
Supplementary Material (Appendix)

When Are Solutions Connected in Deep Networks?

A Missing Proofs

A.1 Proof of Corollary 4.2

Proof: Let θ′ ∈ {θ0, θ1}. Then, as θ′ is ε-dropout stable, we obtain that, for every l ∈ [L− 1], there
exist subsets of indices

{
Il,dp

}L−1
p=l

, with Il,dp ⊆ [np] and
∣∣Il,dp ∣∣ ≤ bnp/2c, such that the following

property holds: after rescaling the outputs of the hidden units indexed by
{
Il,dp

}L−1
p=l

and setting
the outputs of the remaining units to zero, we obtain θ′l,d satisfying Φ(θ′l,d) ≤ Φ(θ′) + ε. Now, one
observes that, by using Theorem 4.1, it suffices to show that there exists a choice of {Ij}j∈[L−1] with
Ij ⊆ [nj ] and |Ij | ≥ nj/2 such that, for l ∈ [0, L− 1], it holds

inf
ξl

ED[Ψ (hL (ξl, fl,Il(θ
′, x)) , y)] ≤ Φ(θ′l,d), (15)

with I0 = [n0].

For l ∈ [L−1], pick Il such that Il ⊇ Il,dl and |Il| = dnl/2e. This is possible since |Il,dl | ≤ bnl/2c.
Note that since |Il| = dnl/2e, the requirement that |Il| ≥ nl/2 from (4) is fulfilled. As Il ⊇ Il,dl ,
fl,Il(θ

′, x) contains all the non-zero elements of the feature vector fl(θ′l,d, x) (i.e. after setting
the outputs of the remaining neurons to zero as described above). Furthermore, recall that
ξl contains the parameters of a subnetwork from layer l to L with layer widths m(l)

l = |Il|,
m

(l)
p = np − |Ip| = bnp/2c for p ∈ [l + 1, L − 1] and m(l)

L = nL. Thus, since θ′l,d contains
at most bnp/2c non-zero neurons at layer p ∈ [l + 1, L − 1], it follows that the network
computed at θ′l,d can be implemented by the subnetwork. In other words, there exists ξl such that
hL (ξl, fl,Il(θ

′, x)) = fL(θ′l,d, x), for all x. Hence, (15) holds and the desired claim follows. �

A.2 Proof of Corollary 4.3

Proof: We show that, for i ∈ {0, 1} and for l ∈ [0, L− 1],

inf
ξl

ED
[
Ψ
(
hL

(
ξl, fl,I(i)l

(θi, x)
)
, y
)]
≤ Φ(θi) + ε, (16)

with I(i)0 = [n0]. When l = L − 1, (16) is equivalent to (9), which holds by assumption (A1-b).
When l = L− 2, we note that {f

L−2,I(i)L−2

(θi, xj)}j∈[N ] are in generic position by assumption (A2),
and assumption (A1) holds. Thus, (16) follows by applying Proposition 4 of [6] to each of the nL
outputs of the network. When l ∈ [0, L − 3], we note that {f

l,I(i)l

(θi, xj)}j∈[N ] are distinct by
assumption (A3), the samples {xj}j∈[N ] are distinct by assumption, and yj ∈ [−1, 1]nL for j ∈ [N ].
Thus, by using again assumption (A1), we can apply Corollary A.1 of [49] and (16) readily follows.2

Finally, one can easily check that |I(i)l | ≥ nl/2 for all l ∈ [L − 1], i ∈ {0, 1}, which satisfies the
requirement in (4). Thus, the desired claim follows from Theorem 4.1. �

2Note that we apply Corollary A.1 of [49] with m = 1 and l1 = L − 2. In this setting, [m − 1] and
[lm + 2 : L− 1] are the empty set, hence the 1st, 3rd and 4th conditions of Corollary A.1 hold. To verify the
2nd condition, note that r1 = 0, dL−2 = nL−2 − |I(i)L−2| = b

nL−2

2
c, dL−1 = nL−1 − |I(i)L−1|, and dy = nL.

Thus, the 2nd condition follows from assumption (A1), and the application of Corollary A.1 is justified.

15



A.3 Proof of Corollary 4.4

Proof: We show that, for i ∈ {0, 1} and for l ∈ [0, L− 1],

inf
ξl

ED
[
Ψ
(
hL

(
ξl, fl,I(i)l

(θi, x)
)
, y
)]

= 0, (17)

with I(i)0 = [n0]. Recall that, by hypothesis, {f
l,I(i)l

(θi, xj), yj}j∈[N ] are linearly separable for
l ∈ [0, L− 1]. For k ∈ [nL], denote by (yj)k the k-th component of the vector yj ∈ {0, 1}nL .

First, consider the case l = L − 1. Then, the problem in (17) is a convex learning problem with
linearly separable inputs, namely {f

L−1,I(i)L−1

(θi, xj), yj}j∈[N ]. Since Ψ is the cross-entropy loss,
(17) holds immediately.

Consider now the case l ∈ [0, L − 2]. Then, there exists γ ∈ (α, β), a set of nL weights
w1, . . . , wnL

∈ R|I
(i)
l | and a set of nL biases c1, . . . , cnL

∈ R such that the following holds: if
(yj)k = 1, then 〈f

l,I(i)l

(θi, xj), wk〉 + ck ∈ (γ, β); otherwise, 〈f
l,I(i)l

(θi, xj), wk〉 + ck ∈ (α, γ).
In words, this means that the pre-activation output of neuron k at layer l + 1 maps all
the samples of class k into (γ, β) and the remaining samples into (α, γ). Let us assume
w.l.o.g. that σ is strictly monotonically increasing on (α, β). Then, we have that, if (yj)k = 1,
σ(〈f

l,I(i)l

(θi, xj), wk〉+ck) ∈ (σ(γ), σ(β)); otherwise, σ(〈f
l,I(i)l

(θi, xj), wk〉+ck) ∈ (σ(α), σ(γ)).
Hence, at layer l+1, we have nL neurons, each perfectly separating the samples of one class from the
others. This shows that the set of features formed by these neurons is linearly separable. By repeating
this argument, we can choose the weights of nL neurons from the next layers l + 2, . . . , L− 1 such
that this linear separability property is maintained. Consequently, the subnetwork implemented by
ξl (which has at least nL neurons at each of its hidden layers) can perfectly separate the features
{f
l,I(i)l

(θi, xj), yj}j∈[N ]. Thus, (17) holds, and the desired claim follows from Theorem 4.1. �

B Additional Numerical Experiments

Training loss in logarithmic scale. Figure 5 plots the loss reported in Figure 3 on a logarithmic
y-axis. This allows one to see more clearly the difference between our bound (A) and the reference
model. We note that this difference remains small across all layers of the network and experiments.
Likewise, Figure 9 plots the loss reported in Figure 4 on a logarithmic y-axis. The logarithmic scale
of the plot magnifies the drop in the metric around a certain threshold, about 100 neurons for MNIST
and 400 for CIFAR-10.

Test error. Figure 6 shows the corresponding test errors for the experiment in Figure 3. One can
observe a similar behavior that our bound (A) continues to remain close to the reference model, while
the test error (B) coming from the dropout stability assumption is large at the first layers.

Different dropout ratios. In Figures 7-8, we perform Experiments (A) and (B) again with other
values of Kl’s – the cardinalities of the subsets of neurons Il’s. Intuitively, in our proofs Kl can be
seen as the number of neurons that we choose to keep at each layer, and thus it can also be defined via
a certain dropout ratio. For simplicity, we fix this ratio to be the same at every layer, say p ∈ [0, 1].
Let Kl = d(1 − p)nle, for l ∈ [L − 1]. Then, one notes that the results in Figures 3-4 have been
obtained by taking p = 1

2 . Now, we repeat these experiments for p ∈ { 13 ,
1
4}, and report the results in

Figures 7-8, respectively. As for Experiment (A), this means that, while more neurons are preserved
at each hidden layer (due to smaller p), the capacities of the subnetworks ξl’s from Theorem 4.1 are
smaller. As for Experiment (B), since more neurons are kept at each layer, there is a better chance that
the dropout stability assumption is satisfied. Let us remark that the results of [24] show the existence
of a low-loss path for p ≥ 1

2 , whereas our Theorem 4.1 also applies to p ≤ 1
2 . The plots show that

although experiment (B) benefits from a lower p, there is still a significant performance gap with the
originally trained model, especially at the lower layers. Meanwhile, this gap is consistently smaller
for (A) across different values of p. This is on par with the case p = 1

2 as reported in Section 6.

16



0 1 2 3 4 5 6 7 8 9 10
layer index l

10 4

10 3

10 2

10 1

100 A
B
ref.

(a) FCN MNIST

0 1 2 3 4 5
layer index l

10 4

10 3

10 2

10 1

100 A
B
ref.

(b) FCN CIFAR-10

0 1 2 3 4 5 6 7 8 9 10
layer index l

10 4

10 3

10 2

10 1

100
A
B
ref.

(c) VGG CIFAR-10

(0, 0) (5, 0) (10, 0)
point,t

10 4

10 3

10 2

10 1

100
A
B
ref.

(d) Training loss on path

Figure 5: Results of Figure 3 plotted with a logarithmic y-axis.

0 1 2 3 4 5 6 7 8 9 10
layer index l

20

40

60

A
B
ref.

(a) FCN MNIST

0 1 2 3 4 5
layer index l

45

50

55

60

65
A
B
ref.

(b) FCN CIFAR-10

0 1 2 3 4 5 6 7 8 9 10
layer index l

40

60

80
A
B
ref.

(c) VGG CIFAR-10

(0, 0) (5, 0) (10, 0)
point,t

45

50

55

60

65 A
B
ref.

(d) Test error on path

Figure 6: Test error (in %) for the experiment in Figure 3.

C Training Details

All models were trained from scratch on MNIST and CIFAR-10. The hyperparameters for training
the original networks θ′ (O) and for Experiment (A) can be found in Table 1. They were manually
chosen in such a way that SGD achieves a reasonable convergence speed. All experiments were run
on Nvidia GPUs Tesla V100. The implementation can be found on Github3. The original models
are trained until 0 training error is reached. For Experiment (A), training is done for at least 100
epochs, and then it is stopped when 0 error or a maximum of 400 epochs is reached. Moreover,
subnetworks ξl with larger depth (i.e. starting at a lower l) required more care and a lower learning
rate than shallow ones. For VGG, we employ a learning rate scheduler. As reported in the table, we
tweak the scheduler for certain values of l (giving the deepest models) in the case p = 1

4 . For the
varying-width experiment (Figure 4), the same learning rate is used for different widths to allow a
comparison of results. The maximal learning rate that makes every model converge is kept.

Pruning for VGG-11. As in previous work [24], for CNN architectures like VGG-11, each con-
volutional feature map associated with a filter/kernel can be treated as a single neuron of a fully
connected architecture. In this way, Experiment (B) can be done similarly to the case of fully
connected networks. For Experiment (A), this means that the subnetworks ξl’s consist of a small
fraction of the convolutional filters from each layer of the original network. All the max-pooling
layers, as part of the original VGG-11 architecture, are kept unchanged.

3https://github.com/modeconnectivity/modeconnectivity

17

https://github.com/modeconnectivity/modeconnectivity


0 1 2 3 4 5 6 7 8 9 10
layer index l

0.00

0.25

0.50

0.75

1.00

1.25
Training Loss

A
B
ref.

0 1 2 3 4 5 6 7 8 9 10
layer index l

0

10

20

30

40

50

Test Error (%)

(a) FCN MNIST

0 1 2 3 4 5
layer index l

0.0

0.5

1.0

Training Loss
A
B
ref.

0 1 2 3 4 5
layer index l

45

50

55

60

Test Error (%)

(b) FCN CIFAR-10

0 1 2 3 4 5 6 7 8 9 10
layer index l

0.0

0.5

1.0

1.5

2.0
Training Loss

A
B
ref.

0 1 2 3 4 5 6 7 8 9 10
layer index l

20

30

40

50

60

70
Test Error (%)

(c) VGG CIFAR-10

Figure 7: Dropout ratio p = 1
3 . Training loss (top) and test error (bottom) for Experiments (A)

and (B). The dotted green line is the originally trained model, used as a reference. We perform the
experiments for only one trained model θ′, and thus there is no confidence interval.

0 1 2 3 4 5 6 7 8 9 10
layer index l

0.0

0.2

0.4

0.6

0.8

1.0
Training Loss

A
B
ref.

0 1 2 3 4 5 6 7 8 9 10
layer index l

10

20

30

Test Error (%)

(a) FCN MNIST

0 1 2 3 4 5
layer index l

0.00

0.25

0.50

0.75

1.00

1.25 Training Loss
A
B
ref.

0 1 2 3 4 5
layer index l

45

50

55

60
Test Error (%)

(b) FCN CIFAR-10

0 1 2 3 4 5 6 7 8 9 10
layer index l

0.0

0.5

1.0

Training Loss
A
B
ref.

0 1 2 3 4 5 6 7 8 9 10
layer index l

20

30

40

50

Test Error (%)

(c) VGG CIFAR-10

Figure 8: Dropout ratio p = 1
4 . Training loss (top) and test error (bottom) for Experiments (A)

and (B). The dotted green line is the originally trained model, used as a reference. We perform the
experiments for only one trained model θ′, and thus there is no confidence interval.

18



Model (O11) (O3) (A11) (A3)

learning rate 10−3 5 · 10−3 2 · 10−3– 5 · 10−3 5 · 10−3

momentum 0.95 — — —

(a) FCN MNIST

Model (O6) (O3) (A6) (A3), l = 0 (A3), l = 1, 2

learning rate 10−3 5 · 10−4 10−3 – 5 · 10−3 10−3 5 · 10−3

momentum 0.95 — — — —

(b) FCN CIFAR-10

Model (O) (A)* (A), p = 1
4 , l = 0 (A), p = 1

4 , l = 1

learning rate 5 · 10−3 — — —
momentum 0.9 — — —
weight decay 5 · 10−4 — — —

scheduler γ = 0.5 γ = 0.5 γ = 0.1 γ = 0.9
steps = 10 steps = 20 steps = 250 mode = “plateau”

* All of the cases except p = 1
4
, l ∈ {0, 1}

(c) VGG CIFAR-10

Table 1: Hyperparameters of the SGD optimizer for training the original model (O) and the subnet-
works of Experiment (A). For each K, the models (OK) and (AK) refer to those subnetworks that
have total number of layers K (i.e. K ∈ {6, 11} in Figure 3, and K = 3 in Figure 4). The index l
refers to the subnetwork ξl. Dashes stand for duplicate values from the left-most column.

100 200 300
width

10 3

10 2

10 1
A
ref.

0 1000 2000 3000
width

10 3

10 2

10 1

100 B
ref.

(a) MNIST

200 400 600
width

10 3

10 2

10 1

100 A
ref.

0 1000 2000 3000
width

10 2

10 1

100

B
ref.

(b) CIFAR-10

Figure 9: Results of Figure 4 plotted with a logarithmic y-axis. Mean and 95% confidence intervals
are depicted for 3 different trained networks θ′.

19


