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A Derivation

A.1 Evidence Lower Bound for Multi-Task Learning

In this paper, we follow the multi-input multi-output data setting [33, 52] for multi-task learning,
each task t has its own training data Dt = {xt,n,yt,n}Ntn=1. Note that we derive our methodology
mainly using terminologies related to classification tasks, but it is also applicable to regression tasks.

Under the probabilistic formulation for multi-task learning, we start with the conditional log-
likelihood for each task t: log p(yt,n|xt,n,D1:T\t), where (xt,n,yt,n) is a sample from the data
of current task t and D1:T\t is the data from all related tasks.

Here, we introduce the latent variables zt,n and wt:

log p(yt,n|xt,n,D1:T\t) = log

∫ ∫
p(yt,n, zt,n,wt, |xt,n,D1:T\t)dzt,ndwt, (1)

where p(yt,n, zt,n,wt, |xt,n,D1:T\t) is the joint conditional predictive distribution over the classifi-
cation label or regression target. Under the assumption that wt and zt,n are conditionally independent,
we obtain

log p(yt,n|xt,n,D1:T\t) = log

∫ ∫
p(yt,n|zt,n,wt)p(zt,n|xt,n,D1:T\t)p(wt|D1:T\t)dzt,ndwt.

(2)
Next, we introduce the variational posteriors qφ(zt,n|xt,n) and qθ(wt|Dt) to approximate the true
posteriors for latent representations and classifiers, respectively. By leveraging Jensen’s inequality,
we have the following steps as

logp(yt,n|xt,n,D1:T\t)

= log

∫ ∫
p(yt,n|zt,n,wt)p(zt,n|xt,n,D1:T\t)dzt,np(wt|D1:T\t)

qθ(wt|Dt)
qθ(wt|Dt)

dwt

≥
∫

log
[∫ p(yt,n|zt,n,wt)p(zt,n|xt,n,D1:T\t)dzt,np(wt|D1:T\t)

qθ(wt|Dt)

]
qθ(wt|Dt)dwt

= Eqθ
[
log

∫
p(yt,n|zt,n,wt)p(zt,n|xt,n,D1:T\t)

qφ(zt,n|xt,n)
qφ(zt,n|xt,n)

dzt,n
]

−KL[qθ(wt|Dt)||p(wt|D1:T\t)]

≥ EqθEqφ [log p(yt,n|zt,n,wt)]−KL[qφ(zt,n|xt,n)||p(zt,n|xt,n,D1:T\t)]

−KL[qθ(wt|Dt)||p(wt|D1:T\t)].

(3)
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Thus, we obtain the ELBO for multi-task learning with latent representations and classifiers as
follows:

1

T

T∑
t=1

log p(Yt|Xt,D1:T\t) ≥
1

T

T∑
t=1

{ Nt∑
n=1

{
EqθEqφ [log p(yt,n|zt,n,wt)]

−KL[qφ(zt,n|xt,n)||p(zt,n|xt,n,D1:T\t)]
}
−KL[qθ(wt|Dt)||p(wt|D1:T\t)]

}
.

(4)

We integrate this ELBO with the proposed Gumbel-Softmax priors to obtain the empirical objective
for variational multi-task learning. To verify the effectiveness of our proposed models, we define the
basic variational Bayesian multi-task learning (VBMTL) as a baseline. VBMTL shares the inference
network of latent representations among tasks but just applies the normal Gaussian as priors of the
latent variables.

In this paper, we propose variational multi-task learning, a general probabilistic inference framework,
in which we cast multi-task learning as a variational Bayesian inference problem. This general
framework can be seamlessly combined with the advantages of other deterministic approaches in
leveraging shared knowledge among tasks. We can in fact take advantage of deterministic approaches
to generalize even better in more settings, e.g., large amounts of training data. In this case, we can
train a large convolutional neural network fully end-to-end to extract more representative features
specifically for individual tasks.

A.2 Evidence Lower Bound for Single-Task Learning

Generally, the proposed Bayesian inference framework which infers the posteriors of presentations z
and classifiers w jointly can be widely applied in other research fields. For example, based on the
proposed Bayesian inference framework, we introduce a variational version of single-task learning
(VSTL) and provide the derivation of its evidence lower bound. It is worth noting that single-task
learning does not share knowledge among tasks, thus both inference networks of latent representations
and classifiers are task-specific. And the log-likelihood for single-task learning is not allowed to be
conditioned on the data from other tasks.

logp(yt,n|xt,n)

= log

∫ ∫
p(yt,n|zt,n,wt)p(zt,n|xt,n)p(wt)dzt,ndwt

= log

∫ ∫
p(yt,n|zt,n,wt)p(zt,n|xt,n)dzt,np(wt)

qθ(wt)

qθ(wt)
dwt

≥
∫

log[

∫
p(yt,n|zt,n,wt)p(zt,n|xt,n)dzt,np(wt)

qθ(wt)
]qθ(wt)dwt

= Eqθ
[
log

∫
p(yt,n|zt,n,wt)p(zt,n|xt,n)

qφ(zt,n|xt,n)
qφ(zt,n|xt,n)

dzt,n
]
−KL[qθ(wt)||p(wt)]

≥ EqθEqφ [log p(yt,n|zt,n,wt)]−KL[qφ(zt,n|xt,n)||p(zt,n|xt,n)]−KL[qθ(wt)||p(wt)].

(5)

In this case, tasks are learned independently with no access to shared knowledge provided by other
tasks, thus the priors p(wt) and p(zt,n|xt,n) are set to normal Gaussians as applied in [? ? ? ].

B More Experimental Details

We train all models and parameters by the Adam optimizer [27] using an NVIDIA Tesla V100 GPU.
The learning rate is initially set as 1e − 4 and decreases with a factor of 0.5 every 3K iterations.
Details of iteration numbers and batch sizes for different benchmarks are provided in Table B.1. In
each batch, the number of training samples from each task and category is identical. The network
architectures of our methods for the four benchmarks are given. The code will be available at
https://github.com/autumn9999/VMTL.git.
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Table B.1. The iteration numbers and batch sizes on different datasets, where C and T denotes the
number of classes and tasks in the specific dataset, respectively.

Dataset Iteration Batch size

Office-Home 15, 000 4 ∗ C ∗ T
Office-Caltech 15, 000 4 ∗ C ∗ T
ImageCLEF 15, 000 4 ∗ C ∗ T
DomainNet 30, 000 2 ∗ C ∗ T

Table B.2. The inference network θ(·) for amortized classifiers in VMTL-AC.

Output size Layers

4096 Input feature
4096 Dropout (p=0.7)
512 Fully connected, ELU
512 Fully connected, ELU
512 Local reparameterization to µw, σ2

w

Table B.3. The inference network φ(·) for latent representations.

Output size Layers

4096, N ∗ 4096 Input features
4096 Cross attention
4096 Dropout (p=0.7)
512 Fully connected, ELU
512 Fully connected, ELU
512 Local reparameterization to µz , σ2

z

B.1 Inference Networks

The architecture of the inference network for amortized classifiers in VMTL-AC is in Table B.2. In
VMTL, we directly learn the parameters of the distribution of variational posteriors, which has the
same dimension as the latent representation. The architecture of the inference network for latent
representations is in Table B.3. During inference, we apply the reparameterization trick to generate
the samples for both latent variables [? ].

B.2 Implementation of the Compared Previous Works

In this paper, we compare against four representative methods [3, 25, 33, 38], which are implemented
by following the same experimental setup as our methods. In practice, we implement the method,
Long et al. [33], by applying its open code repository (https://github.com/thuml/MTlearn) under
the same experimental environments as ours. For other compared methods, the models consist a
shared feature extractor and task-specific classifiers. In particular, Bakker et al. [3] is a Bayesian
method for multi-task learning optimized by an expectation-maximization algorithm, producing very
competitive performance. Kendall et al. [25] propose to weigh multiple loss functions by considering
the homoscedastic uncertainty of each task, which shows the benefit of modeling uncertainty. Qian
et al. [38] integrate the variational information bottleneck [? ] to the method based on [25], which
shows the benefit of exploring shared information for latent representations.

C More Experimental Results

C.1 Effectiveness in Handling Limited Data

The results of average accuracy on the Office-Home, Office-Caltech, and ImageCLEF datasets are
given in Tables C.4, C.5, and C.6, respectively, which provide detailed information for Fig. 2 of the
paper. Our proposed probabilistic models, i.e., VMTL and VMTL-AC outperform the deterministic
baseline multi-task learning model (BMTL), which demonstrates the benefits of our proposed
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Table C.4. Performance under different proportions of training data on Office-Home.

Methods 5% 10% 20% 40% 60%

STL 49.2±0.2 58.3±0.1 64.9±0.1 70.3±0.2 73.4±0.1
VSTL 51.1±0.1 60.2±0.2 65.8±0.2 72.4±0.3 73.8±0.2

BMTL 50.4±0.1 59.5±0.1 65.6±0.1 70.5±0.1 69.5±0.2
VBMTL 51.3±0.1 60.9±0.1 67.0±0.2 72.1±0.1 74.0±0.1

VMTL-AC 56.3±0.1 63.8±0.1 68.3±0.1 69.0±0.1 73.7±0.2
VMTL 58.3±0.1 65.0±0.0 69.2±0.2 71.5±0.3 74.2±0.1

Table C.5. Performance under different proportions of training data on Office-Caltech.

Methods 5% 10% 20% 40% 60%

STL 88.6±0.3 90.7±0.2 92.4±0.3 96.6±0.2 97.2±0.2
VSTL 89.0±0.2 91.1±0.2 93.4±0.3 96.7±0.2 97.1±0.3

BMTL 89.5±0.3 92.3±0.2 93.1±0.1 95.4±0.3 97.0±0.2
VBMTL 90.8±0.6 93.2±0.2 93.5±0.1 96.5±0.1 97.1±0.4

VMTL-AC 93.9±0.1 95.1±0.0 95.2±0.1 96.8±0.2 97.2±0.2
VMTL 93.8±0.1 95.3±0.0 95.2±0.1 96.5±0.2 97.3±0.1

Table C.6. Performance under different proportions of training data on ImageCLEF.

Methods 5% 10% 20% 40% 60%

STL 62.6±0.2 69.7±0.3 76.2±0.3 79.3±0.2 80.1±0.1
VSTL 64.9±0.3 70.8±0.3 77.2±0.2 80.3±0.1 80.8±0.1
BMTL 65.7±0.4 72.0±0.3 76.8±0.3 79.0±0.3 80.5±0.2

VBMTL 67.1±0.3 73.0±0.7 78.0±0.2 81.2±0.1 81.0±0.2
VMTL-AC 75.7±0.3 77.6±0.2 80.0±0.1 81.3±0.2 82.3±0.3

VMTL 76.2±0.3 77.9±0.2 80.2±0.1 82.4±0.4 82.3±0.2

variational Bayesian framework. Given a limited amount of training data, our models also have a
better performance than VBMTL, which demonstrates that the proposed Gumbel-Softmax priors
are beneficial to fully leverage the shared knowledge among tasks. When training data is limited,
STL and VSTL can not train a proper model for each task. As the training data decreases, our
methods based on the variational Bayesian framework are able to better handle this challenging case
by incorporating the shared knowledge into the prior of each task. The best and second-best results
of average accuracy are respectively marked in bold and underlined.

C.2 Effectiveness of Variational Bayesian Approximation

Comparative results on performance of Bayesian approximation for representations z and classifiers
w on the Office-Home, Office-Caltech and ImageCLEF datasets are shown in Tables C.7, C.8 and C.9,
respectively. Both variational Bayesian representations and classifiers can benefit performance.
Our method jointly infers the posteriors over feature representations and classifiers in a Bayesian
framework and outperforms its variants on three benchmarks for most of train-test splits, which
demonstrates the benefits of applying Bayesian inference to both classifiers and representations.

C.3 Effectiveness of Gumbel-Softmax Priors

The performance comparison of the proposed VMTL with different priors on the Office-Home, Office-
Caltech and ImageCLEF datasets are shown in Tables C.10, C.11 and C.12, respectively. These
approximated priors are obtained by combining posteriors of related tasks. “Mean” denotes that
the prior of the current task is the mean of variational posteriors of other related tasks. “Learnable
weighted” denotes that weights of mixing the variational posteriors of other related tasks are learnable.
Our proposed prior by the Gumbel-Softmax technique to learn the mixing weights introduces
uncertainty to the relationships among tasks to explore sufficient transferable information from other
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Table C.7. Detailed results on performance of Bayesian approximation for representation z and
classifier w on Office-Home.

z w 5% 10% 20%
A C P R Avg. A C P R Avg. A C P R Avg.

× × 37.6±0.4 31.5±0.3 68.5±0.2 63.8±0.2 50.4±0.1 51.0±0.2 41.6±0.1 76.0±0.3 69.2±0.3 59.5±0.1 56.6±0.3 51.8±0.5 80.9±0.3 72.9±0.4 65.6±0.1

X × 52.0±0.4 37.6±0.3 71.8±0.3 68.3±0.1 57.4±0.0 59.2±0.4 47.1±0.2 77.6±0.1 73.7±0.4 64.4±0.1 63.3±0.4 52.7±0.2 82.1±0.1 76.0±0.3 68.5±0.1

× X 51.6±0.3 37.8±0.1 70.7±0.4 66.9±0.2 56.8±0.1 57.6±0.3 47.2±0.2 77.4±0.3 72.5±0.1 63.7±0.1 62.5±0.4 53.5±0.3 82.0±0.2 76.0±0.3 68.5±0.1

X X 53.5±0.1 39.2±0.2 71.5±0.3 69.0±0.1 58.3±0.1 60.2±0.2 47.5±0.2 78.2±0.3 74.0±0.2 65.0±0.0 64.0±0.3 53.5±0.4 82.5±0.2 76.8±0.1 69.2±0.2

Table C.8. Detailed results on performance of Bayesian approximation for representation z and
classifier w on Office-Caltech.

z w 5% 10% 20%
A W D C Avg. A W D C Avg. A W D C Avg.

× × 90.0±0.7 89.4±0.8 95.0±1.1 83.5±0.5 89.5±0.3 93.6±0.1 97.0±0.6 92.1±0.7 86.3±0.4 92.3±0.2 95.0±0.2 94.5±0.7 96.0±1.2 86.8±0.2 93.1±0.1

X × 93.3±0.4 95.0±0.5 96.1±0.3 90.0±0.3 93.6±0.2 95.3±0.1 97.4±0.3 97.9±0.0 90.4±0.3 95.2±0.0 95.6±0.1 96.6±0.5 98.4±0.4 90.3±0.6 95.2±0.2

× X 93.2±0.1 95.5±0.3 95.7±0.5 89.6±0.2 93.5±0.1 94.8±0.2 97.3±0.4 97.8±0.4 90.6±0.3 95.1±0.1 95.6±0.2 96.6±0.3 99.2±0.3 89.8±0.4 95.3±0.2
X X 93.7±0.2 95.2±0.3 96.4±0.4 89.7±0.4 93.8±0.1 95.4±0.1 97.6±0.1 97.4±0.4 90.9±0.2 95.3±0.0 95.6±0.2 95.6±0.4 98.4±0.5 91.1±0.3 95.2±0.1

Table C.9. Detailed results on performance of Bayesian approximation for representation z and
classifier w on ImageCLEF.

z w 5% 10% 20%
C I P B Avg. C I P B Avg. C I P B Avg.

× × 88.3±0.5 73.2±0.5 61.2±0.9 40.0±0.8 65.7±0.4 90.6±0.8 79.3±0.2 66.3±0.5 51.9±0.6 72.0±0.3 92.9±0.5 86.5±0.2 71.9±0.8 56.0±0.8 76.8±0.3

X × 90.4±0.2 81.9±0.7 70.9±0.5 57.9±0.6 75.3±0.4 93.7±0.2 85.7±0.6 71.7±0.2 59.1±0.3 77.5±0.0 93.5±0.2 89.8±0.6 77.3±0.5 59.0±0.4 79.9±0.1

× X 91.4±1.1 81.9±0.5 71.8±0.6 58.4±0.5 75.9±0.2 93.0±0.6 86.3±0.4 72.0±0.6 60.0±0.6 77.8±0.3 93.8±0.5 88.1±0.5 77.1±0.8 59.0±0.4 79.5±0.2

X X 91.5±0.2 83.5±0.6 71.6±0.8 58.2±0.7 76.2±0.3 94.2±0.2 86.0±0.5 71.7±0.6 59.8±0.4 77.9±0.2 93.9±0.1 89.4±0.2 78.0±0.4 59.5±0.4 80.2±0.1

Table C.10. Detailed results on performance of VMTL with different priors on Office-Home.

Priors 5% 10% 20%
A C P R Avg. A C P R Avg. A C P R Avg.

Mean 52.2±0.4 38.0±0.3 71.3±0.3 68.3±0.1 57.5±0.0 59.2±0.4 47.1±0.2 77.6±0.1 73.7±0.4 64.4±0.1 63.3±0.4 52.7±0.2 82.1±0.1 76.0±0.3 68.5±0.1

Learnable weighted 51.8±0.5 38.0±0.3 70.9±0.5 67.9±0.4 57.2±0.2 59.2±0.6 46.9±0.4 77.6±0.3 73.2±0.3 64.2±0.2 63.9±0.5 53.2±0.4 82.1±0.4 76.3±0.2 68.9±0.2

Gumbel-Softmax 53.5±0.1 39.2±0.2 71.5±0.3 69.0±0.1 58.3±0.1 60.2±0.2 47.5±0.2 78.2±0.3 74.0±0.2 65.0±0.0 64.0±0.3 53.5±0.4 82.5±0.2 76.8±0.1 69.2±0.2

Table C.11. Detailed results on performance of VMTL with different priors on Office-Caltech.

Priors 5% 10% 20%
A W D C Avg. A W D C Avg. A W D C Avg.

Mean 93.3±0.4 95.0±0.5 96.1±0.3 90.0±0.3 93.6±0.2 95.1±0.1 97.4±0.3 97.9±0.0 90.7±0.3 95.3±0.0 95.6±0.1 96.1±0.5 98.7±0.4 91.0±0.6 95.4±0.2
Learnable weighted 93.6±0.3 95.0±0.2 96.7±0.7 89.4±0.7 93.7±0.2 94.9±0.3 97.3±0.4 97.9±0.0 90.4±0.3 95.1±0.1 95.6±0.2 95.9±0.3 98.2±0.8 90.9±0.6 95.1±0.1

Gumbel-Softmax 93.7±0.2 95.2±0.3 96.4±0.4 89.7±0.4 93.8±0.1 95.4±0.1 97.6±0.1 97.4±0.4 90.9±0.2 95.3±0.0 95.6±0.2 95.6±0.4 98.4±0.5 91.1±0.3 95.2±0.1

Table C.12. Detailed results on performance of VMTL with different priors on ImageCLEF.

Priors 5% 10% 20%
C I P B Avg. C I P B Avg. C I P B Avg.

Mean 90.4±0.2 82.7±0.7 71.±0.5 57.8±0.6 75.5±0.4 93.4±0.2 86.4±0.6 71.5±0.2 59.1±0.3 77.6±0.0 93.6±0.2 89.7±0.6 77.8±0.5 59.4±0.4 80.1±0.1

Learnable weighted 90.1±0.4 82.1±0.2 71.2±1.0 58.5±0.6 75.5±0.4 93.4±0.3 85.6±0.5 71.5±0.5 59.1±0.6 77.4±0.2 93.5±0.3 89.5±0.2 77.9±0.7 59.6±0.4 80.1±0.2

Gumbel-Softmax 91.5±0.2 83.5±0.6 71.6±0.8 58.2±0.7 76.2±0.3 94.2±0.2 86.0±0.5 71.7±0.6 59.8±0.4 77.9±0.2 93.9±0.1 89.4±0.2 78.0±0.4 59.5±0.4 80.2±0.1

Table C.13. Performance comparison of different methods on the large-scaled dataset DomainNet
for multiple tasks: Clipart (C), Infograph (I), Painting (P), Quickdraw (Q), Real (R) and Sketch (S).

Methods 4%
C I P Q R S Avg.

STL 23.0±0.2 7.1±0.3 30.4±0.1 5.2±0.2 58.7±0.3 16.3±0.3 23.5±0.2
VSTL 33.8±0.1 12.3±0.2 37.1±0.1 23.7±0.3 65.3±0.4 23.2±0.2 32.6±0.1

Bakker et al. [3] 28.3±0.4 10.7±0.2 35.4±0.1 22.4±0.3 59.9±0.3 21.7±0.3 29.7±0.3
Long et al. [33] 28.7±0.1 13.2±0.3 38.7±0.4 7.5±0.3 62.9±0.2 20.6±0.3 28.6±0.2

Kendall et al. [25] 30.2±0.3 11.6±0.4 37.3±0.4 29.7±0.2 62.1±0.5 22.2±0.3 32.2±0.3
Qian et al. [38] 32.5±0.3 12.6±0.2 40.4±0.4 25.8±0.5 64.4±0.2 25.4±0.3 33.5±0.3

BMTL 34.0±0.1 11.9±0.3 36.8±0.1 24.7±0.2 64.9±0.2 23.1±0.3 32.6±0.1
VBMTL 33.1±0.1 12.0±0.2 37.0±0.2 19.7±0.1 64.5±0.1 22.8±0.3 31.5±0.1

VMTL-AC 31.4±0.1 11.1±0.1 35.3±0.1 15.8±0.1 61.5±0.1 21.8±0.2 29.5±0.1
VMTL 36.4±0.2 14.8±0.2 40.0±0.1 19.0±0.1 65.5±0.1 26.1±0.1 33.6±0.1
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Table C.14. Impact of L and M on performance. Experiments are conducted on Office-Home with a
5% train-test split.

L (=M) 1 10 20 30 40 50 60 70 80 90 100

VMTL-AC 56.1 56.3 56.1 56.2 56.3 56.1 56.3 56.0 56.2 56.3 55.8
VMTL 58.1 58.3 58.2 58.2 58.2 58.3 58.0 58.3 58.2 58.2 58.2

Office-Home Office-Caltech ImageCLEF

Fig. C.1. Illustration of training loss with iterations on Office-Home, Office-Caltech and ImageCLEF.
VMTL-AC converges faster than VMTL under 5%, 10% and 20% train-test splits, which demonstrates
the computational benefit of amortized learning.

VMTL-AC

Art (A) Clipart (C) Real-world (R)Product (P)

𝜖

Ac
cu
ra
cy
(%

)

Ac
cu
ra
cy
(%

)

Ac
cu
ra
cy
(%

)

Ac
cu
ra
cy
(%

)

𝜖 𝜖𝜖 𝜖

Ac
cu
ra
cy
(%

)

Average

VMTL
VMTL-AC
VBMTL
BMTL

Fig. C.2. The performance for each task under different noise levels on the Office-Home dataset.

tasks. In the three datasets, our designed priors outperform other methods under most of the train-test
splits. In addition, the results of DomainNet under the 4% train-test split are provided in Table C.13.

We learn different weights for w and z, motivated by the fact that latent variables are different in
terms of capturing uncertainty: w is at the category level while z at the instance level. To validate,
we conduct experiments using the same Gumbel-Softmax weights for both variables. As shown in
Table C.15, using different weights are slightly better than using the same Gumbel-Softmax weights.

Table C.15. Performance of our priors using the same weights for w and z or not on Office-Home.

Train-test split 5% 10% 20%

Same weights 58.2±0.1 64.8±0.1 68.7±0.3
Different weights 58.3±0.1 65.0±0.0 69.2±0.2

C.4 Sensitivity of the Hyper-parameter L and M

In this paper, L and M are the number of Monte Carlo samples for the variational posteriors of latent
representations and classifiers, respectively. We ablate the sensitivity of L and M in Table C.14 on
the Office-Home dataset. In practice, L and M are set to ten, which offer a good balance between
accuracy and efficiency.
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C.5 Fast Convergence of Amortized Classifiers

The computational advantage of amortized classifiers can be illustrated by the training loss as function
of iteration on Office-Home, Office-Caltech and ImageCLEF. As shown in Fig. C.1, VMTL-AC
converges faster than VMTL under 5%, 10% and 20% train-test splits, which demonstrates the
computational benefit of amortized learning.

C.6 Robustness of Our Methods

We conduct experiments on the Office-home dataset to show the robustness of our methods against
adversarial attacks. In our experiments, the adversarial attack is implemented by the fast gradient
sign method [? ] where ε denotes the noise level. As shown in Fig. C.2, under different noise levels,
the proposed model VMTL outperforms BMTL. As the noise level increases, the proposed model
VMTL-AC is more robust than other models.

C.7 A New Metric for Evaluating the Uncertainty Prediction

For Bayesian methods, it is necessary to quantify the model’s ability of handling uncertainty. We
looked into related references and didn’t find such a measure for comparing the uncertainty prediction.
Thus, we adopt a new metric for evaluating the uncertainty prediction, the ratio of the average entropy
of failure cases and properly classified samples. If the ratio is higher, the Bayesian methods predict
failure cases with more uncertainty and predict successful cases with more confidence. As shown in
Table C.16, VMTL has higher entropy ratios, which demonstrates the effectiveness of our model to
handle the uncertainty.

Table C.16. Entropy ratio (the higher the better) on Office-Home.
Train-test split 5% 10% 20%

Bakker et al.[3] 2.469 2.625 3.031
VBMTL 4.111 4.430 5.460
VMTL 4.546 4.472 5.584

C.8 Runtime Impact of the Sampling Steps

To investigate the runtime impact of the additional sampling steps we compare the actual training and
inference time of the proposed method with that of deterministic approaches. As shown in Table C.17,
compared to the deterministic baseline (BMTL), the training and inference time of our method
increases as the number of MC samples is set higher. In this paper, the number of MC samples is set
to be 10, which is computationally efficient while yielding good performance (Table C.14). In this
case, our method does cost extra at training time but with 0.122s per iteration, this is still acceptable.
When testing 1000 samples, our method only increases by an extra 10% test time of BMTL. Thus,
our model doesn’t cost much more time to surpass BMTL by 7.9% in terms of accuracy.

Table C.17. Runtime impact (seconds) of sampling step on Office-Home with 5% split.

Methods BMTL VMTL

MC samples - 1 10 50 100

Training (per iteration) 0.040 0.098 0.122 0.197 0.320
Inference (per 1000 test samples) 0.325 0.343 0.357 0.371 0.426
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