Perturbation Theory for the Information Bottleneck Appendix

Vudtiwat Ngampruetikorn, David J. Schwab
Initiative for the Theoretical Sciences, The Graduate Center, CUNY

A Power series expansion of information

To derive Eqs (8) \& (9), we first write down the encoder as a power series

$$
q(z \mid x)=q_{0}(z)+\varepsilon q_{1}(z \mid x)+\varepsilon^{2} q_{2}(z \mid x)+O\left(\varepsilon^{3}\right)
$$

where we use the fact that $q(z \mid x)=q(z)$ at $\varepsilon=0$ and $O\left(\varepsilon^{3}\right)$ denotes terms of order three and above. Marginalizing out x gives

$$
q(z)=\sum_{x} p(x) q(z \mid x)=q_{0}(z)+\varepsilon q_{1}(z)+\varepsilon^{2} q_{2}(z)+O\left(\varepsilon^{3}\right), \text { where } q_{n}(z)=\sum_{x} p(x) q_{n}(z \mid x)
$$

Using these equations, we expand the following expression as a power series in ε (up to ε^{2}),

$$
\begin{aligned}
& q(z \mid x) \ln \frac{q(z \mid x)}{q(z)}=\left(q_{0}(z)+\varepsilon q_{1}(z \mid x)+\varepsilon^{2} q_{2}(z \mid x)+O\left(\varepsilon^{3}\right)\right) \ln \frac{q_{0}(z)+\varepsilon q_{1}(z \mid x)+\varepsilon^{2} q_{2}(z \mid x)+O\left(\varepsilon^{3}\right)}{q_{0}(z)+\varepsilon q_{1}(z)+\varepsilon^{2} q_{2}(z)+O\left(\varepsilon^{3}\right)} \\
& = \begin{cases}\varepsilon\left(q_{1}(z \mid x)-q_{1}(z)\right) & \text { if } q_{0}(z)>0 \\
+\varepsilon^{2}\left(\frac{\left(q_{1}(z \mid x)-q_{1}(z)\right)^{2}}{2 q_{0}(z)}+q_{2}(z \mid x)-q_{2}(z)\right)+O\left(\varepsilon^{3}\right) & \\
\varepsilon q_{1}(z \mid x) \ln \frac{q_{1}(z \mid x)}{q_{1}(z)} & q_{1}(z \mid x) \\
+\varepsilon^{2}\left(q_{2}(z \mid x) \ln \frac{q_{1}}{q_{1}(z)}+q_{2}(z \mid x)-\frac{q_{1}(z \mid x) q_{2}(z)}{q_{1}(z)}\right)+O\left(\varepsilon^{3}\right) \text { if } q_{0}(z)=0 \text { and } q_{1}(z)>0 \\
\varepsilon^{2} q_{2}(z \mid x) \ln \frac{q_{2}(z \mid x)}{q_{2}(z)}+O\left(\varepsilon^{3}\right) & \text { if } q_{0}(z)=q_{1}(z)=0 \text { and } q_{2}(z)>0 \\
O\left(\varepsilon^{3}\right) & \text { if } q_{0}(z)=q_{1}(z)=q_{2}(z)=0\end{cases}
\end{aligned}
$$

We now define

$$
\mathcal{Z}_{n} \equiv\left\{z \mid q_{n}(z)>0 \text { and } q_{m}(z)=0 \text { for } 0 \leq m<n\right\} \quad \text { and } \quad \mathcal{Z}_{0} \equiv \operatorname{supp}\left(q_{0}\right)
$$

Finally the power series for the mutual information is given by (up to ε^{2}),

$$
\begin{aligned}
& I(Z ; X)=\sum_{x} p(x) \sum_{z} q(z \mid x) \ln \frac{q(z \mid x)}{q(z)} \\
& =\sum_{x} p(x) \sum_{z \in Z_{0}}\left(\varepsilon\left(q_{1}(z \mid x)-q_{1}(z)\right)+\varepsilon^{2}\left(\frac{\left(q_{1}(z \mid x)-q_{1}(z)\right)^{2}}{2 q_{0}(z)}+q_{2}(z \mid x)-q_{2}(z)\right)+O\left(\varepsilon^{3}\right)\right) \\
& \quad+\sum_{x} p(x) \sum_{z \in Z_{1}}\left(\varepsilon q_{1}(z \mid x) \ln \frac{q_{1}(z \mid x)}{q_{1}(z)}+\varepsilon^{2}\left(q_{2}(z \mid x) \ln \frac{q_{1}(z \mid x)}{q_{1}(z)}+q_{2}(z \mid x)-\frac{q_{1}(z \mid x) q_{2}(z)}{q_{1}(z)}\right)+O\left(\varepsilon^{3}\right)\right) \\
& \quad+\sum_{x} p(x) \sum_{z \in Z_{2}}\left(\varepsilon^{2} q_{2}(z \mid x) \ln \frac{q_{2}(z \mid x)}{q_{2}(z)}+O\left(\varepsilon^{3}\right)\right)+O\left(\varepsilon^{3}\right) \\
& = \\
& \varepsilon \sum_{x} p(x) \sum_{z \in \mathcal{Z}_{1}} q_{1}(z \mid x) \ln \frac{q_{1}(z \mid x)}{q_{1}(z)} \\
& \quad+\varepsilon^{2} \sum_{x} p(x)\left(\sum_{z \in Z_{0}} \frac{\left(q_{1}(z \mid x)-q_{1}(z)\right)^{2}}{2 q_{0}(z)}+\sum_{z \in Z_{1}} q_{2}(z \mid x) \ln \frac{q_{1}(z \mid x)}{q_{1}(z)}+\sum_{z \in Z_{2}} q_{2}(z \mid x) \ln \frac{q_{2}(z \mid x)}{q_{2}(z)}\right) \\
& \quad+O\left(\varepsilon^{3}\right)
\end{aligned}
$$

where we used the fact that $\sum_{x} p(x) q_{n}(z \mid x)=q_{n}(z)$. Equating the terms in this equation to that of Eq (7) leads directly to Eqs (8) \& (9)

B Algorithms for the information bottleneck and learning onset

```
Algorithm 1: Information bottleneck method [26]
    Input : \(p(x, y), \beta \geq 1\) and tolerance \(\delta\)
    Output: IB encoder \(q(z \mid x)\)
    Initialize \(q(z \mid x)\) such that \(q(z \mid x)>0\) and \(\sum_{z} q(z \mid x)=1\)
    repeat
        \(\tilde{q}(z \mid x) \leftarrow q(z \mid x)\)
        \(q(z) \leftarrow \Sigma_{x} q(z \mid x) p(x)\)
        \(q(y \mid z) \leftarrow \sum_{x} q(z \mid x) p(x, y) / q(z)\)
        \(q(z \mid x) \leftarrow q(z) \exp \left\{-\beta \mathrm{D}_{\mathrm{KL}}[p(y \mid x) \| q(y \mid z)]\right\}\)
        \(q(z \mid x) \leftarrow q(z \mid x) / \sum_{z^{\prime}} q\left(z^{\prime} \mid x\right)\)
    until \(\|q(z \mid x)-\tilde{q}(z \mid x)\|<\delta\)
```

```
Algorithm 2: IB learning onset
    Input : \(p(x, y)\) and tolerances \((\delta, \epsilon)\)
    Output : Critical trade-off parameter \(\beta_{c}\) and perturbative encoders \(r(x) \quad \triangleright\) see Eq (14)
    repeat
        Initialize \(\left[r(x), \beta_{c}\right]\) (randomly) such that \(r(x)>0\) and \(\beta_{c}>1\)
        repeat
            \(\left[r_{0}(x), \beta_{0}\right] \leftarrow\left[r(x), \beta_{c}\right]\)
            \(r(x) \quad \leftarrow r(x) / \sum_{x^{\prime}} r\left(x^{\prime}\right)\)
            \(r(y) \quad \leftarrow \sum_{x} p(y \mid x) r(x) \quad \triangleright \mathrm{Eq}(14)\)
            \(\beta_{c} \quad \leftarrow \mathrm{D}_{\mathrm{KL}}[r(x) \| p(x)] / \mathrm{D}_{\mathrm{KL}}[r(y) \| p(y)] \quad \triangleright \mathrm{Eq}(17)\)
            \(r(x) \leftarrow q(z) \exp \left\{-\beta_{c}\left(\mathrm{D}_{\mathrm{KL}}[p(y \mid x) \| r(y)]-\mathrm{D}_{\mathrm{KL}}[p(y \mid x) \| p(y)]\right)\right\} \quad \triangleright \mathrm{Eq}(16)\)
        until \(\left\|\left[r(x), \beta_{c}\right]-\left[r_{0}(x), \beta_{0}\right]\right\|<\delta\)
    until \(\|r(x)-p(x)\|>\epsilon \quad \triangleright\) To avoid uninformative solution \(r(x)=p(x)\)
```

