
Catch-A-Waveform: Learning to Generate Audio
from a Single Short Example

Supplementary Material

Gal Greshler
Technion – Israel Institute of Technology

galgreshler@gmail.com

Tamar Rott Shaham
Technion – Israel Institute of Technology
stamarot@campus.technion.ac.il

Tomer Michaeli
Technion – Israel Institute of Technology

tomer.m@ee.technion.ac.il

Code is available here. Audio samples and additional figures can be found on the project’s website.

1 Model and training details

1.1 Training details

Gradient penalty. In each update step of the discriminator, we minimize the generator’s loss with an
additional gradient penalty regularization term [2], defined as

λ E
x̂∼Px̂

[(‖∇x̂Dn(x̂)‖2 − 1)2], (1)

where λ = 0.01 and x̂ is a convex combination of the real signal xn and a generated one x̃n, with
random weights.

MSS loss. The MSS reconstruction loss we use, is given by

MSS(xn, x̃r
n) =

1

M

M−1∑
m=0

‖|STFTm(xn)| − |STFTm(x̃r
n)|‖2 (2)

where STFT is the short-time Fourier transform and M is the number of different STFT parameter
sets. The set of parameters we use are as follows:

window size hop length fft size
240 50 512
600 120 1024

1200 240 2048

1.2 Scales selection

As explained in the main text, we have a set of predefined sampling rates. The first scale of the model
is chosen automatically among them, according to the signal energy at that scale. Specifically, we
normalize the input signal x such that maxn |x[n]| = 1. Then, we choose the coarsest scale (namely
scale N) to be the first that satisfies

1

K

K−1∑
n=0

x2N [n] ≥ 0.0025, (3)

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/galgreshler/Catch-A-Waveform
https://galgreshler.github.io/Catch-A-Waveform/

Figure 1: Frequency contents of different datasets. Note that complex music (here rock and pop
songs) have a more energy in the low frequencies than speech and monophonic music.

Generator
Dilated conv-blocks

σ

tanh

1x1×

𝑧𝑛

+ +
PE filter

𝑥𝑛+1↑

𝑥𝑛

Discriminator

PE filter

Dilated conv-blocks

𝑥𝑛

𝑥𝑛

Figure 2: Architectures.

where xN is the real signal at that scale and K is the number of samples in xN .

Figure 1 shows the average frequency contents of several datasets, and the predefined scales. Note
that the graph shows averages on entire datasets, while the actual first scale is chosen for each signal
individually. The coarsest scale defines the receptive field (in seconds) for the entire model. Therefore,
for inpainting tasks, we also make sure that the signal at the coarsest scale has more samples than the
missing gap plus the receptive field.

1.3 Architecture

The generator at each scale is built from 8 dilated convolutional blocks. The first 7 blocks contain
dilated convolution, Batch-Norm and leakyReLU with slope 0.2. The last block is convolutional
only. The dilation factor grows exponentially from 1 in the first block to 128 in the last one. The
convolutional blocks feed a gated activation unit, which is followed by an extra 1× 1 convolution and
PE filter. The discriminator at each scale is similar to the generator, except it does not have the gated
activation unit. The number of channels in each layer, for both the generator and the discriminator, is
16 at the coarsest scale and 96 at the rest of the scales. Figure 2 shows an illustration of the generator
and discriminator architectures.

2

Real waveform Spectrogram of real signal

Generated waveform Spectrogram of generated signal

Figure 3: Unconditional generation of speech signal

1.4 Positional encoding

In order to ensure that the generator’s output is of the same length as the real signal during training,
we use zero-padding at its input. This zero padding functions as a positional encoding [4], which
allows the generator to know the absolute location with respect to the beginning and ending of the
signal. This encoding extends up to one receptive field from the beginning and one receptive field
from the ending of the signal. Therefore, the generator manages to “remember” these parts and to
“paste” them at the borders of the generated signals. This makes the beginning and ending of the
generated signals sound like those of the input. If desired, this phenomenon can be avoided by simply
trimming the generated signal by one receptive field from each side.

2 Additional experimental details

2.1 Unconditional generation

During training, we generate fake signals having the same length as the input. We do this by injecting
to the generator noise of the same length as the input, padded with zeros of the length of the receptive
field (we use no padding within the convolutional layers). To generate a signal of different length at
inference time, we simply inject noise having the desired length at the coarsest scale’s input. Figures
3-5 show examples of real and generated signals of different types. In order to evaluate performance
and perceptual quality of our generated signals, a user study was conducted. Screenshots from the
unpaired user study can be found in Fig. 9, and from the paired one in Fig. 10.

Calculation of similarity matrix. As explained in the main text, in order to better understand the
nature of our generated signals and specifically how they differ from signals generated by a naive
cut-and-paste approach, we compute a similarity matrix between the fake and the real signals. The
matrix is calculated as follows. First we compute STFT matrices for the real and fakes signals, and
take the absolute values of their entries. We denote these by R and F , respectively. The STFT matrix
is calculated on segments of 4096 samples, multiplied by the Hann window, and with hop size of 128
samples. Next, the similarity value between frame i in the real signal and frame j in the fake signal is
computed as the cosine similarity between the ith and jth columns in R and F , respectively, i.e.,

sim(i, j) =
〈Ri, Fj〉
‖Ri‖‖Fj‖

(4)

In Figure 6 we show several examples of similarity matrices of naively stitched signals and of our
generated signals.

3

Real waveform Spectrogram of real signal

Generated waveform Spectrogram of generated signal

Figure 4: Unconditional generation of saxophone signal

Real waveform Spectrogram of real signal

Generated waveform Spectrogram of generated signal

Figure 5: Unconditional generation of violin signal

2.2 Bandwidth extension

For the bandwidth extension experiments, we trained CAW models for each speaker of the 9 test
speakers in the VCTK dataset. Each speaker’s sentences were divided to batches of 4-10 sentences,
such that each batch contains between 20 and 25 seconds of speech. This resulted in around 50
models for each speaker. At inference time, each sentence of the speaker was extended by all of
the models, except for the one the sentence was trained on. For each sentence we calculated the
mean result and the standard deviation, across all models. The mean and std reported in the main
text correspond to the average of all sentences of all speakers. In the single speaker task, we only
evaluate the sentences defined as test set for the TFiLM model [1].

Evaluation metrics. We used two common evaluation metrics in order to evaluate the BE results:
SNR and LSD. These are defined as

SNR(x, x̂) = 20 log10

(
||x||2
||x− x̂||2

)

LSD(x, x̂) =
1

L

L∑
l=1

√√√√ 1

K

K∑
k=1

(
X(l, k)− X̂(l, k)

)2

4

Figure 6: Similarity matrices. Matrices of signals created by naive cut and paste method (left
column), and of our generated signals (right column). Our signals show more blurry lines as they can
contain information from different temporal positions across frequency scales.

5

Spectogram of a signal with a silent gap Spectogram of a signal inpainted by our model

Spectogram of a signal with a silent gap Spectogram of a signal inpainted by our model

Figure 7: Audio inpainting. Examples of inpainting done by our model. The only input to the model
is the signal with the missing gap, and a mask indicating the temporal location of the hole.

where X and X̂ are the log magnitudes of the STFTs of the ground truth signal x and the output
extended signal x̂, respectively. L is the number of STFT frames and K is the window size, which is
2048 samples in our case, calculated without overlaps.

2.3 Audio inpainting

As explained in the main text, inpainting is done by training on a signal with a silent gap, where the
loss terms are calculated only on the valid parts. More examples for inpainting of rock songs from
the FMA dataset can be found in Fig. 7. In order to evaluate inpainting performance, a user study was
conducted, comparing our results to the GACELA model [3] and to ground truth signals. Screenshots
from the study can be found in Fig. 11

2.4 Audio denoising

As detailed in the main text, we examined denoising of noisy signals that we created by adding
white noise and recorded gramophone noise to a clean violin recording. The clean signal, recorded
gramophone noise and results of the method are presented in Figure 8.

6

Clean signal Recorded gramophone noise

White noise added (5dB) Reconstructed (9.78dB)

White noise added (10dB) Reconstructed (11.53dB)

Gramophone noise added (5dB) Reconstructed (6.89dB)

Gramophone noise added (10dB) Reconstructed (11.56dB)

Figure 8: Audio denoising. The upper row depicts the original violin recording (left) and the recorded
gramophone noise (right). The other rows show results of denoising white and recorded noise, at two
levels of input SNR.

7

Instructions to participants

Question presented to participants

Figure 9: Unconditional generation unpaired user study. After reading instructions (upper) and
listening to a sound sample one time, the participant had to answer whether this sound was fake
(bottom).

8

Instructions to participants

Question presented to participants

Feedback after tutorial questions

Figure 10: Unconditional generation paired user study. After reading instructions (upper) and
listening to real and fake sounds one time each, the participant had to decide which sound was fake
(middle). The bottom image shows example of the paired tutorial presented to participants.

9

Instructions to participants

Question presented to participants

Figure 11: Inpainting user study. After reading instructions (upper), participants were given the
sound with a gap, along with two possible completions. They could listen to all three signals as many
times as they wanted, and had to decide which completion sounded better.

10

References
[1] Birnbaum, S., Kuleshov, V., Enam, Z., Koh, P.W.W., Ermon, S.: Temporal FiLM: Capturing long-range

sequence dependencies with feature-wise modulations. In: Advances in Neural Information Processing
Systems (2019)

[2] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein
GANs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. pp.
5769–5779 (2017)

[3] Marafioti, A., Majdak, P., Holighaus, N., Perraudin, N.: GACELA-A generative adversarial context encoder
for long audio inpainting of music. IEEE Journal of Selected Topics in Signal Processing (2020)

[4] Xu, R., Wang, X., Chen, K., Zhou, B., Loy, C.C.: Positional encoding as spatial inductive bias in gans. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13569–13578
(2021)

11

	Model and training details
	Training details
	Scales selection
	Architecture
	Positional encoding

	Additional experimental details
	Unconditional generation
	Bandwidth extension
	Audio inpainting
	Audio denoising

