
A Appendix

A.1 Hyper-Parameters

For all datasets, the surrogate gradient function is σ(x) = 1
π arctan(π2αx) + 1

2 , thus σ′(x) =
α

2(1+(π2 αx)
2) , where α is the slope parameter. We set α = 2, Vreset = 0 and Vth = 1 for all neurons.

The optimizer is SGD with momentum 0.9. As recommended by [62], we detach S[t] in the neuronal
reset Eq. (3) in the backward computational graph to improve performance. We use the mixed
precision training [36], which will accelerate training and decrease memory consumption, but may
cause slightly lower accuracy than using full precision training. The hyper-parameters of the SNNs
for different datasets are shown in Tab. 7. Tab. 8 shows the learning rates of the SNNs with different
element-wise functions for DVS Gesture. The data pre-processing methods for three datasets are as
following:

ImageNet The data augmentation methods used in [14] are also applied in our experiments. A
224×224 crop is randomly sampled from an image or its horizontal flip with data normalization for
train samples. A 224×224 resize and central crop with data normalization is applied for test samples.

DVS128 Gesture We use the same AER data pre-processing method as [8], and utilize random
temporal delete to relieve overfitting, which is illustrated in Sec. A.2.

CIFAR10-DVS We use the same AER data pre-processing method as DVS128 Gesture. We do not
use random temporal delete because CIFAR10-DVS is obtained by static images.

Dataset Learning Rate Scheduler Epoch lr Batch Size T ngpu

ImageNet Cosine Annealing [35], Tmax = 320 320 0.1 32 4 8
DVS Gesture Step, Tstep = 64.γ = 0.1 192 0.1 16 16 1
CIFAR10-DVS Cosine Annealing, Tmax = 64 64 0.01 16 4, 8, 16 1

Table 7: Hyper-parameters of the SNNs for three datasets.

A.2 Random Temporal Delete

To reduce overfitting, we propose a simple data augmentation method called random temporal delete
for sequential data. Denote the sequence length as T , we randomly delete T − Ttrain slices in the
origin sequence and use Ttrain slices during training. During inference we use the whole sequence,
that is, Ttest = T . We set Ttrain = 12, T = 16 in all experiments on DVS Gesture.

Fig. 10 compares the training loss and training/test accuracy of Plain Net, Spiking ResNet, and SEW
ResNet with or without random temporal delete (RTD). Here the element-wise function g is ADD. It
can be found that the network with RTD has higher training loss and lower training accuracy than
the network without RTD, because RTD can increase the difficulty of training. The test accuracy of
the network with RTD is higher than that without RTD, showing that RTD will reduce overfitting.
The results on the three networks are consistent, indicating that RTD is a general sequential data
augmentation method.

A.3 Firing rates on DVS Gesture

Fig. 11(a) shows the firing rates of Al in each block from 7B-Net for DVS Gesture. Note that if g is
AND, the SEW block gets closer to identity mapping when the firing rate approaches 1, while for other

Network Element-Wise Function g Learning Rate
SEW ResNet ADD 0.001
SEW ResNet AND 0.03
SEW ResNet IAND 0.063

Spiking ResNet - 0.1
Plain Net - 0.005

Table 8: Learning rates of the SNNs for DVS Gesture.

15

tr
ai

ni
ng

 lo
ss

50

60

70

80

90

100

0.0

0.2

0.4

0.6

0.8

1.0
Plain Net RTD
Plain Net

Spiking ResNet RTD

Spiking ResNet
SEW ADD RTD
SEW ADD

Plain Net RTD (test)

Plain Net (test)

Plain Net RTD (train)

Plain Net (train)

Spiking ResNet RTD (test)

Spiking ResNet (test)

Spiking ResNet RTD (train)

Spiking ResNet (train)

SEW ADD RTD (test)

SEW ADD (test)

SEW ADD RTD (train)

SEW ADD (train)

ac
cu

ra
cy

(%
)

tr
ai

ni
ng

 lo
ss

50

60

70

80

90

100

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(%
)

tr
ai

ni
ng

 lo
ss

50

60

70

80

90

100

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

(%
)

0 50 100 150
epoch

0 50 100 150
epoch

0 50 100 150
epoch

0 50 100 150
epoch

0 50 100 150
epoch

0 50 100 150
epoch

Figure 10: Comparison of training loss and training/test accuracy with/without random temporal
delete (RTD).

g, the SEW block becomes identity mapping when the firing rate approaches 0. When all SEW blocks
become identity mapping, the 7B-Net will become c32k3s1-BN-PLIF-{MPk2s2}*7-FC11, which is a
too simple network to cause underfitting. Thus, the SEW blocks in 7B-Net are not necessary to be
identity mapping. Fig. 11(b) shows the firing rates of each block’s output Ol. The firing rates do not
strictly decrease with block index increases as blocks are connected by max pooling, which squeezes
sparse spikes and increases the firing rate. It can be found that the blocks in SEW AND network have
the lowest firing rates. The blocks in SEW IAND network have higher firing rates than those of SEW
AND network, and the SEW IAND network has much higher accuracy than the SEW AND network
(95.49% v.s. 70.49%), indicating that using IAND to replace AND can relieve the silence problem
discussed in Sec.4.1.

A.4 Gradients in Spiking ResNet with Firing Rates

The gradients of SNNs are affected by firing rates, which is the reason why we analyze the firing
rates before gradients in Sec.4.1. Consider a spiking ResNet with k sequential blocks to transmit
Sl[t], and the identity mapping condition is met, e.g., the spiking neurons are the IF neurons with
0 < Vth ≤ 1, then we have Sl[t] = Sl+1[t] = ... = Sl+k−1[t] = Ol+k−1[t]. We get

∂Olj [t]

∂Slj [t]
=
∂SN(Slj [t])

∂Slj [t]
= Θ′(Slj [t]− Vth) (12)

∂L

∂Slj [t]
=

∂L

∂Olj [t]
Θ′(Slj [t]− Vth). (13)

Then the gradients between two adjacent blocks are

∂L

∂Ol+i
=

∂L

∂Ol+i+1
Θ′(Sl+i+1 − Vth). (14)

16

fir
in

g
ra

te

0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Spiking ResNet
Plain Net
SEW ADD
SEW AND
SEW IAND

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
0.16

0.12

0.08

0.04

0.00
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Spiking ResNetSpiking ResNet

Plain NetPlain Net

SEW ADDSEW AND
SEW IAND

fir
in

g
ra

te

block index l block index l

block index l

(a) Firing rates of Al in each block on DVS Gesture Gesture

fir
in

g
ra

te

0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Spiking ResNet
Plain Net
SEW ADD
SEW AND
SEW IAND

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
0.16

0.12

0.08

0.04

0.00
0 1 2 3 4 5 6 0 1 2 3 4 5 6

Spiking ResNetSpiking ResNet

Plain NetPlain Net

SEW ADDSEW AND
SEW IAND

fir
in

g
ra

te

block index l block index l

block index l

(b) Firing rates of the output Ol in each block on DVS Gesture Gesture

Figure 11: Firing rates of the last SN and the output Ol in each block of 7B-Net on DVS Gesture.

Denote the number of neurons as N , the firing rate of Sl as Φ =
∑N−1
j=0

∑T−1
t=0 Slj [t]

NT , then∥∥∥∥ ∂L∂Sl
∥∥∥∥ =

∥∥∥∥ ∂L

∂Ol+k−1

∥∥∥∥ ·
∥∥∥∥∥
k−1∏
i=0

Θ′(Sl+i − Vth)

∥∥∥∥∥ , (15)

where ∥∥∥∥∥
k−1∏
i=0

Θ′(Sl+i − Vth)

∥∥∥∥∥ =
√
NTΦ(Θ′(1− Vth))2k +NT (1− Φ)(Θ′(0− Vth))2k

→

√
NT, Θ′(1− Vth) = 1,Θ′(0− Vth) = 1√
NTΦ, Θ′(1− Vth) = 1,Θ′(0− Vth) < 1√
NT (1− Φ), Θ′(1− Vth) < 1,Θ′(0− Vth) = 1

0, Θ′(1− Vth) < 1,Θ′(0− Vth) < 1

+∞, Θ′(1− Vth) > 1 or Θ′(0− Vth) > 1.

A.5 0/1 Gradients Experiments

As the analysis in Sec.3.2 shows, the vanishing/exploding gradient problems are easy to happen in
Spiking ResNet because of accumulative multiplication. A potential solution is to set Θ′(0− Vth) =
Θ′(1−Vth) = 1. Specifically, we have trained the Spiking ResNet on ImageNet by setting Vth = 0.5

and σ′(x) =
1+π2

4

1+(πx)2 in the last SN of each block to make sure that Θ′(0− Vth) = Θ′(1− Vth) = 1.

17

Surrogate function SEW ResNet (ADD) Spiking ResNet
ArcTan 0.8263 0.7733

Rectangular 0.8256 0.6601
Constant 1 0.1256 0.1

Table 9: Test accuracy of SEW ADD ResNet and Spiking ResNet on CIFAR-10 with different
surrogate functions.

However, this network will not converge, which may be caused by that SNNs are sensitive to surrogate
functions.

[64] uses the Rectangular surrogate function σ′(x) = 1
a sign(|x| < a

2). If we set a = 1, then σ′(x) ∈
{0, 1}. According to Eq.(8), using this surrogate function can avoid the gradient exploding/vanishing
problems in Spiking ResNet. We compare different surrogate functions, including Rectangular
(σ′(x) = sign(|x| < 1

2)), ArcTan (σ′(x) = 1
1+(πx)2) and Constant 1 (σ′(x) ≡ 1), in the SNNs on

CIFAR-10. Note that we aim to evaluate 0/1 gradients, rather than achieve SOTA accuracy. Hence,
we use a lightweight network, whose structure is c32k3s1-BN-IF-{{SEW Block (c32)}*2-MPk2s2}*5-
FC10. We use ADD as g in SEW blocks. We also compare with Spiking ResNet by replacing SEW
blocks with basic blocks. The results are shown in Tab.9. The learning rates for each surrogate
function are fine-tuned.

Tab.9 indicates that the choice of surrogate function has a considerable influence on the SNN’s
performance. Although Rectangular and Constant 1 can avoid the gradient exploding/vanishing
problems in Eq.(8), they still cause lower accuracy or even make the optimization not converges.
Tab.9 also shows that the SEW ResNet is more robust to the surrogate gradient as it always has higher
accuracy than the Spiking ResNet with the same surrogate function.

A.6 Reproducibility

All experiments are implemented with SpikingJelly [7], which is an open-source deep learning
framework for SNNs based on PyTorch [41]. Source codes are available at https://github.
com/fangwei123456/Spike-Element-Wise-ResNet. To maximize reproducibility, we
use identical seeds in all codes.

18

https://github.com/fangwei123456/Spike-Element-Wise-ResNet
https://github.com/fangwei123456/Spike-Element-Wise-ResNet

