
Supplementary Material: Appendices
A Derivation of Variational System

Let us consider a perturbed initial condition x̄0 = x0 + δ̄0, from which the solution x̄(t) arises.
Suppose that the solution x̄(t) satisfies x̄(t) = x(t) + δ̄(t). Then,

d

dt
δ̄ =

d

dt
(x̄− x)

= f(x̄, t)− f(x, t)

=
∂f

∂x
(x, t)(x̄− x) + o(|x̄− x|)

=
∂f

∂x
(x, t)δ̄ + o(|δ̄|),

δ̄(0) = δ̄0.

(9)

Dividing δ̄ by δ̄0 and taking the limit as |δ̄0| → +0, we define the variational variable as δ(t) = ∂x(t)
∂x0

and the variational system as

d

dt
δ(t) =

∂f

∂x
(x(t), t)δ(t) for δ(0) = I. (10)

B Complete Proofs

Proof of Remark 1:

d

dt

(
λ>δ

)
=

(
d

dt
λ

)>
δ + λ>

(
d

dt
δ

)
=

(
−∂f
∂x

(x, t)>λ

)>
δ + λ>

(
∂f

∂x
(x, t)δ

)
= 0. (11)

Proof of Remark 2: Because δ(t) = ∂x(t)
∂x0

and λ>δ is time-invariant,

∂L(x(T))

∂x0
=
∂L(x(T))

∂x(T)

∂x(T)

∂x0
= λ(T)>δ(T) = λ(t)>δ(t) =

∂L(x(T))

∂x(t)

∂x(t)

∂x0
. (12)

Proof of Remark 3: Differentiating each term in the Runge–Kutta method in Eq. (5) by the initial
condition x0 gives the Runge–Kutta method applied to the variational variable δ, as follows.

δn+1 = δn + hn

s∑
i=1

bidn,i,

dn,i :=
∂kn,i
∂x0

=
∂f(Xn,i, tn + cihn)

∂x0
=
∂f(Xn,i, tn + cihn)

∂Xn,i
∆n,i,

∆n,i :=
∂Xn,i

∂x0
= δn + hn

s∑
j=1

ai,jdn,j .

(13)

Proof of Theorem 1: Because the quantity S is conserved in continuous time,

d

dt
S(δ, λ) = 0. (14)

Because the quantity S is bilinear,

d

dt
S(δ, λ) =

∂S

∂δ

dδ

dt
+
∂S

∂λ

dλ

dt
= S

(
dδ

dt
, λ

)
+ S

(
δ,

dλ

dt

)
, (15)

which implies
S(dn,i,Λn,i) + S(∆n,i, ln,i) = 0. (16)

14

The change in the bilinear quantity S(δ, λ) is

S(δn+1, λn+1)− S(δn, λn) = S(δn + hn
∑
i bidn,i, λn + hn

∑
iBiln,i)− S(δn, λn)

=
∑
i bihnS(dn,i, λn) +

∑
iBihnS(δn, ln,i)

+
∑
i

∑
j biBjh

2
nS(dn,i, ln,j)

=
∑
i bihnS(dn,i,Λn,i − hn

∑
j Ai,j ln,j)

+
∑
iBihnS(∆n,i − hn

∑
j ai,jdn,j , ln,i)

+
∑
i

∑
j biBjh

2
nS(dn,i, ln,j)

=
∑
i hn(biS(dn,i,Λn,i) +BiS(∆n,i, ln,i))

+
∑
i

∑
j(−biAi,j −Bjaj,i + biBj)h

2
nS(dn,i, ln,j).

(17)

If Bi = bi and biAi,j +Bjaj,i − biBj = 0, the change vanishes, i.e., the partitioned Runge–Kutta
conserves a bilinear quantity S. Note that bi must not vanish because Ai,j = Bj(1 − aj,i/bi).
Therefore, the bilinear quantity λ>n δn is conserved as

λ>NδN = λ>n δn for n = 0, . . . , N. (18)

Remark 3 indicates δn = ∂xn

∂x0
. When λN is set to (∂L(xN)

∂xN
)>,

∂L(xN)

∂x0
=
∂L(xN)

∂xN

∂xN
∂x0

= λ>NδN = λ>n δn =
∂L(xN)

∂xn

∂xn
∂x0

, (19)

Therefore, λn = (∂L(xN)
∂xn

)>.

Proof of Theorem 2: By solving the combination of the integrators in Eqs. (5) and (7), a change in
a bilinear quantity S(δ, λ) that the continuous-time dynamics conserves is

S(δn+1, λn+1)− S(δn, λn) = S(δn + hn
∑
i bidn,i, λn + hn

∑
i b̃iln,i)− S(δn, λn)

=
∑
i bihnS(dn,i, λn) +

∑
i b̃ihnS(δn, ln,i)

+
∑
i

∑
j bib̃jh

2
nS(dn,i, ln,j)

=
∑
i 6∈I0 bihnS(dn,i,Λn,i − hn

∑
j b̃j(1− aj,i/bi)ln,j)

+
∑
i b̃ihnS(∆n,i − hn

∑
j ai,jdn,j , ln,i)

+
∑
i6∈I0

∑
j bib̃jh

2
nS(dn,i, ln,j)

=
∑
i 6∈I0 bihn(S(dn,i,Λn,j) + S(∆n,i, ln,j))

+
∑
i6∈I0

∑
j(−bib̃j(1− aj,i/bi)− b̃jaj,i + bib̃j)h

2
nS(dn,i, ln,j)

+
∑
i∈I0(b̃ihnS(∆n,i, ln,j)−

∑
j b̃jaj,ih

2
nS(dn,i, ln,j))

=
∑
i 6∈I0 bihn(S(dn,i,Λn,j) + S(∆n,i, ln,j))

+
∑
i∈I0 h

2
n(S(dn,i,Λn,j) + S(∆n,i, ln,j))

= 0.
(20)

Hence, the bilinear quantity S(δ, λ) is conserved.

Proof of Remark 4: Eq. (6) can be rewritten as

λn = λn+1 − hn
s∑
i=1

biln,i

ln,i = −∂f
∂x

(Xn,i, tn + cihn)>Λn,i,

Λn,i = λn+1 − hn
s∑
i=1

bj
aj,i
bi
ln,j .

(21)

15

Eq. (7) can be rewritten as

λn = λn+1 − hn
s∑
i=1

b̃iln,i,

ln,i = −∂f
∂x

(Xn,i, tn + cihn)>Λn,i,

Λn,i =

{
λn+1 − hn

∑s
j=1 b̃j

aj,i
bi
ln,j if i 6∈ I0

−
∑s
j=1 b̃jaj,iln,j if i ∈ I0.

(22)

Because ai,j = 0 for j ≥ i, aj,i = 0 for j ≤ i. The intermediate adjoint variable Λn,i is calculable
from i = s to i = 1 sequentially, i.e., the integration backward in time is explicit.

C Gradients in General Cases

C.1 Gradient w.r.t. Parameters

For the parameter adjustment, one can consider the parameters θ as a part of the augmented state
x̃ = [x θ]> of the system

d

dt
x̃ = f̃(x̃, t), f̃(x̃, t) =

[
f(x, t, θ)

0

]
, x̃(0) =

[
x0
θ

]
. (23)

The variational and adjoint variables are augmented in the same way. For the augmented adjoint
variable λ̃ = [λ λθ]

>, the augmented adjoint system is

d

dt
λ̃ = −∂f̃

∂x̃
(x̃, t)>λ̃ = −

[
∂f
∂x

>
0

∂f
∂θ

>
0

] [
λ
λθ

]
=

[
−∂f∂x

>
λ

−∂f∂θ
>
λ

]
. (24)

Hence, the adjoint variable λ for the system state x is unchanged from Eq. (3), and the one λθ for the
parameters θ depends on the former as

d

dt
λθ = −∂f

∂θ
(x, t, θ)>λ, (25)

and λθ(T) = (∂L(x(T),θ)
∂θ)>.

C.2 Gradient of Functional

When the solution x(t) is evaluated by a functional C as

C(x(t)) =

∫ T

0

L(x(t), t)dt, (26)

the adjoint variable λC that denotes the gradient λC(t) = (∂C(x(T))
∂x(t))> of the functional C is given by

d

dt
λC = −∂f

∂x
(x, t)>λC +

∂L(x(t), t)

∂x(t)
, λC(T) = 0. (27)

D Implementation Details

D.1 Robustness to Rounding Error

By definition, the naive backpropagation algorithm, baseline scheme, ACA, and the proposed
symplectic adjoint method provide the exact gradient up to rounding error. However, the naive
backpropagation algorithm and baseline scheme obtained slightly worse results on the GAS, POWER,
and HEPMASS datasets. Due to the repeated use of the neural network, each method accumulates the
gradient of the parameters θ for each use. Let θn,i denote the parameters used in the i-th stage of n-th

16

Table A1: Results on learning physical systems without the deterministic option.

KdV Equation Cahn–Hilliard System

MSE (×10−3) mem. time MSE (×10−6) mem. time

adjoint method [2] 1.61±3.23 181.4±00.0 240±16 5.58±2.12 181.4±00.0 805±25
backpropagation [2] 1.61±3.24 733.9±15.6 94±04 5.45±1.55 3053.5±22.9 382±11
ACA [46] 1.61±3.24 734.5±20.3 120±04 6.00±3.27 780.4±22.9 422±16

proposed 1.61±3.58 182.1±00.0 141±07 5.48±1.90 182.1±00.0 480±19

Mean-squared errors (MSEs) in long-term predictions, peak memory consumption [MiB],
and computation time per iteration [ms/itr].

step even though their values are unchanged. The backpropagation algorithm obtains the gradient ∂L∂θ
with respect to the parameters θ by accumulating the gradient over all stages and steps one-by-one as

∂L
∂θ

=
∑

n=0,...,N−1,
i=1,...,s

∂L
∂θn,i

.
(28)

When the step size hn at the n-th step is sufficiently small, the gradient ∂L
∂θn,i

at the i-th stage may be
insignificant compared with the accumulated gradient and be rounded off during the accumulation.

Conversely, ACA accumulates the gradient within a step and then over time steps; this process can be
expressed informally as

∂L
∂θ

=

N−1∑
n=0

(
s∑
i=1

∂L
∂θn,i

)
. (29)

Further, according to Eqs. (6) and (25), the (symplectic) adjoint method accumulates the adjoint
variable λ (i.e., the transpose of the gradient) within a step and then over time steps as

λθ,n = λθ,n+1 − hn

(
s∑
i=1

Bi

(
− ∂f

∂θn,i
(Xn,i, t+ Cihn, θn,i)

>Λn,i

))
. (30)

In these cases, even when the step size hn at the n-th step is small, the gradient summed within a step
(over s stages) may still be significant and robust to rounding errors. This is the reason the adjoint
method, ACA, and the symplectic adjoint method performed better than the naive backpropagation
algorithm and baseline scheme for some datasets. Note that this approach requires additional memory
consumption to store the gradient summed within a step, and it is applicable to the backpropagation
algorithm with a slight modification.

D.2 Memory Consumption Optimization

Following Eqs. (21) and (22), a naive implementation of the adjoint method retains the adjoint
variables Λn,i at all stages i = 1, . . . , s to obtain their time-derivatives ln,i, and then adds them up to
obtain the adjoint variable λn at the n-th time step. However, as Eq. (25) shows, the adjoint variable
λθ for the parameters θ is not used for obtaining its time-derivative d

dtλθ. One can add up the adjoint
variable Λθn,i for the parameters θ at stage i one-by-one without retaining it, thereby reducing the
memory consumption proportionally to the number of parameters times the number of stages. A
similar optimization is applicable to the adjoint method.

D.3 Parallelization

The memory consumption and computation time depend highly on the implementations and devices.
Being implemented on a GPU, the convolution operation can be easily parallelized in space and
exhibits a non-deterministic behavior. To avoid the non-deterministic behavior, PyTorch provides
an option TORCH.BACKENDS.CUDNN.DETERMINISTIC, which was used to obtain the results in
Section 5.2, following the original implementation [31]. Without this option, the memory con-
sumption increased by a certain amount, and the computation times reduced due to the aggressive

17

parallelization, as shown by the results in Table A1. Even then, the proposed symplectic adjoint
method occupied the smallest memory among the methods for the exact gradient. The increase in
the memory consumption is proportional to the width of a neural network; therefore, it is negligible
when the neural network is sufficiently deep.

Note that the results in Section 5.1 were obtained without the deterministic option.

18

Table A2: Results obtained for continuous normalizing flows.

MINIBOONE (M = 1) GAS (M = 5) POWER (M = 5)

NLL mem. time NLL mem. time NLL mem. time

adjoint method [2] 10.59±0.17 170±000 0.74±0.04 -10.53±0.25 24±000 4.82±0.29 -0.31±0.01 8.1±000.0 6.33±0.18
backpropagation [2] 10.54±0.18 4,436±115 0.91±0.05 -9.53±0.42 4,479±250 12.00±0.93 -0.24±0.05 1710.9±193.1 10.64±2.73
baseline scheme 10.54±0.18 4,457±115 1.10±0.04 -9.53±0.42 1,858±228 5.48±0.25 -0.24±0.05 515.2±122.0 4.37±0.70
ACA [46] 10.57±0.30 306±000 0.77±0.02 -10.65±0.45 73±000 3.98±0.14 -0.31±0.02 29.5±000.5 5.08±0.88

proposed 10.49±0.11 95±000 0.84±0.03 -10.89±0.11 20±000 4.39±0.23 -0.31±0.02 9.2±000.0 5.73±0.43

HEPMASS (M = 10) BSDS300 (M = 2) MNIST (M = 6)

NLL mem. time NLL mem. time NLL mem. time

adjoint method [2] 16.49±0.25 40±000 4.19±0.15 -152.04±0.09 577±0 11.70±0.44 0.918±0.011 1,086±4 10.12±0.88
backpropagation [2] 17.03±0.22 5,254±137 11.82±1.33 — — — — — —
baseline scheme 17.03±0.22 1,102±174 4.40±0.40 — — — — — —
ACA [46] 16.41±0.39 88±000 3.67±0.12 -151.27±0.47 757±1 6.97±0.25 0.919±0.003 4,332±1 7.94±0.63

proposed 16.48±0.20 35±000 4.15±0.13 -151.17±0.15 283±2 8.07±0.72 0.917±0.002 1,079±1 9.42±0.32

Negative log-likelihoods (NLL), peak memory consumption [MiB], and computation time per iteration [s/itr]. The medians ± standard deviations of three runs.

19

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The exactness of the gradient is shown theoretically by
Theorems 1 and 2, which are proved in Appendix B. The memory consumption and
computation time are summarized in Tables 2, 4, and A1. The robustness to rounding
errors is confirmed in Performance paragraph in Section 5.1 and Appendix D.1.

(b) Did you describe the limitations of your work? [Yes] Throughout the manuscript,
especially at the bottom of Section 4.2, we have mentioned that the proposed method is
applicable only to Runge–Kutta methods.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] No
societal impact is supposed.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [N/A] The authors read the guidelines. No ethical impact is supposed.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Throughout

the manuscript, especially at the bottom of Section 4.2, we have mentioned that the
proposed method is applicable only to Runge–Kutta methods.

(b) Did you include complete proofs of all theoretical results? [Yes] The complete proofs
are provided in Appendix B.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] We have
provided the links to the code in Section 5 and to the external resources in the footnotes
on pages 7 and 10. We have provided the versions of packages at the beginning of
Section 5.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] As mentioned in Sections 5.1 and 5.2, we adopted the training
details used in the original studies, except for the batch-size and integrators.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] We have provided the standard deviations of the
performance in Tables A2, 3, 4, and A1.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We used NVIDIA GeForce RTX
2080Ti, NVIDIA RTX A6000, and NVIDIA TITAN V, depending on the experiments,
as mentioned in Sections 5.1 and 5.2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cited [12] and

[31], and we provided links to the codes in the footnotes on pages 7 and 10.
(b) Did you mention the license of the assets? [Yes] We have mentioned the license

information in the footnotes on pages 7 and 10
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We have provided the link to the code in Section 5.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

20

