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Abstract

We present a new perspective of achieving image synthesis by viewing this task as
a visual token generation problem. Different from existing paradigms that directly
synthesize a full image from a single input (e.g., a latent code), the new formulation
enables a flexible local manipulation for different image regions, which makes it
possible to learn content-aware and fine-grained style control for image synthesis.
Specifically, it takes as input a sequence of latent tokens to predict the visual tokens
for synthesizing an image. Under this perspective, we propose a token-based
generator (i.e.,TokenGAN). Particularly, the TokenGAN inputs two semantically
different visual tokens, i.e., the learned constant content tokens and the style tokens
from the latent space. Given a sequence of style tokens, the TokenGAN is able to
control the image synthesis by assigning the styles to the content tokens by attention
mechanism with a Transformer. We conduct extensive experiments and show that
the proposed TokenGAN has achieved state-of-the-art results on several widely-
used image synthesis benchmarks, including FFHQ and LSUN CHURCH with
different resolutions. In particular, the generator is able to synthesize high-fidelity
images with 1024× 1024 size, dispensing with convolutions entirely.

1 Introduction

Unconditional image synthesis generates images from latent codes by adversarial training [10, 16, 19,
25, 27, 33, 50]. Recent advances have been achieved by a style-based generator architecture in terms
of both the visual quality and resolution of generated images [26, 27, 28, 37, 52]. In particular, the
style-based generator has been widely used in many other generative tasks, including facial editing
[9, 40], style transfer [1, 38], image super-resolution [17, 31], and image inpainting [2, 52].

The key to the success of the style-based generator lies in the learning of the style control based on
the intermediate latent spaceW [27, 28]. Instead of feeding the input latent code z ∈ Z through
the input layer only (Figure1-a), the style-based generator maps the input z to an intermediate latent
space w ∈ W , which then controls the “style” of the image at each layer via adaptive instance
normalization (AdaIN [21]) (Figure 1-b). It has been demonstrated that such a design allows a less
entangled representation learning inW , leading to better generative image modeling [12, 23, 27, 40].

Despite the promising results, the style-based generator can suffer from the style control via AdaIN
operation [28, 52]. Specifically, the style control is content-independent. It “washes away” the
original information of features by normalization and assigns new styles decided by the latent codes
regardless of the image/feature content. Besides, the style code w affects the entire image by scaling
and biasing complete feature maps with a single value via AdaIN operation [35, 44, 54]. Such an
imposed single style over multiple image regions can inevitably result in entangled representation of

∗This work was done while Yanhong Zeng was a research intern at Microsoft Research Asia.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



(a) Traditional Generator (b) Style-based Generator (c) Token-based Generator

...

... ...

Figure 1: Overview of different generators. (a) A traditional generator [16] feeds a single latent z as
input to control the image synthesis. (b) A style-based generator [27] maps z to an intermediate latent
space w ∈ W to control the styles of the content c via AdaIN [21]. (c) Our token-based generator
starts from a sequence of content tokens {c1, · · · , cm} and controls each content token with a set of
style tokens {s1, · · · , sn} ∈ S by attention mechanism with a visual Transformer. M denotes the
mapping network and G denotes the generator network.

different image variations (e.g., hairstyle, facial expression) [28, 44, 52]. These limitations for image
modeling can even lead to visible artifacts in the synthesized results (e.g., droplet artifacts [27]).

To get rid of the issues caused by StyleGAN’s style modeling, we introduce a new perspective
that views image synthesis as a visual token generation problem. The visual token is a popular
representation of an image patch with a predefined size and position [6, 7, 13]; and has shown an
impressive superiority in various tasks with the development of Transformer models [6, 13, 43, 46].
Inspired by the appealing property of the token-based representation, we propose to achieve image
synthesis by visual token generation. Specifically, it takes as input a sequence of latent tokens
to predict the visual tokens of an image. Such a token-based representation enables a flexible
local manipulation for different image regions, which makes it possible to learn content-aware and
fine-grained style control for image synthesis.

Under this new paradigm, we design a token-based generator, i.e., TokenGAN, for the visual token
generation problem. Specifically, we consider two different types of input tokens in the generator,
i.e., the content tokens and the style tokens. The content tokens are learned as the constant input in
the generator network and the style tokens are projected from a learned intermediate latent space
(Figure1-c). Given a sequence of style tokens, the TokenGAN learns to control the visual token
generation by rendering each content token with related style tokens according to their semantics. In
particular, since the Transformer has been verified to be effective in sequence modeling in a broad
range of tasks [6, 43], we adopt a generator network architecture from a visual Transformer to model
the relations between the content tokens and the style tokens. Through such a content-dependent style
modeling by the attention mechanism in Transformer, the TokenGAN is able to achieve content-aware
and fine-grained style learning for image synthesis.

We conduct both quantitative comparisons and qualitative analysis on several unconditional image
generation benchmarks. The results show that the token-based generator has achieved comparable
results to the state-of-the-art in image synthesis. We summarize our contributions as below:

• We propose a new perspective of achieving image synthesis by visual token generation.
Such a token-based representation enables flexible local manipulation for different image
regions, leading to a better image modeling.

• We propose a token-based generator (i.e., TokenGAN) for the visual token generation.
Specifically, the TokenGAN introduces the style tokens and the content tokens. It adopts a
Transformer-based network for content-aware style modeling.

• We show extensive experiments (quantitative and qualitative comparisons, study on style
editing, image inversion and image interpolation) to verify the effectiveness of the token-
based generator. Specifically, the token-based generator is able to synthesize high-fidelity
1024× 1024 images without any convolutions in the generator.

2 Related works

2.1 Style-based generator

The distinguishing feature of the style-based generator is its unconventional generator architecture
[26, 27, 28, 52]. Typically, the style-based generator consists of a mapping network f and a synthesis
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network g. The mapping network is used to transform the input latent code z to an intermediate latent
code w ∈ W for learning a less entangled latent space. The synthesis network follows a progressive
growing design that is able to first output low-resolution images that are not affected significantly by
high-resolution layers [25, 27]. Such an architecture design can lead to an automatic, unsupervised
separation of high-level attributes in different layers. For example, when trained on human faces, the
low-resolution layers control coarse styles (e.g., pose, identity) of images and high-resolution layers
control fine styles (e.g., micro-structure, color scheme) [25].

To control the attributes of the image, the style-based generator produces styles from the intermediate
latent code w by affine transforms, which then control each layer of the synthesis network via adaptive
instance normalization (AdaIN) [21, 35]. The AdaIN operation removes styles from previous layers
by normalizing each feature map to zero mean and unit deviation, and it assigns the new styles by
scaling and biasing the complete normalized feature maps. However, it has been demonstrated such an
AdaIN operation can destroy the magnitude information of features and thus results in the well-known
droplet artifacts [28]. Besides, the scale-specific style disentanglement in StyleGAN can be limited
due to the complex semantic components in each feature map [28, 52]. In this paper, we explore a
new architecture by flattening the image as a sequence of tokens, which enables fine-grained control
of the image by assigning token-wise semantic-aware styles based on the attention mechanism.

2.2 Transformer in vision

The Transformer typically takes as input a sequence of vectors, called tokens [43]. The Transformer
is built for sequence modeling solely on attention mechanisms over the tokens, dispensing with
recurrence and convolutions entirely [5, 11, 43, 30]. Due to its great success in the field of natural
language processing, an increasing number of works attempt to extend Transformer for computer
vision tasks [6, 7, 8, 13, 18, 36, 55]. For example, iGPT shows promising results in image classifica-
tion by pre-training a sequence Transformer with the task of auto-regressive next pixel prediction
and masked pixel prediction [8]. Dosoyvitskiy et al. propose to split an image into patches and feed
these patches into a standard Transformer (ViT) for image classification [13]. They show that a ViT
with large-scale training can trump CNNs equipped with inductive bias. DETR is a seminal work
that views object detection as a direct set prediction problem, eliminating the need for hand-crafted
components and achieving impressive performance by Transformer [6]. To mitigate the issue of high
computation complexity associated with long sequences caused by high-resolution images, a branch
of works explores lightweight Transformer (e.g.., Deformable DETR) for vision tasks [55].

Transformer is also attracting increasing attention in low-level vision tasks [14, 24, 34, 36, 42]. Parmar
et al. cast image generation as an autoregressive sequence generation problem and propose Image
Transformer with a local self-attention mechanism [36]. However, Image Transformer can suffer
from its quadratic computation cost and its long inference time due to auto-regressive prediction.
Most existing works adopt a hybrid CNN-Transformer architecture, which consists of a CNN
head for feature extraction, a Transformer encoder-decoder backbone, and a CNN tail for feature
decoding [7, 46, 48]. For example, IPT fully utilizes the Transformer architecture by a large-scale
pre-training and achieves promising results in several image restoration tasks [7]. In parallel work,
Hudson et al. introduce bipartite structure to maintain computation of linear efficiency for long-range
interactions across the image based on a convolution backbone [22]. Our token-based generator
inherits the network architecture from Transformer without any convolution layers and is able to
yield surprising promising results for high-resolution image synthesis.

3 Approach

In this section, we introduce the details of the proposed token-based generator (TokenGAN). As
depicted in Figure 2, the TokenGAN takes as input two kinds of tokens to generate the visual tokens of
images by a Transformer. We introduce the input tokens in Section 3.1 and the token-based generator
architecture in Section 3.2, following the overall optimization in Section 3.3.

3.1 Visual tokens

It’s intuitive that the visual tokens of an image contain the information of both content (i.e., semantics)
and related styles. In our token-based generator, we choose to separate these two kinds of information
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Figure 2: The overview of the TokenGAN for the visual token generation task for image synthesis.
The TokenGAN takes as input two kinds of visual tokens, i.e., the style tokens and the content tokens,
to generate visual tokens of an image. Specifically, TokenGAN learns to render each content token
by attended style tokens with a Transformer, leading to content-aware and fine-grained style control.

by a sequence of content tokens and a sequence of style tokens, so that the interactions between them
can be modeled and controlled for the image synthesis. We introduce the details of each as below.

Content tokens. As depicted in Figure 2-a, the TokenGAN starts from the sequence of learned
constant content tokens c ∈ Rm×(p2×d) through the input layer. Specifically, d is the dimension in
terms of channels, p × p is the patch size of the content token, and m is the length of the content
token sequence. To maintain the position information of each token, we add position encodings
p ∈ Rm×(p2×d) to each content token following a commonly used paradigm [7, 13]. For simplicity,
we rewrite the notation for the content tokens as {c1, · · · , cm}, where ci ∈ Rd.

Style tokens. Given a latent code z from the input latent space Z , the mapping network adopts
several MLPs to map the input z to a set of different style tokens {s1, · · · , sn} ∈ S, where si ∈ Rd.
As shown in Figure 2-b, the style tokens are paired with a set of learnable semantic embedding as a
key-value structure in each style modulation layer of the TokenGAN. With the Transformer modeling,
all the content tokens will match with the semantic embedding and then fetch the new style from the
style tokens based on the matching results. The fetched new styles are used to control the values of
the content tokens, which are finally decoded to images. Such a token-wise style control enables
content-aware and fine-grained style learning for image synthesis.

3.2 Token-based generator

As shown in Figure 2, the TokenGAN consists of multiple layers of style blocks and each style
block consists of a style normalization layer and a style modulation layer. Specifically, the style
normalization layer removes the styles from previous layers by relieving the dependence on the
original statistics of input token features. At the same time, the style modulation layer assigns new
styles from the current layer to the content tokens. In particular, the new styles are calculated based
on the pairwise interactions between the style tokens and the content tokens by a cross-attention
mechanism. We introduce more details about the style normalization, content-aware style modeling,
and style modulation in our generator as below.

Style normalization. We apply style normalization on the input content tokens to remove the styles
from previous layers, which is denoted as:

Norm(ci) = (ci − µ(ci)) / σ(ci), i = 1, · · · ,m, (1)
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Figure 3: Visualization of the attention maps obtained by Eq. (2). Each column highlights the
image regions that are affected most by the corresponding content-aware style token. It shows that
TokenGAN is able to attend to meaningful semantics for different persons in an unsupervised way.
The tags are associated by human based on the attention responses for clear presentation.

where each ci ∈ Rd denotes a content token, d denotes the dimension of each content token, and m is
the length of the token sequence. Specifically, the style-based generator typically removes the styles
from previous layers by Instance Normalization [41], which may destroy the information conveyed
by the magnitude of the feature map relative to each other [27, 28, 41]. To avoid the above issue,
we adopt LayerNorm [43] to relive the style dependence while maintaining the information of the
relative magnitude following previous works [28, 29, 43].

Content-aware style modeling. After style normalization, the TokenGAN calculates new styles to
control the input content tokens. As shown in the style modulation in Figure 2-b, the style tokens are
paired with a set of learnable semantic embedding as a key-value structure. Given the content tokens
{c1, · · · , cm} from the input and the style tokens from the mapping network {s1, · · · , sn} ∈ S, the
token-wise new styles are calculated by attention mechanism:

S′ = Attention(C,K,S) = softmax(
CKT

√
d

)S, (2)

where S′ ∈ Rm×d denotes new styles for all the content tokens, the input content tokens are packed
together into a matrix C ∈ Rm×d, similarly with the style tokens as matrix S ∈ Rn×d, and the
matrix K ∈ Rn×d for the learnable semantic embedding in where each row vector indicates a learned
semantic. We omit the linear projection in the standard attention calculation for simplicity [43].

Through such a cross-attention mechanism, the new token-wise styles are fetched for style modulation
based on the matching results. Particularly, tokens with similar semantics will have similar styles
(e.g., the same color for the two eyes). We visualize the attended regions for different key-value pairs
(i.e., semantic-style embedding) in Figure 3, and we can find that the learned embedding K is able to
attend to meaningful image regions.

Style modulation. Different from the traditional Transformer that adds the attention results back
to the input features as residual features, our attention results are used as new styles by amplifying
each channel of the content tokens:

C′ = C� S′, (3)
where each row vector in C ∈ Rm×d indicates a content token, and � indicates element-wise
multiplication. Such a style modulation affects the operation of subsequent embedding layers (which
we implemented by fully-connected layers) and thus control the style of generated images.

Implementation details. We translate the generated visual tokens to the image by concatenation
and reshaping. In practice, we follow StyleGAN2 and adopt a skip-generator architecture in Token-
GAN. Such a skip generator generates images in each layer at different resolutions (e.g., from 42 to
82 ) and progressively upsamples and sums the images from the previous layer by skip connections
to the next layer [28, 25]. After progressive summing, the generator takes the output in the last layer
as the final results.

5



3.3 Overall optimization

Style mixing. To further encourage the styles to localize, we employ the mixing regularization
technique during training [27]. To be specific, a given percentage of images are generated using two
random latent codes. We run two latent codes z1, z2 through the mapping network, and have the
corresponding {s11, · · · , s1n}, {s21, · · · , s2n}. We randomly choose an inject point to mix the styles, so
that a part of the final style tokens from z1 and another part from z2. This regularization technique
prevents the network from assuming that a set of style tokens are correlated. A similar strategy is
adopted in terms of different layers following the style-based generator [27].

Optimization objectives. We denote the generated image output by the token-based generator as:

G(z) = g(f(z),C), (4)

where z ∈ Z ∼ N (0, 1) indicates the input latent code, C = {c1, · · · , cm} denotes the sequence of
learned constant content tokens through the input layer, and f , g, G indicate the mapping network,
the generator network and the token-based generator, respectively. Our token-based generator follows
the same optimization objectives used by the style-based generator [27, 28], i.e., an non-saturating
logistic adversarial loss with R1 regularization. To be specific, the generator loss is:

LG = Ez∼N (0,1)[log(1 + exp(−D(G(z))))], (5)

where D is the discriminator and the discriminator loss is

LD = Ex∼Pd
[log(1 + exp(−D(x)))] + Ez∼N (0,1)[log(1 + exp(D(G(z))))] +R1(ψ), (6)

where x ∼ Pd denotes images from the real data, and R1(ψ) is the regularization term calculated by:

R1(ψ) =
γ

2
Ex∼Pd

[
‖∇Dψ(x)‖2

]
. (7)

Specifically, the R1 regularization term [32] is computed less frequently than the main loss function
following the commonly used lazy regularization strategy, thus greatly diminishing the computational
cost and the overall memory usage [27, 28, 52].

4 Experiments

4.1 Experiment Setup

Dataset To evaluate the token-based generator and make fair comparisons with the SOTA approach
(i.e., the style-based generator [28]), we conduct experiments on the most commonly-used public
research datasets, i.e., Flickr-Faces-HQ (FFHQ) [27] and Large-scale Scene Understanding (LSUN)
[47]. Specifically, FFHQ consists of 70,000 high-quality images of human face, which is able to
evaluate the model’s ability to synthesize high-frequency details. We conduct experiments on FFHQ
with both 256× 256 and 1024× 1024 image size following previous works [15, 22]. Besides, we
choose the church set of LSUN [47] to evaluate the synthesis in terms of complex scenes.

Evaluation. In this section, we conduct both quantitative and qualitative experiments on the token-
based generator. Specifically, we report quantitative results by three commonly-used metrics, i.e.,
Fréchet Inception Distance (FID) [19], Precision and Recall [29, 39]. We use FID as it has been
widely used in many generation tasks as an effective perceptual metric [4, 26, 27]. In addition to
the image quality assessment, we use the metrics of Precision and Recall to evaluate the distribution
learned by GAN. Specifically, the Precision metric intuitively measures the quality of samples from
the generated images, while recall measures the proportion of real images that is covered by the
learned distribution by GAN [39].

Training details We use 8 NVIDIA V100 GPUs for training each model. We build upon the public
Pytorch implementation of StyleGAN22 [28]. For fair comparisons, we inherit all of the training
details and parameter settings from the configuration E setup. All models are trained and report the
best results under the same training iterations. For each iteration, we set the size of mini-batch as 32.
We use the Adam solver [3] with the same momentum parameters β1 = 0, β2 = 0.99 to train both the
generator and discriminator. We apply R1 regularization for every 16 iterations.

2https://github.com/rosinality/stylegan2-pytorch
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Figure 4: Uncurated results for FFHQ-1024 [27] and LSUN CHURCH [47]. The results show that
token-based generator is able to synthesize both high-frequency details (e.g., hair and beard on the
human face) and plausible structures for complex scenes (e.g., the church).

Table 1: Quantitative comparisons with the state-of-the-art model (i.e., StyleGAN2 [28]) on FFHQ-
256 [27], FFHQ-1024[27] and LSUN CHURCH [47]. We compute each metric 10 times with
different random seeds and report their average. The result shows that the token-based generator
achieves comparable performance with the SOTA. ↑ the higher, the better. ↓ the lower, the better.

Model Metrics FFHQ-256 [27] FFHQ-1024 [27] LSUN CHURCH [47]
FID↓ 6.09± 0.051 5.20± 0.049 5.88± 0.043

StyleGAN2 [27] Precesion↑ 0.643± 0.002 0.653± 0.002 0.587± .002
Recall ↑ 0.401± 0.002 0.411± 0.002 0.358± 0.002

FID↓ 5.41± 0.050 5.21± 0.032 5.56± 0.037
TokenGAN(Ours) Precesion↑ 0.660± 0.002 0.651± 0.001 0.577± 0.002

Recall↑ 0.447± 0.003 0.442± 0.004 0.376± 0.002

4.2 Unconditional image synthesis

Quantitative comparisons. We report quantitative comparisons with StyleGAN2 [28] due to its
state-of-the-art performance. For fair comparisons, we report the results with the same training
iterations on FFHQ-256 [27], FFHQ-1024 [27] and LSUN CHURCH [47] by three objective metrics,
i.e., FID, Precision and Recall in Table 1. The results show that the token-based generator has
achieved the state-of-the-art results in terms of both perceived quality and distribution modeling.

Qualitative results. To demonstrate the image quality of the synthesis results for the token-based
generator, we randomly sample noise z ∈ Z ∼ N (0, 1) to generate images for high-resolution
images (i.e., with resolution 1024× 1024) of human face and the images of complex church scenes.
The uncurated results can be found in Figure 4. It shows that the token-based generator is able to
synthesize both high-frequency details of the human face and plausible structures for complex scenes.

Style editing. We study and report the results of style editing by the TokenGAN in Figure 5. All
the results are obtained by editing the style token of interest and then re-synthesizing images using
edited style tokens. The result shows several interesting properties of the TokenGAN. First, the
TokenGAN has a similar behavior as in StyleGAN2, i.e., controlling coarse/middle/fine styles at
different layers (e.g., pose/hairstyle/color scheme in 82/162 − 642/1282 − 2562 layers). Besides,
the TokenGAN shows localized behaviors for the style tokens. For example, in the first row, editing
the style token for the pose "globally" changes the pose while remaining the styles of other regions
(e.g., hairstyle, background). In the second row, editing the style token for hair length, TokenGAN
"locally" turns the hair longer while remaining other styles.
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Figure 5: Results of style editing. All the results are obtained by editing the style token of in-
terest and then re-synthesizing images using edited style tokens. It shows that TokenGAN con-
trols coarse/middle/fine styles at different resolution layers (e.g., pose/hairstyle/color scheme in
82/162 − 642/1282 − 2562 layers). Besides, the TokenGAN is able to get localized behavior by
editing a specific style while remaining other styles at the same time. For example, in the second row,
the TokenGAN turns the hair length longer without changing other styles.

Image inversion. To better apply well-trained GANs to real-world applications, the technique of
GAN inversion has attracted an increasing attention [40, 53, 1, 2]. Such an inversion technique
enables real image editing by searching the most accurate latent code in the learned latent space to
recover the real image [53]. It has been demonstrated that the model with better inversion results tend
to learn a better image modeling of the real data [28]. Specifically, we randomly sample several real
images from FFHQ-256 [28] and adopt the optimization-based inversion technique used by most
works [27, 40, 53]. For fair comparisons, we use the same setting following StyleGAN2 [27]. The
inversion results by the style-based generator and the token-based generator are shown in Figure
6. It shows that the token-based generator is able to reconstruct real images better. For example,
StyleGAN2 tends to reconstruct the lips and the headscarf in the fifth case with the same red color,
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Figure 6: Visual results of image inversion by StyleGAN2 [28] and the token-based generator. We
adopt the same inversion technique following the common paradigm [1, 2, 27]. It shows that the
token-based generator is able to reconstruct fine-grained details with the dense style control over
image regions (e.g., the facial expressions in the third case).

Table 2: Quantitative comparison of the reconstructed images by image inversion in terms of mean
average error (MAE, range=[0,255]) and LPIPS distance [51].

Model MAE↓ LPIPS ↓ Model MAE↓ LPIPS ↓
StyleGAN2[28] 16.45 0.1539 TokenGAN 13.43 0.1238

while the token-based generator is able to reconstruct accurate colors for the lips and the headscarf
respectively. This is because TokenGAN renders different regions by using different style tokens via
attention mechanism, while StyleGAN2 renders them by a single style vector.

For a better quantitative comparison for image inversion, we randomly sample 1,000 real images from
FFHQ-256 and report the mean absolute error (MAE, range=[0,255]) and the LPIPS distance [51] of
the inversion results by StyleGAN2 and TokenGAN. The results in Table 2 show that TokenGAN
is able to reconstruct significantly more accurate results with much lower MAE and shorter LPIPS
distance, which is in line with the visual results in Figure 6.

Image interpolation. To further explore the property of the learned latent space by the token-based
generator, we perform image interpolation by a linear interpolation in the learned intermediate latent
space S. In practice, we randomly sample two noises z1, z2 and run them through the mapping
network to have their corresponding sequence of style tokens s1 := {s11, · · · , s1n}, s2 := {s21, · · · , s2n}.
After that we perform linear interpolation for each token by s3i = α× s1i + (1− α)× s2i , α ∈ (0, 1)
and use the new style tokens s3 := {s31, · · · , s3n} to synthesize a new image. As shown in Figure
7, we show the sampled styles s1, s2 in the first column and the last column, and the interpolated
styles between them. The results show that the token-based generator is able to perform perceptually
smooth transition between two different styles (e.g., glasses, age, hair length, coloring, etc.)

4.3 Ablation study

To study the effectiveness of each component of the token-based generator, this section presents abla-
tion studies on FFHQ-256 [27] after 0.4 million training iterations in terms of FID [19]. Specifically,
we calculate the metric 10 times with different random seed and report the average results.
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Figure 7: Results of image interpolation by the token-based generator. In practice, we sample two
latent codes (the 1st and the 7th column) and perform linear interpolation of them in the learned
intermediate latent space (interpolated results are from the 2th to the 6th column). The token-based
generator shows smooth transition of high-level attributes in results (e.g., glasses in the second row).

Table 3: Quantitative ablation study on the number of style tokens.

style tokens 8 16 32 64
FID 7.66 ± 0.060 7.02 ± 0.060 6.81 ± 0.044 7.60 ± 0.071

The number of style tokens. To study the effectiveness of the style tokens, we conduct ablation
studies by using different number of style tokens. As shown in Table 3, with the growing number of
the style tokens, there are more style tokens to model the distribution of styles for different semantics
and the quality of images are improved. However, when the number of style tokens grows to 64, the
learning will be difficult and performance would drop.

Table 4: Comparisons on the content tokens.
(m64,m128,m256) FID↓
(162, 162, 322) 18.54± 0.087
(322, 322, 642) 15.69± 0.067
(642, 642, 1282) 6.81 ± 0.044

Table 5: Comparisons on the style normalization.
Model FID

InstanceNorm [41] 13.7 ± 0.051
PixelNorm [25] 6.96 ± 0.050
LayerNorm [43] 6.81 ± 0.044

The number of content tokens. We empirically set the number of content tokens m at different
layers according to the image size for the best performance and training efficiency. We conduct
ablation study from layer 642 to 2562 and denote the number of content tokens in these layers
as (m64,m128,m256). The results in Table 4 show that more content tokens could provide more
fine-grained control over the whole images, leading to better results in image generation.

Style normalization layers. We compare different style normalization layers in Table 5. The results
show that, PixelNorm [25] and LayerNorm [43] significantly outperforms the style normalizatioin
by instance normalization in the token-based generator [41]. We choose LayerNorm as the style
normalization layer in the token-based generator.

5 Conclusion

In this paper, we propose a novel TokenGAN showing that the token-based representation of image
features and styles could enable content-aware and fine-grained style learning for image synthesis.
Specifically, we use Transformer to model the interaction between content tokens and style tokens,
which facilitates the perceived quality of generated images and shows promising properties in terms
of style editing. In the future, we will study to extend the generative transformers to extensive
applications, e.g., style transfer [20], animation generation [45], image inpainting [49], etc.
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