
Supplementary Material: Appendices
A Derivation of Variational System

Let us consider a perturbed initial condition x̄0 = x0 + δ̄0, from which the solution x̄(t) arises.
Suppose that the solution x̄(t) satisfies x̄(t) = x(t) + δ̄(t). Then,

d

dt
δ̄ =

d

dt
(x̄− x)

= f(x̄, t)− f(x, t)

=
∂f

∂x
(x, t)(x̄− x) + o(|x̄− x|)

=
∂f

∂x
(x, t)δ̄ + o(|δ̄|),

δ̄(0) = δ̄0.

(9)

Dividing δ̄ by δ̄0 and taking the limit as |δ̄0| → +0, we define the variational variable as δ(t) = ∂x(t)
∂x0

and the variational system as

d

dt
δ(t) =

∂f

∂x
(x(t), t)δ(t) for δ(0) = I. (10)

B Complete Proofs

Proof of Remark 1:

d

dt

(
λ>δ

)
=

(
d

dt
λ

)>
δ + λ>

(
d

dt
δ

)
=

(
−∂f
∂x

(x, t)>λ

)>
δ + λ>

(
∂f

∂x
(x, t)δ

)
= 0. (11)

Proof of Remark 2: Because δ(t) = ∂x(t)
∂x0

and λ>δ is time-invariant,

∂L(x(T ))

∂x0
=
∂L(x(T ))

∂x(T )

∂x(T )

∂x0
= λ(T )>δ(T ) = λ(t)>δ(t) =

∂L(x(T ))

∂x(t)

∂x(t)

∂x0
. (12)

Proof of Remark 3: Differentiating each term in the Runge–Kutta method in Eq. (5) by the initial
condition x0 gives the Runge–Kutta method applied to the variational variable δ, as follows.

δn+1 = δn + hn

s∑
i=1

bidn,i,

dn,i :=
∂kn,i
∂x0

=
∂f(Xn,i, tn + cihn)

∂x0
=
∂f(Xn,i, tn + cihn)

∂Xn,i
∆n,i,

∆n,i :=
∂Xn,i

∂x0
= δn + hn

s∑
j=1

ai,jdn,j .

(13)

Proof of Theorem 1: Because the quantity S is conserved in continuous time,

d

dt
S(δ, λ) = 0. (14)

Because the quantity S is bilinear,

d

dt
S(δ, λ) =

∂S

∂δ

dδ

dt
+
∂S

∂λ

dλ

dt
= S

(
dδ

dt
, λ

)
+ S

(
δ,

dλ

dt

)
, (15)

which implies
S(dn,i,Λn,i) + S(∆n,i, ln,i) = 0. (16)
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The change in the bilinear quantity S(δ, λ) is

S(δn+1, λn+1)− S(δn, λn) = S(δn + hn
∑
i bidn,i, λn + hn

∑
iBiln,i)− S(δn, λn)

=
∑
i bihnS(dn,i, λn) +

∑
iBihnS(δn, ln,i)

+
∑
i

∑
j biBjh

2
nS(dn,i, ln,j)

=
∑
i bihnS(dn,i,Λn,i − hn

∑
j Ai,j ln,j)

+
∑
iBihnS(∆n,i − hn

∑
j ai,jdn,j , ln,i)

+
∑
i

∑
j biBjh

2
nS(dn,i, ln,j)

=
∑
i hn(biS(dn,i,Λn,i) +BiS(∆n,i, ln,i))

+
∑
i

∑
j(−biAi,j −Bjaj,i + biBj)h

2
nS(dn,i, ln,j).

(17)

If Bi = bi and biAi,j +Bjaj,i − biBj = 0, the change vanishes, i.e., the partitioned Runge–Kutta
conserves a bilinear quantity S. Note that bi must not vanish because Ai,j = Bj(1 − aj,i/bi).
Therefore, the bilinear quantity λ>n δn is conserved as

λ>NδN = λ>n δn for n = 0, . . . , N. (18)

Remark 3 indicates δn = ∂xn

∂x0
. When λN is set to (∂L(xN )

∂xN
)>,

∂L(xN )

∂x0
=
∂L(xN )

∂xN

∂xN
∂x0

= λ>NδN = λ>n δn =
∂L(xN )

∂xn

∂xn
∂x0

, (19)

Therefore, λn = (∂L(xN )
∂xn

)>.

Proof of Theorem 2: By solving the combination of the integrators in Eqs. (5) and (7), a change in
a bilinear quantity S(δ, λ) that the continuous-time dynamics conserves is

S(δn+1, λn+1)− S(δn, λn) = S(δn + hn
∑
i bidn,i, λn + hn

∑
i b̃iln,i)− S(δn, λn)

=
∑
i bihnS(dn,i, λn) +

∑
i b̃ihnS(δn, ln,i)

+
∑
i

∑
j bib̃jh

2
nS(dn,i, ln,j)

=
∑
i 6∈I0 bihnS(dn,i,Λn,i − hn

∑
j b̃j(1− aj,i/bi)ln,j)

+
∑
i b̃ihnS(∆n,i − hn

∑
j ai,jdn,j , ln,i)

+
∑
i6∈I0

∑
j bib̃jh

2
nS(dn,i, ln,j)

=
∑
i 6∈I0 bihn(S(dn,i,Λn,j) + S(∆n,i, ln,j))

+
∑
i6∈I0

∑
j(−bib̃j(1− aj,i/bi)− b̃jaj,i + bib̃j)h

2
nS(dn,i, ln,j)

+
∑
i∈I0(b̃ihnS(∆n,i, ln,j)−

∑
j b̃jaj,ih

2
nS(dn,i, ln,j))

=
∑
i 6∈I0 bihn(S(dn,i,Λn,j) + S(∆n,i, ln,j))

+
∑
i∈I0 h

2
n(S(dn,i,Λn,j) + S(∆n,i, ln,j))

= 0.
(20)

Hence, the bilinear quantity S(δ, λ) is conserved.

Proof of Remark 4: Eq. (6) can be rewritten as

λn = λn+1 − hn
s∑
i=1

biln,i

ln,i = −∂f
∂x

(Xn,i, tn + cihn)>Λn,i,

Λn,i = λn+1 − hn
s∑
i=1

bj
aj,i
bi
ln,j .

(21)
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Eq. (7) can be rewritten as

λn = λn+1 − hn
s∑
i=1

b̃iln,i,

ln,i = −∂f
∂x

(Xn,i, tn + cihn)>Λn,i,

Λn,i =

{
λn+1 − hn

∑s
j=1 b̃j

aj,i
bi
ln,j if i 6∈ I0

−
∑s
j=1 b̃jaj,iln,j if i ∈ I0.

(22)

Because ai,j = 0 for j ≥ i, aj,i = 0 for j ≤ i. The intermediate adjoint variable Λn,i is calculable
from i = s to i = 1 sequentially, i.e., the integration backward in time is explicit.

C Gradients in General Cases

C.1 Gradient w.r.t. Parameters

For the parameter adjustment, one can consider the parameters θ as a part of the augmented state
x̃ = [x θ]> of the system

d

dt
x̃ = f̃(x̃, t), f̃(x̃, t) =

[
f(x, t, θ)

0

]
, x̃(0) =

[
x0
θ

]
. (23)

The variational and adjoint variables are augmented in the same way. For the augmented adjoint
variable λ̃ = [λ λθ]

>, the augmented adjoint system is

d

dt
λ̃ = −∂f̃

∂x̃
(x̃, t)>λ̃ = −

[
∂f
∂x

>
0

∂f
∂θ

>
0

] [
λ
λθ

]
=

[
−∂f∂x

>
λ

−∂f∂θ
>
λ

]
. (24)

Hence, the adjoint variable λ for the system state x is unchanged from Eq. (3), and the one λθ for the
parameters θ depends on the former as

d

dt
λθ = −∂f

∂θ
(x, t, θ)>λ, (25)

and λθ(T ) = (∂L(x(T ),θ)
∂θ )>.

C.2 Gradient of Functional

When the solution x(t) is evaluated by a functional C as

C(x(t)) =

∫ T

0

L(x(t), t)dt, (26)

the adjoint variable λC that denotes the gradient λC(t) = (∂C(x(T ))
∂x(t) )> of the functional C is given by

d

dt
λC = −∂f

∂x
(x, t)>λC +

∂L(x(t), t)

∂x(t)
, λC(T ) = 0. (27)

D Implementation Details

D.1 Robustness to Rounding Error

By definition, the naive backpropagation algorithm, baseline scheme, ACA, and the proposed
symplectic adjoint method provide the exact gradient up to rounding error. However, the naive
backpropagation algorithm and baseline scheme obtained slightly worse results on the GAS, POWER,
and HEPMASS datasets. Due to the repeated use of the neural network, each method accumulates the
gradient of the parameters θ for each use. Let θn,i denote the parameters used in the i-th stage of n-th
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Table A1: Results on learning physical systems without the deterministic option.

KdV Equation Cahn–Hilliard System

MSE (×10−3) mem. time MSE (×10−6) mem. time

adjoint method [2] 1.61±3.23 181.4±00.0 240±16 5.58±2.12 181.4±00.0 805±25
backpropagation [2] 1.61±3.24 733.9±15.6 94±04 5.45±1.55 3053.5±22.9 382±11
ACA [46] 1.61±3.24 734.5±20.3 120±04 6.00±3.27 780.4±22.9 422±16

proposed 1.61±3.58 182.1±00.0 141±07 5.48±1.90 182.1±00.0 480±19

Mean-squared errors (MSEs) in long-term predictions, peak memory consumption [MiB],
and computation time per iteration [ms/itr].

step even though their values are unchanged. The backpropagation algorithm obtains the gradient ∂L∂θ
with respect to the parameters θ by accumulating the gradient over all stages and steps one-by-one as

∂L
∂θ

=
∑

n=0,...,N−1,
i=1,...,s

∂L
∂θn,i

.
(28)

When the step size hn at the n-th step is sufficiently small, the gradient ∂L
∂θn,i

at the i-th stage may be
insignificant compared with the accumulated gradient and be rounded off during the accumulation.

Conversely, ACA accumulates the gradient within a step and then over time steps; this process can be
expressed informally as

∂L
∂θ

=

N−1∑
n=0

(
s∑
i=1

∂L
∂θn,i

)
. (29)

Further, according to Eqs. (6) and (25), the (symplectic) adjoint method accumulates the adjoint
variable λ (i.e., the transpose of the gradient) within a step and then over time steps as

λθ,n = λθ,n+1 − hn

(
s∑
i=1

Bi

(
− ∂f

∂θn,i
(Xn,i, t+ Cihn, θn,i)

>Λn,i

))
. (30)

In these cases, even when the step size hn at the n-th step is small, the gradient summed within a step
(over s stages) may still be significant and robust to rounding errors. This is the reason the adjoint
method, ACA, and the symplectic adjoint method performed better than the naive backpropagation
algorithm and baseline scheme for some datasets. Note that this approach requires additional memory
consumption to store the gradient summed within a step, and it is applicable to the backpropagation
algorithm with a slight modification.

D.2 Memory Consumption Optimization

Following Eqs. (21) and (22), a naive implementation of the adjoint method retains the adjoint
variables Λn,i at all stages i = 1, . . . , s to obtain their time-derivatives ln,i, and then adds them up to
obtain the adjoint variable λn at the n-th time step. However, as Eq. (25) shows, the adjoint variable
λθ for the parameters θ is not used for obtaining its time-derivative d

dtλθ. One can add up the adjoint
variable Λθn,i for the parameters θ at stage i one-by-one without retaining it, thereby reducing the
memory consumption proportionally to the number of parameters times the number of stages. A
similar optimization is applicable to the adjoint method.

D.3 Parallelization

The memory consumption and computation time depend highly on the implementations and devices.
Being implemented on a GPU, the convolution operation can be easily parallelized in space and
exhibits a non-deterministic behavior. To avoid the non-deterministic behavior, PyTorch provides
an option TORCH.BACKENDS.CUDNN.DETERMINISTIC, which was used to obtain the results in
Section 5.2, following the original implementation [31]. Without this option, the memory con-
sumption increased by a certain amount, and the computation times reduced due to the aggressive
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parallelization, as shown by the results in Table A1. Even then, the proposed symplectic adjoint
method occupied the smallest memory among the methods for the exact gradient. The increase in
the memory consumption is proportional to the width of a neural network; therefore, it is negligible
when the neural network is sufficiently deep.

Note that the results in Section 5.1 were obtained without the deterministic option.
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Table A2: Results obtained for continuous normalizing flows.

MINIBOONE (M = 1) GAS (M = 5) POWER (M = 5)

NLL mem. time NLL mem. time NLL mem. time

adjoint method [2] 10.59±0.17 170±000 0.74±0.04 -10.53±0.25 24±000 4.82±0.29 -0.31±0.01 8.1±000.0 6.33±0.18
backpropagation [2] 10.54±0.18 4,436±115 0.91±0.05 -9.53±0.42 4,479±250 12.00±0.93 -0.24±0.05 1710.9±193.1 10.64±2.73
baseline scheme 10.54±0.18 4,457±115 1.10±0.04 -9.53±0.42 1,858±228 5.48±0.25 -0.24±0.05 515.2±122.0 4.37±0.70
ACA [46] 10.57±0.30 306±000 0.77±0.02 -10.65±0.45 73±000 3.98±0.14 -0.31±0.02 29.5±000.5 5.08±0.88

proposed 10.49±0.11 95±000 0.84±0.03 -10.89±0.11 20±000 4.39±0.23 -0.31±0.02 9.2±000.0 5.73±0.43

HEPMASS (M = 10) BSDS300 (M = 2) MNIST (M = 6)

NLL mem. time NLL mem. time NLL mem. time

adjoint method [2] 16.49±0.25 40±000 4.19±0.15 -152.04±0.09 577±0 11.70±0.44 0.918±0.011 1,086±4 10.12±0.88
backpropagation [2] 17.03±0.22 5,254±137 11.82±1.33 — — — — — —
baseline scheme 17.03±0.22 1,102±174 4.40±0.40 — — — — — —
ACA [46] 16.41±0.39 88±000 3.67±0.12 -151.27±0.47 757±1 6.97±0.25 0.919±0.003 4,332±1 7.94±0.63

proposed 16.48±0.20 35±000 4.15±0.13 -151.17±0.15 283±2 8.07±0.72 0.917±0.002 1,079±1 9.42±0.32

Negative log-likelihoods (NLL), peak memory consumption [MiB], and computation time per iteration [s/itr]. The medians ± standard deviations of three runs.
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