that

E[F (w̄T )]− E[FS(w)] = O
((
Tη
)−1(E[‖w‖22] + Tη2E[FS(w)]

))
+

E[FS(w)]

γ
+

O
(γ(1 + T/n)

n

(
ηE[‖w‖22] + Tη2E[FS(w)]

))
.

The stated bound then follows directly. The proof is complete.

Finally, we present the proof of Corollary 5.
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Proof of Corollary 5. We choose w = w∗ in Theorem 4 and get

E[F (w̄T )−FS(w∗)] = O
((
η+

1

γ
+
γ(T + T 2/n)η2

n

)
E[FS(w∗)]

)
+O

( 1

Tη
+
γη(1 + T/n)

n

)
.

(E.2)
Note E[FS(w∗)] = F (w∗).

We first prove Part (a). Since η � 1/
√
T and T � n, the inequality (E.2) becomes

E[F (w̄T )]− F (w∗) = O
(
T−

1
2 +

1

γ
+
γ

T
+
γ(1 + T/n)

n
√
T

)
.

We can choose γ =
√
n to get that E[F (w̄T )]− F (w∗) = O(1/

√
n).

We now turn to Part (b). In this case, the inequality (E.2) becomes

E[F (w̄T )]− F (w∗) = O
( 1

n
+

1

nγ
+
γ

n

)
.

We can choose γ = 1 to get E[F (w̄T )]− F (w∗) = O(1/n). The proof is complete.

F Proofs on Convex and Nonsmooth Problems

In this section, we present the proof related to stability and generalization for pairwise learning with
convex and nonsmooth loss functions. We first prove stability (Theorem 6) and excess risk bounds
(Theorem 7) for Algorithm 1. Then we move to excess risk bounds for Algorithm 2 (Theorem 8).

F.1 Proofs of Theorem 6 and Theorem 7

We need to introduce a concentration inequality [19] which is useful for developing high-probability
bounds.
Lemma F.1 (Chernoff’s Bound). Let X1, . . . , Xt be independent random variables taking values
in {0, 1}. Let X =

∑t
j=1Xj and µ = E[X]. Then for any δ̃ > 0 with probability at least

1− exp
(
− µδ̃2/(2 + δ̃)

)
we have X ≤ (1 + δ̃)µ. Furthermore, for any δ ∈ (0, 1) with probability

at least 1− δ we have
X ≤ µ+ log(1/δ) +

√
2µ log(1/δ).

Proof of Theorem 6. Suppose S and S′ differ by the first example. If it 6= 1 and jt 6= 1, then

‖wt+1 −w′t+1‖22 =
∥∥wt − ηt∇f(wt; zit , zjt)−w′t + ηt∇f(w′t; z

′
it , z

′
jt)
∥∥2

2

=
∥∥wt − ηt∇f(wt; zit , zjt)−w′t + ηt∇f(w′t; zit , zjt)

∥∥2

2

= ‖wt −w′t‖22 − 〈wt −w′t, ηt∇f(wt; zit , zjt)− ηt∇f(w′t; zit , zjt)〉+ 4η2
tG

2

≤ ‖wt −w′t‖22 + 4η2
tG

2,

where we have used the fact 〈wt−w′t,∇f(wt; zit , zjt)−∇f(w′t; zit , zjt)〉 ≥ 0 due to the convexity
of f . Otherwise,

‖wt+1 −w′t+1‖22 =
∥∥wt − ηt∇f(wt; zit , zjt)−w′t + ηt∇f(w′t; z

′
it , z

′
jt)
∥∥2

2

≤ (1 + p)‖wt −w′t‖22 + (1 + 1/p)η2
t

∥∥∇f(wt; zit , zjt)−∇f(w′t; z
′
it , z

′
jt)
∥∥2

2

≤ (1 + p)‖wt −w′t‖22 + 4(1 + 1/p)η2
tG

2,

where we have used Assumption 2. Combining the above two cases, we derive

‖wt+1 −w′t+1‖22 ≤
(
1 + pI[it=1 or jt=1]

)
‖wt −w′t‖22 + 4G2η2

t

(
1 + p−1I[it=1 or jt=1]

)
(F.1)

=
(
1 + p

)I[it=1 or jt=1]‖wt −w′t‖22 + 4G2η2
t

(
1 + p−1I[it=1 or jt=1]

)
, (F.2)

where I[·] denotes the indicator function. Taking expectations over both sides of (F.1), we get

E
[
‖wt+1 −w′t+1‖22

]
≤
(
1 + 2p/n

)
E[‖wt −w′t‖22] + 4G2η2

t

(
1 + 2/(pn)

)
,

9



where we have used E[I[it=1 or jt=1]] ≤ 2/n. We apply the above inequality recursively and get

E
[
‖wt+1−w′t+1‖22

]
≤ 4G2

(
1+2/(pn)

) t∑
j=1

η2
j

(
1+2p/n

)t−j ≤ 4G2
(
1+2/(pn)

)
η2t
(
1+2p/n

)t
.

We can choose p = n/(2t) and use the standard inequality (1 + 1/t)t ≤ e to get

E
[
‖wt+1 −w′t+1‖22

]
≤ 4G2et

(
1 + 4t/n2

)
η2.

This proves the stability bound in expectation. We now turn to high-probability bounds. It follows
from (F.2) that

‖wt+1 −w′t+1‖22 ≤ 4G2
t∑

k=1

η2
k

(
1 + p−1I[ik=1 or jk=1]

) t∏
k′=k+1

(1 + p)I[ik′=1 or j
k′=1]

≤ 4G2η2
t∏

k=1

(1 + p)I[ik=1 or jk=1]

t∑
k=1

(
1 + p−1I[ik=1 or jk=1]

)
= 4G2η2(1 + p)

∑t
k=1 I[ik=1 or jk=1]

(
t+ p−1

t∑
k=1

I[ik=1 or jk=1]

)
.

We can apply Lemma F.1 with Xk = I[ik=1 or jk=1], µ ≤ 2t/n to get the following inequality with
probability at least 1− δ

t∑
k=1

I[ik=1 or jk=1] ≤ 2t/n+ log(1/δ) +
√

4tn−1 log(1/δ).

Therefore, with probability at least 1− δ there holds

‖wt+1 −w′t+1‖22 ≤

4G2η2(1 + p)2t/n+log(1/δ)+
√

4tn−1 log(1/δ)
(
t+ p−1

(
2t/n+ log(1/δ) +

√
4tn−1 log(1/δ)

))
.

We can choose
p =

1

2t/n+ log(1/δ) +
√

4tn−1 log(1/δ)

in the above inequality and derive the following inequality with probability at least 1−δ ((1+1/x)x ≤
e)

‖wt+1 −w′t+1‖22 ≤ 4G2η2e
(
t+
(
2t/n+ log(1/δ) +

√
4tn−1 log(1/δ)

)2)
.

The proof is complete.

We can use the above stability bounds to develop excess risk bounds in Theorem 7 for SGD with
nonsmooth problems.

Proof of Theorem 7. Let {wt}, {w′t} be defined in Theorem 6. According to (4.2) and Jensen’s
inequality, we know

E[‖wt+1 −w′t+1‖2] ≤ 2G
√

2et
(
1 + 2

√
t/n
)
η.

It then follows that SGD with t-iterations for nonsmooth problems is on-average loss ε-stable with

ε ≤ 4G2
√

2et
(
1 + 2

√
t/n
)
η.

This together with the relationship between on-average stability and generalization shows

E[F (wt)− FS(wt)] ≤ 4G2
√

2et
(
1 + 2

√
t/n
)
η.

We can take an average of the above inequalities to get

1

n

T∑
t=1

E[F (wt)− FS(wt)] ≤ 4G2
√

2eT
(
1 + 2

√
T/n

)
η.
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It then follows from (D.1) that

E[F (w̄T )]− F (w∗) = E[F (w̄T )− FS(w̄T )] + E
[
FS(w̄T )− FS(w∗)

]
≤ 4G2

√
2eT

(
1 + 2

√
T/n

)
η +

G2Tη2 + ‖w∗‖22
2Tη

,

where we have used the Jensen’s inequality and (D.1). The stated bound then follows from the choice
T � n2 and η = T−

3
4 . The proof is complete.

F.2 Proof of Theorem 8

We now turn to Theorem 8 on excess risk bounds of Algorithm 2 based on the iterative localization
technique [5, 11]. We need to introduce some definitions. For any i, let

ŵi = arg min
w

F̃Si(w). (F.3)

Note wi is derived by applying SGD with ηt = γini/(t+ 1) to minimize F̃Si(w), with the iterates
weighted according to Part (c) of Lemma D.1. We need the following lemmas.

Lemma F.2. Let Assumptions 1, 2 hold. For any δ ∈ (0, 1), the following inequality holds with
probability at least 1− δ/(2k): ‖ŵi −wi‖2 = O

(√
niγi log

1
2 (2k/δ)

)
.

Proof. It is clear that F̃Si is λi := 2/(γini)-strongly convex. According to (D.5), the following
inequality holds with probability at least 1− δ/(2k)

F̃Si(wi)− F̃Si(ŵi) = O(log(2k/δ)/(Tiλi)) = O(log(2k/δ)/(niλi)).

It then follows from the definition of ŵi and the strong convexity that

λi
2
‖ŵi −wi‖22 ≤ F̃Si(wi)− F̃Si(ŵi) = O

(
log(2k/δ)/(niλi)

)
(F.4)

and therefore
‖ŵi −wi‖22 = O

(
log(2k/δ)/(niλ

2
i )
)

= O
(
niγ

2
i log(2k/δ)

)
.

The proof is complete.

The following lemma establishes the uniform stability of pairwise learning with strongly convex
objectives.

Lemma F.3 ([16]). Suppose f : W × Z × Z 7→ R takes a structure f = ` + r, where ` :
W×Z ×Z 7→ R and r :W 7→ R. Assume for all z, z′, we have ‖∇`(w; z, z′)‖2 ≤ G. Suppose FS
is σ-strongly convex and define A as A(S) = arg minw∈W FS(w). Then A is 8G2

nσ -uniformly stable.

The following lemma establishes the excess risk bounds for the empirical risk minimizer defined in
(F.3).

Lemma F.4. Let Assumptions 1, 2 hold. Let ŵi be defined in (F.3). With probability at least
1− δ/(2k) the following inequality holds for any w ∈ W

F (ŵi)− F (w) = O
(
γi log ni log(k/δ) + n−1

i log(k/δ)
)

+
1

γini
‖w −wi−1‖22.

Proof. For any i, define

F̃i(w) = EZ,Z′
[
f(w;Z,Z ′)

]
+

1

γini
‖w −wi−1‖22

and w∗i = arg minw F̃i(w). Denote by A′i the deterministic algorithm outputting the minimizer
of F̃Si . Since F̃Si is λi = 2/(γini)-strongly convex and f is Lipschitz continuous, it follows
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from Lemma F.3 that A′i is 4G2γi-uniformly stable. Furthermore, we have the following bound on
variances

EZ,Z′,Si
[(
f(A′i(Si);Z,Z

′)− f(w∗i ;Z,Z
′)
)2] ≤ G2ESi

[
‖A′i(Si)−w∗i ‖22

]
≤ 2G2

λi
ESi
[
F̃i(A

′
i(Si))− F̃i(w∗i )

]
= G2γiniESi

[
F̃i(A

′
i(Si))− F̃i(w∗i )

]
.

It follows from the definition of ŵi and Theorem 2 (A = A′i, F = F̃i) that with probability at least
1− δ/(2k)

F̃i(ŵi)− F̃i(w∗i ) ≤ F̃i(ŵi)− F̃Si(ŵi)− F̃i(w∗i ) + F̃Si(w
∗
i ) =

O
(
γi log ni log(k/δ) + n−1

i log(k/δ) + n
− 1

2
i

(
γini log(k/δ)ESi

[
F̃i(A

′
i(Si))− F̃i(w∗i )

]) 1
2

)
.

(F.5)

On the other hand, the uniform stability of A′i and Part (a) of Theorem 1 implies that

ESi
[
F̃i(ŵi)− F̃Si(ŵi)

]
= O(γi).

It then follows that (note ESi [F̃Si(w∗i )] = F̃i(w
∗
i ) since w∗i is independent of Si)

ESi
[
F̃i(ŵi)− F̃i(w∗i )

]
= ESi

[
F̃i(ŵi)− F̃Si(w∗i )

]
≤ ESi

[
F̃i(ŵi)− F̃Si(ŵi)

]
= O(γi).

We can plug the above inequality back into (F.5) and get the following inequality with probability at
least 1− δ/(2k)

F̃i(ŵi)− F̃i(w) ≤ F̃i(ŵi)− F̃i(w∗i ) = O
(
γi log ni log(k/δ) + n−1

i log(k/δ)
)
.

Then the following inequality holds with probability at least 1− δ/(2k)

F (ŵi)− F (w) = F̃i(ŵi)− F̃i(w)− 1

γini
‖ŵi −wi−1‖22 +

1

γini
‖w −wi−1‖22

= O
(
γi log ni log(k/δ) + n−1

i log(k/δ)
)
− 1

γini
‖ŵi −wi−1‖22 +

1

γini
‖w −wi−1‖22.

The stated bound then follows directly. The proof is complete.

Based on the above lemmas, we are now ready to prove Theorem 8.

Proof of Theorem 8. Let ŵi be defined by (F.3). Let ŵ0 = w∗. We have the following error
decomposition

F (wk)− F (w∗) =

k∑
i=1

(
F (ŵi)− F (ŵi−1)

)
+ F (wk)− F (ŵk). (F.6)

According to Lemma F.2, we know the following inequality with probability at least 1− δ/(2k)

F (wk)− F (ŵk) ≤ G‖wk − ŵk‖2 = O(
√
nkγk log

1
2 (2k/δ)). (F.7)

Furthermore, we can apply Lemma F.4 with w = ŵi−1 for different i to get the following inequality
with probability 1− δ
k∑
i=1

(
F (ŵi)− F (ŵi−1)

)
=

k∑
i=1

(
O(γi log ni log(k/δ) + n−1

i log(k/δ)) +
‖ŵi−1 −wi−1‖22

γini

)
= O(γ1 log n1 + n−1

1 ) log(k/δ) +
‖ŵ0 −w0‖22

γ1n1
+

k∑
i=2

(
O(γi log ni + n−1

i ) log(k/δ) +
‖ŵi−1 −wi−1‖22

γini

)
= O(γ1 log n1 + n−1

1 ) log(k/δ) +
‖w∗‖22
γ1n1

+

k∑
i=2

O
(
γi log ni + n−1

i +
ni−1γ

2
i−1

γini

)
log(k/δ),
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where we have used Lemma F.2 in the last step. We can combine the above three inequalities together
and get the following inequality with probability at least 1− δ

F (wk)− F (w∗) = O(
√
nkγk log1/2(k/δ))

+O(γ1 log n1 + n−1
1 ) log(k/δ) +

‖w∗‖22
γ1n1

+

k∑
i=2

O
(
γi log ni + n−1

i +
ni−1γ

2
i−1

γini

)
log(k/δ)

= O
(√

nγ2−k−k/2 + γ log n+
1

γn
‖w∗‖22 +

k∑
i=2

(
2−iγ log n+ 2in−1 +

21−in22(1−i)γ2

2−iγ2−in

))
log(k/δ)

= O
(√

nγn−
3
4 + γ log n+

1

γn
‖w∗‖22 + n−

1
2 + γ

)
log(log n/δ),

where we have used 2k �
√
n and

k =
1

2
dlog2 ne, γi = γ/2i, ni = dn/2ie.

We can take γ � n−
1
2 ‖w∗‖2 to get F (wk) − F (w∗) = O(log(log n/δ) log n‖w∗‖/

√
n) with

probability at least 1− δ.

Furthermore, it is clear that the total number of gradient computations is of the order of

k∑
i=1

Ti �
k∑
i=1

n/2i � n.

The proof is complete.

G Proofs on Strongly Convex Problems

In this section, we present the proofs related to excess risk bounds for pairwise learning with strongly
convex objectives (Theorem 9 and Theorem 10). We first prove generalization bounds for smooth
problems. To this aim, we introduce a lemma.

Lemma G.1 ([16]). Assume for all S ∈ Zn, FS is σ-strongly convex w.r.t. ‖ · ‖. Let A(S) =
arg minw∈W FS(w) and Assumption 3 hold. If σn ≥ 8L, then

E
[
F (A(S))

]
− FS(A(S)) ≤

(1024L2

n2σ2
+

64L

nσ

)
E
[
FS(A(S))

]
. (G.1)

Proof of Theorem 9. According to (G.1), we know the following generalization bound for ERM
applied to strongly convex and smooth problems

E[F (w∗S)− FS(w∗S)] ≤ 64L
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
. (G.2)

The L-smoothness of f implies the L-smoothness of F , which implies

F (A(S))− F (w∗S) ≤ 〈A(S)−w∗S ,∇F (w∗S)〉+
L

2
‖A(S)−w∗S‖22

≤ ‖A(S)−w∗S‖2‖∇F (w∗S)‖2 +
L

2
‖A(S)−w∗S‖22

≤ 1

2L
‖∇F (w∗S)‖22 + L‖A(S)−w∗S‖22,

where we have used the Cauchy-Schwartz inequality in the last step. According to Lemma B.1 and
the inequality FS(w∗S) ≤ FS(w∗), we know

E
[
‖∇F (w∗S)‖22

]
= E

[
‖∇F (w∗S)−∇F (w∗)‖22

]
≤ 2LE[F (w∗S)− F (w∗)] = 2LE[F (w∗S)− FS(w∗)]

≤ 2LE[F (w∗S)− FS(w∗S)] ≤ 128L2
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
,
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where we have used (G.2). Furthermore, the σ-strong convexity of FS implies

‖A(S)−w∗S‖22 ≤
2

σ

(
FS(A(S))− FS(w∗S)

)
.

We can combine the above three inequalities together and derive

E[F (A(S))− F (w∗S)] ≤ 64L
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
+

2L

σ
E
[
FS(A(S))− FS(w∗S)

]
.

We can combine the above inequality and (G.2) together and get

E[F (A(S))− FS(w∗S)] = E[F (A(S))− F (w∗S)] + E[F (w∗S)− FS(w∗S)] (G.3)

≤ 128L
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
+

2L

σ
E
[
FS(A(S))− FS(w∗S)

]
.

The stated bound then follows since

E[FS(w∗S)] ≤ E[FS(w∗)] = F (w∗). (G.4)

The proof is complete.

We now turn to Theorem 10 on nonsmooth problems.

Proof of Theorem 10. According to Lemma F.3 and Part (a) of Theorem 1, we know the following
generalization bound for ERM applied to strongly convex and Lipschitz continuous problems

E[F (w∗S)− FS(w∗S)] ≤ 8G2

nσ
.

The Lipschitz continuity of f implies the Lipschitz continuity of F . Therefore, it follows from the
strong convexity of FS that

F (A(S))− F (w∗S) ≤ G‖A(S)−w∗S‖2 ≤ G

√
2
(
FS(A(S))− FS(w∗S)

)
σ

.

We can combine the above two inequalities together and use (G.3) to derive

E[F (A(S))− FS(w∗S)] ≤ 8G2

nσ
+G

√
2E
[
FS(A(S)− FS(w∗S))

]
σ

.

The stated bound then follows from (G.4). The proof is complete.

We now consider the application to the specific SGD. It shows how we should early-stop the algorithm
to get the optimal bound O(1/(nσ)). Part (a) and Part (b) are for smooth and nonsmooth cases,
respectively.

Corollary G.2 (SGD). Let {wt} be the sequence produced by SGD with ηt = 2/(σ(t+ 1)). Let FS
be σ-strongly convex and w̄′t =

(∑t
j=1 jwj

)
/
∑t
j=1 j.

(a) If Assumption 3 holds and σn ≥ 8L, then

E[F (w̄′T )− F (w∗)] = O
(E[FS(w∗S)

]
nσ

+ 1/(Tσ2) + E[‖w∗S‖22]/(T 2σ)
)
. (G.5)

In particular, one can choose T � n/σ to get the excess population risk bound O(1/(nσ)).

(b) If Assumption 2 holds, then

E[F (A(S))− FS(w∗S)] =
8G2

nσ
+O

(√1/(Tσ) + E[‖w∗S‖22]/T 2

σ

)
. (G.6)

In particular, one can choose T � n2 to get the excess population risk bound O(1/(nσ)).
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Proof. According to Eq. (D.4), we know
EA[FS(w̄′T )]− FS(w∗S) = O

(
1/(Tσ) + ‖w∗S‖22/T 2

)
. (G.7)

We first prove Part (a). We can plug the above optimization error bounds into Theorem 9 and derive

E[F (w̄′T )− F (w∗)] = 128L
( 16L

n2σ2
+

1

nσ

)
E
[
FS(w∗S)

]
+O

(
1/(Tσ2) + E[‖w∗S‖22]/(T 2σ)

)
.

This gives (G.5).

We now consider Part (b). We plug (G.7) into Theorem 10 and derive

E[F (A(S))− FS(w∗S)] ≤ 8G2

nσ
+O

(√1/(Tσ) + E[‖w∗S‖22]/T 2

σ

)
.

This gives (G.6). The proof is complete.

H Proofs on Uniform Convergence of Gradients for Pairwise Learning

In this section, we present the proofs on the uniform convergence of gradients (Theorem 11, Corollary
12 and Corollary 13).

H.1 Proof of Theorem 11

To prove Theorem 11, we first introduce a useful lemma called the McDiarmid’s inequality [19] for
handling the concentration of functions with bounded increments.
Lemma H.1. Let c1, . . . , cn ∈ R+. Let Z1, . . . , Zn be independent random variables taking values
in a set Z , and assume that g : Zn 7→ R satisfies

sup
z1,...,zn,z̄i∈Z

|g(z1, · · · , zn)− g(· · · , zi−1, z̄i, zi+1, · · · )| ≤ ci (H.1)

for i = 1, . . . , n. Then, for any 0 < δ < 1, with probability at least 1− δ we have

g(Z1, . . . , Zn) ≤ E
[
g(Z1, . . . , Zn)

]
+
(1

2

n∑
i=1

c2i log(1/δ)
) 1

2

.

The following lemma gives a high-probability bound on the uniform deviation between population
gradients and empirical gradients.
Lemma H.2. Let δ ∈ (0, 1) and S = {z1, . . . , zn} be examples drawn independently from ρ.
Suppose Assumption 3 holds. Then with probability at least 1− δ we have

sup
w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2
≤ 2

bn2 c
ESEε sup

w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2

+

√
8
(
LR+ b′

)2
log(1/δ)

n
,

where εi are independent Rademacher variables.

Proof. By the L-Lipschitz continuity of∇f , the following inequality holds for all w ∈ WR

‖∇f(w; zi, zj)‖2 ≤ ‖∇f(0; zi, zj)‖2 + L‖w‖2 ≤ LR+ b′. (H.2)
Let S′ = {z′1, . . . , z′n} be independent examples drawn independently from ρ and Si =
{z1, . . . , zi−1, z

′
i, zi+1, . . . , zn}. Then, we have∣∣∣ sup

w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2
− sup

w∈WR

∥∥∇F (w)−∇FSi(w)
∥∥

2

∣∣∣
≤ sup

w∈WR

∣∣∣∥∥∇F (w)−∇FS(w)
∥∥

2
−
∥∥∇F (w)−∇FSi(w)

∥∥
2

∣∣∣ ≤ sup
w∈WR

∥∥∇FS(w)−∇FSi(w)
∥∥

2

=
1

n(n− 1)
sup

w∈WR

∥∥∥ ∑
j∈[n]:j 6=i

(
∇f(w; zi, zj) + f(w; zj , zi)−∇f(w; z′i, zj)−∇f(w; zj , z

′
i)
)∥∥∥

≤ 4(n− 1)

n(n− 1)

(
LR+ b′

)
=

4(LR+ b′)

n
,
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where we have used (H.2) for all w ∈ WR. Therefore, (H.1) holds with
g(z1, . . . , zn) := sup

w∈WR

[
‖∇F (w)−∇FS(w)‖2

]
and ci = 4(LR+ b′)/n. We can apply Lemma H.1 to derive the following inequality with probability
1− δ

sup
w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2
≤ ES

[
sup

w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2

]
+

√
8
(
LR+ b′

)2
log(1/δ)

n
.

(H.3)
For any w ∈ WR, define qw : Z × Z 7→ R as

qw(z, z′) = EZ,Z′
[
∇f(w;Z,Z ′)

]
−∇f(w; z, z′).

Then it is clear that

∇F (w)−∇FS(w) =
1

n(n− 1)

∑
i,j∈[n]:i6=j

qw(zi, zj).

Analogous to Eq. (C.4), we have

ES
[

sup
w∈WR

∥∥∇F (w)−∇FS(w)
∥∥

2

]
≤ ES

[
sup

w∈WR

∥∥∥ 1

bn2 c

bn2 c∑
i=1

qw
(
zi, zi+bn2 c

)∥∥∥
2

]
.

By the standard symmetrization trick, we get

ES
[

sup
w∈WR

∥∥∥ 1

bn2 c

bn2 c∑
i=1

(
EZ,Z′

[
∇f(w;Z,Z ′)

]
−∇f(w; zi, zi+bn2 c)

)∥∥∥
2

]

= ES
[

sup
w∈WR

∥∥∥ 1

bn2 c

bn2 c∑
i=1

ES′
[
∇f(w; z′i, z

′
i+bn2 c

)−∇f(w; zi, zi+bn2 c)
]∥∥∥

2

]

≤ ES,S′
[

sup
w∈WR

∥∥∥ 1

bn2 c

bn2 c∑
i=1

(
∇f(w; z′i, z

′
i+bn2 c

)−∇f(w; zi, zi+bn2 c)
)∥∥∥

2

]

=
1

bn2 c
ES,S′,ε

[
sup

w∈WR

∥∥∥ bn2 c∑
i=1

εi
(
∇f(w; z′i, z

′
i+bn2 c

)−∇f(w; zi, zi+bn2 c)
)∥∥∥

2

]

≤ 2

bn2 c
ESEε sup

w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2
.

We can plug the above two inequalities back into (H.3) to derive the stated inequality with probability
1− δ. The proof is complete.

We now use Lemma H.2 to prove Theorem 11.

Proof of Theorem 11. According to Jensen’s inequality, we know(
Eε sup

w∈WR

[∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2

])2

≤ Eε
[

sup
w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥2

2

]

= Eε
[

sup
w∈WR

〈 bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c),

n∑
i=1

εi∇f(w; zi, zi+bn2 c)
〉]

≤ sup
w∈WR

bn2 c∑
i=1

〈
∇f(w; zi, zi+bn2 c),∇f(w; zi, zi+bn2 c)

〉
+ 2Eε

[
sup

w∈WR

∑
1≤i<j≤bn2 c

εiεj
〈
∇f(w; zi, zi+bn2 c),∇f(w; zj , zj+bn2 c)

〉]
≤ bn

2
c(LR+ b′)2 + nUS(FR), (H.4)
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where we have used (H.2) and the definition of Rademacher chaos complexities. It then follows that

Eε sup
w∈WR

[∥∥∥ n∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2

]
≤
√
bn

2
c(LR+ b′) +

√
nUS(FR).

We can plug the above bound into Lemma H.2 to derive the stated bound with high probability.

H.2 Proof of Corollary 12

To prove Corollary 12, it suffices to estimate the involved Rademacher chaos complexity [13, 21].
We handle this term by applying the entropy integral (Lemma H.3) in terms of covering numbers.
Definition 1 (Covering number). Let (G, d) be a metric space and set F ⊆ G. For any ε > 0, a set
F4 ⊂ F is called an ε-cover of F if for every f ∈ F we can find an element g ∈ F4 satisfying
d(f, g) ≤ ε. The covering number N (ε,F , d) is the cardinality of the minimal ε-cover of F :

N (ε,F , d) := min
{
|F4| : F4 is an ε-cover of F

}
.

Lemma H.3 ([21]). Let F : Z̃ × Z̃ 7→ R be a function class with supf∈F dS(f, 0) ≤ D and
S = {z̃1, . . . , z̃n} ⊂ Z̃ , where dS is a pseudometric on F defined as follows

dS(f, g) :=
( 1

n2

∑
1≤i<j≤n

|f(z̃i, z̃j)− g(z̃i, z̃j)|2
)1/2

. (H.5)

Then
1

n
Eε
[

sup
f∈F

∑
1≤i<j≤n

εiεjf(z̃i, z̃j)
]
≤ 24e

∫ D

0

log
(
N (r,F , dS) + 1

)
dr.

Proof of Corollary 12. For any i ∈ [bn2 c], we define z̃i = (zi, zi+bn2 c) and f̃(w; z̃i) =

f(w; zi, zi+bn2 c). Then the Rademacher chaos complexity Un(FR) can be written as

US̃(FR) =
1

bn2 c
Eε
[

sup
w∈WR

∑
1≤i<j≤bn2 c

εiεj
〈
∇f̃(w; z̃i),∇f̃(w; z̃j)

〉]
, (H.6)

where S̃ = {z̃1, . . . , z̃bn2 c}. We define a metric dS̃ over FR by

dS̃(w,w′) =
( 1

bn2 c2
∑

1≤i<j≤bn2 c

∣∣〈∇f̃(w; z̃i),∇f̃(w; z̃j)〉 − 〈∇f̃(w′; z̃i),∇f̃(w′; z̃j)〉
∣∣2)1/2

.

For any w and w′ inWR, there holds

bn
2
c2d2

S̃
(w,w′) =

∑
1≤i<j≤bn2 c

∣∣〈∇f̃(w; z̃i),∇f̃(w; z̃j)〉 − 〈∇f̃(w′; z̃i),∇f̃(w′; z̃j)〉
∣∣2

≤ 2
∑

1≤i<j≤bn2 c

〈
∇f̃(w; z̃i)−∇f̃(w′; z̃i),∇f̃(w; z̃j)

〉2
+ 2

∑
1≤i<j≤bn2 c

〈
∇f̃(w′; z̃i),∇f̃(w; z̃j)−∇f̃(w′; z̃j)

〉2
≤ 2

∑
1≤i<j≤bn2 c

∥∥∇f̃(w; z̃i)−∇f̃(w′; z̃i)
∥∥2

2

∥∥∇f̃(w; z̃j)
∥∥2

2
+ 2

∑
1≤i<j≤bn2 c

∥∥∇f̃(w′; z̃i)‖22‖∇f̃(w; z̃j)−∇f̃(w′; z̃j)
∥∥2

2

≤ 2L2
∑

1≤i<j≤bn2 c

[∥∥∇f̃(w; z̃j)
∥∥2

2
+ ‖∇f̃(w′; z̃i)‖22

]
‖w −w′‖22

≤ L2(LR+ b′)2n(n− 1)‖w −w′‖22, (H.7)

where we have used the elementary inequality (a1 + a2)2 ≤ 2(a2
1 + a2

2) and the decomposition

〈∇f̃(w; z̃i),∇f̃(w; z̃j)〉 − 〈∇f̃(w′; z̃i),∇f̃(w′; z̃j)〉 =

〈∇f̃(w; z̃i)−∇f̃(w′; z̃i),∇f̃(w; z̃j)〉+ 〈∇f̃(w′; z̃i),∇f̃(w; z̃j)−∇f̃(w′; z̃j)〉
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in the first inequality, the L-smoothness of f in the third inequality and (H.2) in the last inequality. It
then follows that

logN (r,FR, dS̃) ≤ logN
(
r/
(
2L(LR+ b′)

)
,WR, d2

)
≤ d log

(
6LR(LR+ b′)r−1

)
,

where we have used the classical result logN (r,WR, d2) ≤ d log(3R/r) [18] and d2 is the metric
overWR defined by d2(w, w̃) = ‖w−w̃‖2. Furthermore, (H.7) also implies dS̃(w, 0) ≤ 2LR(LR+
b′) for w ∈ WR. We can now apply Lemma H.3 to show that

US̃(FR) ≤ 24e

∫ 2(LR+b′)LR

0

log
(
1 +N (r,FR, dS̃)

)
dr

≤ 24e

∫ 2(LR+b′)LR

0

(
log 2 + d log

(
6LR(LR+ b′)r−1

))
dr

≤ 48e(LR+ b′)LR
(

log 2 + d log(3e)
)
,

where we have used∫ 2(LR+b′)LR

0

log
(

6LR(LR+ b′)r−1
)

dr = 2LR(LR+ b′)

∫ 1

0

log(3/r)dr = 2LR(LR+ b′) log(3e).

The stated bound then follows by plugging the above bound on Rademacher chaos complexities into
Theorem 11. The proof is complete.

H.3 Proof of Corollary 13

Our scheme to prove Corollary 13 is to directly control the term
∥∥∥∑bn2 ci=1 εi∇f(w; zi, zi+bn2 c)

∥∥∥
2

in
Lemma H.2. In more details, we show this term is related to two Gaussian processes which are more
easy to handle. Our analysis requires the following classical lemma on comparison between two
Gaussian processes (Slepian’s lemma).

Lemma H.4. Let {Xθ : θ ∈ Θ} and {Yθ : θ ∈ Θ} be two mean-zero separable Gaussian processes
indexed by the same set Θ and suppose that

E[(Xθ − Xθ̄)
2] ≤ E[(Yθ −Yθ̄)

2], ∀θ, θ̄ ∈ Θ. (H.8)

Then E[supθ∈Θ Xθ] ≤ E[supθ∈Θ Yθ].

Lemma H.5. Suppose f :W ×Z2 7→ R takes the form (5.1). Then

Eε sup
w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zj)
∥∥∥

2
≤
√

2
(
2LψRκ+ b′

)( bn2 c∑
i=1

‖φ(xi, xi+bn2 c)‖
2
2

) 1
2

.

Proof. By the structure of f , we know

Eε sup
w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zi+bn2 c)
∥∥∥

2

= Eε sup
w∈WR

∥∥∥ bn2 c∑
i=1

εiψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
φ(xi, xi+bn2 c)

∥∥∥
2

= Eε sup
w∈WR,v∈W1

〈 bn2 c∑
i=1

εiψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
φ(xi, xi+bn2 c),v

〉

≤ Eg sup
w∈WR,v∈W1

bn2 c∑
i=1

giψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v〉, (H.9)
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where ψ′ denotes the derivative of ψ w.r.t. the first argument, g1, . . . , gn are independent N(0, 1)
random variables. Note the last step follows from the following inequality on Rademacher and
Gaussian complexities

Eε sup
f

bn2 c∑
i=1

εif(zi) ≤ Eg sup
f

bn2 c∑
i=1

gif(zi).

Define two mean-zero separable Gaussian processes indexed byWR ×W1

Xw,v =

bn2 c∑
i=1

giψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v〉

Yw,v =
√

2κ

bn2 c∑
i=1

giψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
+
√

2
(
b′ + LψRκ

) bn2 c∑
i=1

g̃i〈φ(xi, xi+bn2 c),v〉,

where g̃1, . . . , g̃n are independent N(0, 1) random variables. For any w,w′ ∈ WR and v,v′ ∈ W1,
it follows from the independence among gi and Eg2

i = 1,∀i = 1, . . . , n that

Eg
[(
Xw,v − Xw′,v′

)2]
=

bn2 c∑
i=1

(
ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v〉

− ψ′
(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v

′〉
)2

≤ 2

bn2 c∑
i=1

(
ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
− ψ′

(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

))2(
〈φ(xi, xi+bn2 c),v〉

)2
+ 2

bn2 c∑
i=1

(
ψ′
(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

))2(
〈φ(xi, xi+bn2 c),v〉 − 〈φ(xi, xi+bn2 c),v

′〉
)2

≤ 2κ2

bn2 c∑
i=1

(
ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
− ψ′

(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

))2

+ 2
(
b′ + LψRκ

)2 bn2 c∑
i=1

(
〈φ(xi, xi+bn2 c),v〉 − 〈φ(xi, xi+bn2 c),v

′〉
)2

= Eg
[(
Yw,v −Yw′,v′

)2]
,

where we have used (a+ b)2 ≤ 2a2 + 2b2, the decomposition

ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
〈φ(xi, xi+bn2 c),v〉−ψ

′(〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)
)
〈φ(xi, xi+bn2 c),v

′〉

=
(
ψ′
(
〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
−ψ′

(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

))
〈φ(xi, xi+bn2 c),v〉

+ ψ′
(
〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)(
〈φ(xi, xi+bn2 c),v〉 − 〈φ(xi, xi+bn2 c),v

′〉
)

and the following inequality due to the Lψ-smoothness of φ∣∣ψ′(〈w′, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)
)∣∣ ≤ b′ + Lψ|〈w′, φ(xi, xi+bn2 c)〉 − 0| ≤ b′ + LψRκ.

Therefore, we can apply Lemma H.4 to show

Eg sup
w∈WR,v∈W1

Xw,v ≤ Eg sup
w∈WR,v∈W1

Yw,v

≤
√

2κEg sup
w∈WR

bn2 c∑
i=1

giψ
′(〈w, φ(xi, xi+bn2 c)〉, τ(yi, yi+bn2 c)

)
+
√

2
(
b′ + LψRκ

)
Eg sup

v∈W1

bn2 c∑
i=1

gi〈φ(xi, xi+bn2 c),v〉

≤
√

2LψκEg sup
w∈WR

bn2 c∑
i=1

gi〈w, φ(xi, xi+bn2 c)〉+
√

2
(
b′ + LψRκ

)
Eg sup

v∈W1

bn2 c∑
i=1

gi〈φ(xi, xi+bn2 c),v〉,
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where we have used the Lψ-Lipschitz continuity of ψ′ and the contraction lemma of Gaussian
complexities in the last step. Furthermore, it follows from the Jensen’s inequality that

Eg sup
w∈WR

bn2 c∑
i=1

gi〈w, φ(xi, xi+bn2 c)〉 = Eg sup
w∈WR

〈
w,

bn2 c∑
i=1

giφ(xi, xi+bn2 c)
〉

≤ REg
∥∥∥ bn2 c∑
i=1

giφ(xi, xi+bn2 c)
∥∥∥

2
≤ R

√√√√Eg
[〈 bn2 c∑

i=1

giφ(xi, xi+bn2 c),

bn2 c∑
i=1

giφ(xi, xi+bn2 c)
〉]

= R
( bn2 c∑
i=1

‖φ(xi, xi+bn2 c)‖
2
2

) 1
2

.

In a similar way, we can show

Eg sup
v∈W1

bn2 c∑
i=1

gi〈φ(xi, xi+bn2 c),v〉 ≤
( bn2 c∑
i=1

‖φ(xi, xi+bn2 c)‖
2
2

) 1
2

.

Therefore,

Eg sup
w∈WR,v∈W1

Xw,v ≤
(
2LψRκ+ b′

)√
2
( bn2 c∑
i=1

‖φ(xi, xi+bn2 c)‖
2
2

) 1
2

.

Plugging the above inequality into (H.9) then gives the stated bound. The proof is complete.

We now apply Lemma H.5 to prove Corollary 13.

Proof of Corollary 13. By Lemma H.5 and the definition of κ, we know

Eε sup
w∈WR

∥∥∥ bn2 c∑
i=1

εi∇f(w; zi, zj)
∥∥∥

2
≤
√
nκ
(
2LψRκ+ b′

)
. (H.10)

According to the Lψ-smoothness of ψ, the function f is (Lψκ
2)-smooth∥∥∇f(w; z, z′)−∇f(w̃; z, z′)

∥∥
2

=
∣∣ψ′(〈w, φ(x, x′)〉, τ(y, y′))− ψ′(〈w̃, φ(x, x′)〉, τ(y, y′))

∣∣‖φ(x, x′)‖2
≤ Lψ|〈w − w̃, φ(x, x′)〉|‖φ(x, x′)‖2 ≤ Lψκ2‖w − w̃‖2.

Therefore, Lemma H.2 holds with L = Lψκ
2. We can plug (H.10) into Lemma H.2 and get the

stated bound. The proof is complete.

I Proofs on Nonconvex Problems

In this section, we apply the uniform convergence of gradients to prove Theorem 14.

Proof of Theorem 14. By the elementary inequality (a+ b)2 ≤ 2(a2 + b2) and (D.6), we derive the
following inequality with probability 1− δ/3

T∑
t=1

ηt‖∇F (wt)‖22 =

T∑
t=1

ηt
∥∥∇F (wt)−∇FS(wt) +∇FS(wt)

∥∥2

2

≤ 2

T∑
t=1

ηt
∥∥∇F (wt)−∇FS(wt)

∥∥2

2
+ 2

T∑
t=1

ηt
∥∥∇FS(wt)

∥∥2

2

≤ 2

T∑
t=1

ηt max
t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2
+O

( T∑
t=1

η2
t + log(1/δ)

)
.
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It then follows that

1

T

T∑
t=1

‖∇F (wt)‖22 ≤ 2 max
t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2
+O(1)

( T∑
t=1

ηt

)−1( T∑
t=1

η2
t + log(1/δ)

)
= 2 max

t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2
+O

(
T−

1
2 log(1/δ)

)
. (I.1)

According to (D.7), with probability 1 − δ/3 we have the following inequality uniformly for all
t = 1, . . . , T

‖wt‖2 ≤ RT := O
(
T

1
4 log(1/δ)

)
. (I.2)

According to Corollary 12, the following inequality holds with probability 1 − δ/3 (we assume
RT ≥ 1)

sup
w∈WRT

‖∇F (w)−∇FS(w)‖2 = O
(
RT
√
d+ log(1/δ)n−

1
2

)
. (I.3)

Combining (I.1), (I.2) and (I.3) together, with probability 1− δ we derive the following inequality

1

T

T∑
t=1

‖∇F (wt)‖22 = 2 max
t=1,...,T

∥∥∇F (wt)−∇FS(wt)
∥∥2

2
+O

(
T−

1
2 log(1/δ)

)
= O

(
R2
T

(
d+ log(1/δ)

)
n−1

)
+O

(
T−

1
2 log(1/δ)

)
= O

(√
T log2(1/δ)

(
d+ log(1/δ)

)
n−1

)
+O

(
T−

1
2 log(1/δ)

)
.

Therefore, we can choose T � nd−1 to derive the following inequality with probability 1− δ

1

T

T∑
t=1

‖∇F (wt)‖22 = O
(
n−

1
2 log2(1/δ)

(
d+ log(1/δ)

) 1
2

)
.

This gives the bound (5.4).

The proof of (5.5) is the same except using the uniform convergence of gradients established in
Corollary 13 instead of Corollary 12. We omit the proof for simplicity. The proof is complete.

J Proofs on Gradient Dominated Problems

In this section, we prove Theorem 15 on excess risk bounds for learning with gradient dominated
problems. The following lemma is a simple extension of a similar result in [6].
Lemma J.1. Assume for all z, z′, the function w 7→ f(w; z, z′) is nonnegative and G-Lipschitz.
Let S = {z1, . . . , zn} and S′ = {z′1, . . . , z′n} be two datasets that differ by the first point. Let
{wt}, {w′t} be the sequence produced by SGD (Algorithm 1) w.r.t. S and S′, respectively. Then for
every z, z′ ∈ Z and every t0 ∈ [n] we have

E
[
|f(wT ; z, z′)−f(w′T ; z, z′)|

]
≤ 2Bt0

n
sup

w;z,z′
f(w; z, z′)+GE

[
‖wT−w′T ‖|1 6∈ It0(A)

]
Pr{1 6∈ It0(A)},

where It(A) := {i1, j1, . . . , it, jt} is the set of indices selected by A in the first t iterations.

Proof. According to the law of total expectation, we know

E
[
|f(wT ; z, z′)−f(w′T ; z, z′)|

]
= E

[
|f(wT ; z, z′)−f(w′T ; z, z′)||1 ∈ It0(A)

]
Pr{1 ∈ It0(A)}

+ E
[
|f(wT ; z, z′)− f(w′T ; z, z′)||1 6∈ It0(A)

]
Pr{1 6∈ It0(A)}.

According to the update rule, we know

Pr{1 ∈ It0(A)} ≤
t0∑
t=1

Pr{it = 1 or jt = 1} =

t0∑
t=1

2(n− 1)

n(n− 1)
=

2t0
n
.

The stated bound then follows from the Lipschitz continuity of f . The proof is complete.
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We follow the arguments in [6] to prove Theorem 15.

Proof of Theorem 15. We first give the stability bounds. Suppose S and S′ differ by the first example.
If it 6= 1 and jt 6= 1, then

‖wt+1 −w′t+1‖2 =
∥∥wt − ηt∇f(wt; zit , zjt)−w′t + ηt∇f(w′t; z

′
it , z

′
jt)
∥∥

2

≤
∥∥wt −w′t

∥∥
2

+
∥∥ηt∇f(wt; zit , zjt)− ηt∇f(w′t; zit , zjt)

∥∥
2

≤
(
1 + Lηt

)∥∥wt −w′t
∥∥

2
.

Otherwise, we have
‖wt+1 −w′t+1‖2 ≤ ‖wt −w′t‖2 + 2Gηt.

It then follows that
E(it,jt)

[
‖wt+1 −w′t+1‖2

]
≤
(
1 + Lηt

)∥∥wt −w′t
∥∥

2
Pr{it 6= 1 and jt 6= 1}+

(
‖wt −w′t‖2 + 2Gηt

)
Pr{it = 1 or jt = 1}

=
(n− 2)

(
1 + Lηt

)
n

∥∥wt −w′t
∥∥

2
+

2

n

(
‖wt −w′t‖2 + 2Gηt

)
. (J.1)

Let4t = E[‖wt −w′t‖|1 6∈ It0(A)], where It0(A) is defined in Lemma J.1. Then it follows from
(J.1) that

4t+1 ≤
(n− 2)

(
1 + Lηt

)
n

4t +
2

n

(
4t + 2Gηt

)
≤
(
1 + L(1− 2/n)ηt

)
4t +

4Gηt
n

≤ exp
(
L(1− 2/n)ηt

)
4t +

4Gηt
n

.

Since4t0+1 = 0, we can apply the above inequality repeatedly and get

4T ≤
T∑

t=t0+1

T∏
k=t+1

exp
(
L(1− 2/n)ηk

)4Gηt
n
≤

T∑
t=t0+1

T∏
k=t+1

exp
(
Lc(1− 2/n)/k

)4Gc

nt

≤
T∑

t=t0+1

exp
(
Lc(1− 2/n)

T∑
k=t+1

1

k

)4Gc

nt
≤

T∑
t=t0+1

exp
(
Lc(1− 2/n) log(T/t)

)4Gc

nt

≤
T∑

t=t0+1

(T
t

)Lc(1−2/n) 4Gc

nt
=

4Gc

n
TLc(1−2/n)

T∑
t=t0+1

t−Lc(1−2/n)−1

≤ 4Gc

n
TLc(1−2/n)

∫ T

t0

x−Lc(1−2/n)−1dx ≤ 1

Lc(1− 2/n)

4Gc

n

(T
t0

)Lc(1−2/n)

,

where we have used
ηt =

2t+ 1

2β(t+ 1)2
≤ c/t, c := 1/β.

We can combine the above bound and Lemma J.1 together, and get

E
[
|f(wT ; z, z′)− f(w′T ; z, z′)|

]
= O

( t0
n

+
G2

nL

(T
t0

)Lc)
.

We can choose t0 � T
Lc
Lc+1 and get the following stability bounds

E
[
|f(wT ; z, z′)− f(w′T ; z, z′)|

]
= O

(T Lc
Lc+1

n

)
.

We can plug the above stability bounds into Part (a) of Theorem 1, and get the following generalization
bounds

E
[
F (wT )− FS(wT )

]
= O

(T L/β
L/β+1

n

)
.

Furthermore, according to (D.8) we have the following optimization error bounds
EA[FS(wT )]− inf

w
[FS(w)] = O

(
1/(Tβ2)

)
.

We can plug the above generalization and optimization error bounds into (3.1), and get (5.7). The
proof is complete.
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K Examples of Pairwise Learning

In this section, we give some specific examples of pairwise learning: metric learning, ranking and
AUC maximization. We denote (t)+ := max(t, 0) and x> the transpose of x ∈ Rd. Let sign(t)
denote the sign of t ∈ R.

Supervised metric learning. In supervised metric learning, we assume Y = {±1} and aim to
find a distance metric such that examples in the same class are similar while examples in different
classes are apart from each other under this metric. A typical choice is the Mahalanobis metric
of the form hw(xi, xj) = 〈w, (xi − xj)(xi − xj)>〉,w ∈ Sd×d, where Sd×d denotes the set of
positive semi-definite matrices in Rd×d. A common loss function in metric learning for w on
z = (x, y), z′ = (x′, y′) takes the form [8]

f(w; z, z′) = g(yy′(1− hw(x, x′))),

where g : R → R+ is a convex function for which some typical choices include the hinge loss
g(t) = (1− t)+ and the logistic loss g(t) = log(1 + exp(−t)).

Ranking. For ranking problems, the output reflects the ordering between instances, i.e., the instance
x is considered to be better than x′ if y > y′. Our task is to predict the ordering between the objects
based on observations by constructing ranking rules hw : X × X → R, and predict y > y′ if
hw(x, x′) > 0 [3]. A common pairwise loss function used in ranking problems takes the form

f(w; z, z′) = g(sign(y − y′)hw(x, x′)),

where g : R → R+ is a convex function for which some typical choices are the exponential loss
g(t) = exp(−t), the logistic loss g(t) = log(1 + exp(−t)) and the hinge loss g(t) = (1− t)+ [3].

AUC maximization. AUC is a widely used metric for measuring the performance of machine learning
algorithms in imbalanced classification. If Y = {±1}, the AUC score of a model hw : X 7→ Y
measures its probability of giving a larger value to a positive instance than to a negative instance. The
problem of AUC maximization can be formulated as a pairwise learning problem with the following
loss function [4, 22]

f(w; z, z′) = g(w>(x− x′))I[y=1,y′=−1], (K.1)
where g : R → R+ is a convex function for which some typical choices are the least square loss
g(t) = (1− t)2, the logistic loss g(t) = log(1 + exp(−t)) and the hinge loss g(t) = (1− t)+.

L Experimental Results

In this section, we present some experimental results to support our theory on the stability bounds. We
consider AUC maximization with the loss function of the form of (K.1). We consider several datasets
available at the LIBSVM site [2], whose information is summarized in Table L.1. We transform
datasets with multiple class labels into datasets with binary class labels by grouping the first half of
class labels into positive labels, and grouping the remaining class labels into negative labels. We
randomly choose 80 percents of each dataset as the training set S, from which we perturb a single
example in S to create a neighboring dataset S′. We apply SGD (3.2) with the same parameters to S
and S′, and get two sequence of iterates {wt} and {w′t}. We then calculate the Euclidean distance
4t = ‖wt −w′t‖2 at each iteration to verify the stability of SGD. We consider step sizes of the form
ηt = η/

√
T with η ∈ {0.05, 0.25, 1, 4}, and report 4t as a function of the number of passes (the

iteration number t divided by the sample size n). We repeat the experiments 100 times and report the
average as well as the standard deviation. Since we develop stability bounds for both smooth and
nonsmooth loss functions, we consider two representative loss functions: the smooth logistic loss
(i.e., Eq. (K.1) with g(t) = log(1 + exp(−t))) and the nonsmooth hinge loss (i.e., Eq. (K.1) with
g(t) = (1− t)+).

In Figure L.1, we report the Euclidean distance4t for AUC maximization with the hinge loss and
the 4 stepsize sequences, while in Figure L.2, we report4t for AUC maximization with the logistic
loss. It is clear that4t is an increasing function of both t and η, which is consistent with our stability
bounds in Theorem 3 and Theorem 6. It is also clear that the Euclidean distances for the logistic
loss are significantly smaller than those for the hinge loss if we consider the same stepsize sequence,
which is also consistent with Remark 4 on the comparison of stability bounds for SGD with smooth
and nonsmooth problems.
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Table L.1: Description of the datasets used in the experiments.

datasets # inst # feat datasets # inst # feat datasets # inst # feat datasets # inst # feat
a3a 3185 122 acoustic 78823 50 cifar10 50000 3072 gisette 7000 5000

madelon 2600 500 mnist 60000 780 usps 7291 256 webspam_u 350000 254

(a) a3a (b) acoustic (c) cifar10 (d) gisette

(e) madelon (f) mnist (g) usps (h) webspam_u
Figure L.1: Euclidean distance4t as a function of the number of passes for the hinge loss.

(a) a3a (b) acoustic (c) cifar10 (d) gisette

(e) madelon (f) mnist (g) usps (h) webspam_u
Figure L.2: Euclidean distance4t as a function of the number of passes for the logistic loss.
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