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Abstract

Piano transcription systems are typically optimized to estimate pitch activity at
each frame of audio. They are often followed by carefully designed heuristics and
post-processing algorithms to estimate note events from the frame-level predic-
tions. Recent methods have also framed piano transcription as a multi-task learn-
ing problem, where the activation of different stages of a note event are estimated
independently. These practices are not well aligned with the desired outcome of
the task, which is the specification of note intervals as holistic events, rather than
the aggregation of disjoint observations. In this work, we propose a novel formu-
lation of piano transcription, which is optimized to directly predict note events.
Our method is based on Semi-Markov Conditional Random Fields (semi-CRF),
which produce scores for intervals rather than individual frames. When formu-
lating piano transcription in this way, we eliminate the need to rely on disjoint
frame-level estimates for different stages of a note event. We conduct experiments
on the MAESTRO dataset and demonstrate that the proposed model surpasses the
current state-of-the-art for piano transcription. Our results suggest that the semi-
CRF output layer, while still quadratic in complexity, is a simple, fast and well-
performing solution for event-based prediction, and may lead to similar success in
other areas which currently rely on frame-level estimates.

1 Introduction

The task of Automatic Music Transcription (AMT) aims to transcribe a music recording into some
form of music notation [Benetos et al., 2018]. Examples of notation include MIDI event sequences,
e.g, Hawthorne et al. [2018], Kong et al. [2020], Kim and Bello [2019], Kwon et al. [2020], and staff
notation, e.g., Nakamura et al. [2018], Román et al., 2019]. In this work, we address the problem
of transcribing piano music into a MIDI event sequence. MIDI transcription involves constructing
a sequence of events, each specified by its onset and offset positions, with the constraint that two
events of the same event type (e.g., certain pitches and pedals) cannot overlap. In addition to onsets
and offsets, the velocity (i.e., a value that represents the intensity of a key strike, which informs the
loudness) associated with each event is often estimated.

In recent years, neural network based approaches have reached the state of the art for the problem
of piano transcription, e.g., Hawthorne et al. [2018], Kong et al. [2020], Kwon et al. [2020]. They
operate at the frame-level and make predictions for different stages of a note event, i.e., the onset,
offset, and pitch activation, separately. In order to extract note-level predictions, they use manually
designed procedures to combine the disjoint frame-level predictions. These include thresholding,
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peak picking [Hawthorne et al., 2018, Kong et al., 2020] or low-order hidden Markov models [Kwon
et al., 2020]. This two-stage approach requires manually crafted procedures and a manually designed
state structure modeling the temporal evolution of notes.

In this work, we propose a direct approach to note-level transcription. Instead of scoring and aggre-
gating note activations across individual time frames, our approach directly scores a time interval’s
likelihood of covering the entire process of a certain event (e.g., a note, pedal usage). This greatly
simplifies the formulation of piano transcription. Specifically, the proposed method takes the log-
mel spectrogram of an audio segment (e.g., 10s) as input, and uses a contextual model to produce
contextual embeddings for each frame. It then uses a score model to score each possible time interval
within the segment to assess whether it covers the entire span of a musical event (e.g., notes, ped-
als) as specified by a specialized zeroth-order semi-Markov conditional random fields (semi-CRF)
[Sarawagi and Cohen, 2004]. These scores are then decoded using Viterbi algorithm into a set of
non-overlapping intervals for each event type, i.e., note-level transcription. Finally, other attributes
of these intervals (i.e., velocity and refined boundary positions) are also estimated.

Previous works using semi-CRF were concerned with shorter sequence lengths and smaller interval
lengths [Kong et al., 2016, Liu et al., 2016, Kemos et al., 2019, Lu et al., 2016], and usually only
attempted to estimate a single channel (track) of non-overlapping events. In contrast, our problem
deals with sequences of 400-1600 frames (approximately 10s-40s) and requires a separate semi-
CRF for around 90 different labelling channels (88 pitches + 1-3 pedals), each corresponding to a
specific event type. Another challenge is the wide range of event duration that can be encountered
in piano music, which further increases the computational expenses of the problem. These chal-
lenges prevented us from using existing general purpose semi-CRF methods due to computational
expenses. Instead, we introduce a zeroth-order Semi-CRF formulation that is specifically adapted
to the problem and show that it can be implemented efficiently (see Table 3) for the problem size of
interest.

Our experiments on the MAESTRO dataset show that the proposed system achieves Note w/ Offset
F1 of 88.72% and Note w/ Offset & Velocity F1 of 87.75%, exceeding the current state of the art
while being smaller and faster. We believe that this simple, fast and well-performing approach is
also extensible to other similar tasks with intervals as the prediction target, such as polyphonic sound
event detection or speaker diarization.

2 Related Works

Piano Transcription There have been many proposed approaches to piano transcription in the
last several decades. Early works consist of simple signal processing methods such as spectral peak-
picking [Klapuri et al., 2000, Bello et al., 2006], which estimates fundamental frequencies directly
from the spectrum, or spectral decomposition [Smaragdis and Brown, 2003, O’Hanlon and Plumb-
ley, 2014], where a short-time spectrum is factorized into spectral components with corresponding
activations. Several parametric models have also been proposed to perform spectro-temporal decom-
position [Vincent et al., 2009, Emiya et al., 2009, Cheng et al., 2016]. Time-domain decomposition
has been also investigated in Cogliati et al. [2017, 2016]. Most of these methods aim to model notes
explicitly as parametric templates, and tend to suffer from the lack of generalization. Other meth-
ods include machine learning techniques such as Hidden Markov Models [Raphael, 2002, Böck and
Schedl, 2012] or Support Vector Machines [Poliner and Ellis, 2006, Weninger et al., 2013]. Recently,
neural network based approaches have made significant advances [Sigtia et al., 2016, Hawthorne
et al., 2018, 2019, Kim and Bello, 2019] by taking advantage of large Disklavier piano databases.

Many methods separate piano transcription into frame-wise polyphonic pitch estimation and note
tracking, thereby optimizing for frame-level predictions which are used to estimate quantized note
intervals. While intuitive, this practice has a major drawback: the quality of the note-level predic-
tions is fundamentally limited by the quality of the frame-level activations, which can be sporadic,
discontinuous, and non-uniform in terms of their strength. Kameoka et al. [2007] attempted to cir-
cumvent this problem by performing harmonic temporal template structured clustering to explain
spectrogram observations as originating from distinct sources, directly estimating notes as discrete
events. This reflects the idea of [Bregman, 1990], i.e., that meaningful auditory events are results of
simultaneous and sequential groupings. However, the underlying mental process of low-level group-
ings are more complex than clustering according to simple parametric harmonic temporal templates.
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Figure 1: Proposed system overview. In the middle part of the figure, Tbegin and Tend are the number
of beginning positions and ending positions, respectively, and N is the number of eventType(s).

Some more recent works [Kelz et al., 2019, Kwon et al., 2020] attempt to incorporate manually-
defined state structure for modeling the temporal evolution of notes. However, the state structure
(usually of low order) may not reflect the actual temporal evolution and thus limits the representa-
tive power of these models. Cogliati et al. [2017] directly estimates the activation of note templates
in the time domain, but these templates are preset and are piano- and context-dependent, lacking the
generalization to unseen pianos or recording environments.

The proposed method learns to estimate note events holistically, rather than adopting the frame-to-
note two-stage approach or performing and aggregating multiple subtasks (i.e., onset, offset, and
pitch estimation). It can be viewed as performing groupings directly in the event space, with low-
level details being learned by the neural networks.

Semi-Markov CRFs A semi-Markov conditional random field (semi-CRF, Sarawagi and Cohen
[2004]) defines a conditional probability distribution over sets of non-overlapping labeled intervals
within an input sequence. Semi-CRFs have been used in Chinese word segmentation [Liu et al.,
2016, Kong et al., 2016], named entity recognition [Zhuo et al., 2016, Ye and Ling, 2018, Arora et al.,
2019], character-level part-of-speech tagging [Kemos et al., 2019], phone recognition [Lu et al.,
2016], chord recognition [Masada and Bunescu, 2017], etc. The time complexity for computing the
partition function and inferring the most likely configuration is quadratic with respect to the length
of the sequence. Therefore, most works set an upper bound on the length of a single interval, e.g.,
Kemos et al. [2019], to make the computation tractable.

In this work, a semi-CRF is defined for each event type (i.e., a note of a specific pitch, a pedal). Our
semi-CRF formulation differs from the standard formulation in the following ways: 1) Different
events in a semi-CRF are allowed to overlap on their endpoints (boundary frames), since audio
frames represent a time period and can contain both the end and beginning of an event of the same
type. This treatment allows us to use a larger hop size without adjustment due to overlap in the same
frame, so that the sequence length for the same audio segment can be reduced; 2) A frame is not
required to belong to any event. Despite the loosened definition, we use the name semi-CRF to refer
to this type of structured prediction module.

Compared to the tasks mentioned above, the task of piano transcription has a longer input sequence
and a larger range of possible event duration. The former makes the time complexity issue more
prominent, while the latter makes it difficult to specify an upper bound on event duration for speedup
purposes. We show that our formulation is efficient for piano transcription and hence does not
require an upper bound on event duration, thanks to a set of implementation optimizations.

3 Proposed Semi-CRF Approach to Piano Transcription

The proposed system transcribes the input audio into a list of musical events, i.e., notes and pedals.
Here the term events refers to acoustical events that span certain time intervals (not to be confused
with raw MIDI events, i.e., note on, note off, cc, etc., used for serializing the performance). Taking
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an audio segment (e.g., 10s), the transcription process is illustrated in Figure 1. First, a log-mel
spectrogram is computed after taking the short-time Fourier transform (STFT) of the audio. This is
used as input to a contextual model to produce contextual features across time frames. Such features
are then fed to a score model to calculate two kinds of scores. The first kind of score (Score) assigns
a score to indicate whether an interval is an event of a certain event type. The second kind of score
(Scoreϵ) indicates whether an interval that spans two frames is not part of any event for a certain
event type. Finally, a Viterbi algorithm is used to decode the most likely sequence of events for
each event type, using the aforementioned scores. Attributes, i.e., velocity and refined onset/offset
positions, are then estimated for each extracted event.

3.1 CRF Formulation

Let X =< x0, x1, . . . , xN−1 > be an audio segment containing a sequence of N time frames. Let
Y = {(i, j, eventType), i ≤ j} be the set of musical events entirely contained within this segment,
with time quantized to audio frames. Here i and j are respectively the beginning and ending frame
indices for each event, and eventType is the type of the event, e.g., a specific key (pitch) of the the 88
keys of a piano or the sustain pedal. Events that extend outside the audio segment are not considered
in this formulation, but will be handled in the inference process (See Section 3.3). We assume that
for the same event type, two events A and B are non-overlapping, i.e., either jA ≤ iB or jB ≤ iA.
In this formulation, it is allowed to have single-frame events where i = j (note how this would make
the formulation differ from the standard semi-CRFs).

We associate each event with a set of attributes: 1) the relative non-quantized position of onsets
and offsets at the sub-frame level, represented by a value from −0.5 to 0.5 indicating the position
relative to the quantized index of the frame, and 2) the MIDI velocity of the event, represented by a
discrete value from 0 to 127.

We use YeventType to denote the subset of events that contains only a specific event type. For each
event type, we model the following conditional probability:

p(YeventType|X ) =
1

Z(eventType)
exp

[ ∑
(i,j,eventType)∈YeventType

score(i, j, eventType)

+
∑

[i−1,i] not covered in YeventType

scoreϵ(i− 1, i, eventType)
]
,

(1)

where score(i, j, eventType) assigns a score to the interval [i, j] to indicate whether it is an event
of eventType, scoreϵ(i − 1, i, eventType) assigns a score to the interval [i − 1, i] that spans two
frames to indicate whether it is not covered by any event of eventType, which inversely represents
the frame-level activation for an event, and Z(eventType) is the normalization factor. The non-event
score (scoreϵ) for two consecutive frames comes from skipping one position in a feasible solution
(see example in the next paragraph), and it also allows the model to degenerate to frame-level event
prediction. Here, for notational convenience, we omit X for every term.

For numerical stability, Eqn. (1) is computed in the log-domain. The exponent, i.e., the summation
of all score(i, j, eventType) and scoreϵ(i− 1, i, eventType) corresponding to YeventType, is the unnor-
malized log-likelihood. As an example, for a single eventType, assuming there are 7 audio frames
<0,1,2,3,4,5,6> in total, for the interval set candidate {[0,0], [2,4], [4,5]}, the corresponding unnor-
malized log-likelihood is computed as score(0, 0) + scoreϵ(0, 1) + scoreϵ(1, 2) + score(2, 4) +
score(4, 5) + scoreϵ(5, 6).

The computation of logZ(eventType) and its gradient w.r.t. to score/scoreϵ,∇ logZ(eventType),
is critical in training. The detailed procedure is shown in Algorithm 1 (forward-backward algorithm).
In practice, we compute logZ and ∇ logZ for all eventType(s) in parallel. The forward stage and
the backward stage in the forward-backward algorithm are batched together, but with all positions
of the input flipped, as to compute them in a single pass without the need for two separate update
equations, since their calculations are essentially the same. We also find that a substantial speedup
(>5x) can be achieved by using a custom gradient computation via the backward pass of the forward-
backward algorithm for logZ, as opposed to using automatic differentiation w.r.t. logZ in PyTorch.
This is likely due to a more contiguous memory access pattern and the elimination of unnecessary
operations.
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In order to make memory access at each step more contiguous, the event scores Score and Scoreϵ
are organized as Tend× Tstart×N and Tend×N tensors, respectively, with Tend being the ending
position of an interval, Tstart being the beginning position of an interval, and N being the number
of eventType(s). Here, each slice along the N dimension represents a separate semi-CRF channel.

A runtime benchmark of the semi-CRF layer presented is provided in Table 3.

Algorithm 1 Forward-backward algorithm for logZ and ∇ logZ for a specific event type.

Input: function score(i, j), function scoreϵ(i− 1, i)
Output: logZ and ∇ logZ

Forward stage:
Initialize the forward variable: v(0)← log(exp(score(0, 0)) + 1)
for all j = 1, . . . , N − 1 do

v(j)← log

{
exp[v(j − 1) + scoreϵ(j − 1, j)] +

∑
k<j

exp[v(k) + score(k, j)]

}
v(j)←v(j) + log{1 + exp[score(j, j)]}

end for

Readout the log partition function:
logZ ← v(N − 1)

Backward stage:
Initialize the backward variable: q(N − 1)← log{exp[score(N − 1, N − 1)] + 1}
for all j = N − 2, . . . , 0 do

q(j)← log

{
exp[q(j + 1) + scoreϵ(j, j + 1)] +

∑
k>j

exp[q(k) + score(j, k)]

}
q(j)←q(j) + log{1 + exp[score(j, j)]}

end for

Read out the posterior marginals as derivatives:
for all i=0,. . . , N-1 do
p(i, i)← exp{v(i) + q(i) + score(i, i)− 2 log[exp(score(i, i) + 1)]− logZ}

end for
for all i<j do
p(i, j)← exp[v(i) + q(j) + score(i, j)− logZ]

end for
for all i=1,. . . , N-1 do
pϵ(i− 1, i)← exp[v(i− 1) + q(i) + scoreϵ(i− 1, i)− logZ]

end for
∂ logZ

∂score(i,j) = p(i, j), ∂ logZ
∂scoreϵ(i−1,i) = pϵ(i− 1, i)

3.2 Training Objectives

For training, we use maximum likelihood estimation (MLE), where the conditional log-likelihood
is defined to consolidate the conditional probability in Eqn. (1) over all event types, assuming their
conditional independence given X :

log p(Y|X ) =
∑

eventType

log p(YeventType|X ). (2)

One may question the validity of this conditional independence assumption on different event-
Type(s); here, we keep things simple, as previous approaches often make this assumption. We leave
this for future investigation.
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In addition to the log-likelihood for the presence of events defined in Eqn. (2), we also learn to
predict three attributes for each event:

log p(attributes|e) = log p(velocity|e) + log p(refined onset|e) + log p(refined offset |e). (3)
Here we use e to denote an event. We parameterize these terms with the following distributions, i.e.,
the Softmax/Multinomial distribution, and the Continuous Bernoulli distribution [Loaiza-Ganem
and Cunningham, 2019]:

velocity|e ∼ Softmax(µ(e)),
0.5 + refined onset/offset|e ∼ ContinuousBernoulli(λ(e)),

(4)

where µ(e) and λ(e) are parameters produced by neural networks that take features of the interval
as the input. The interval features used in this work are described in Section 3.4. The final objective
is defined as

L = −[log p(Y|X ) +
∑
e∈Y

log p(attributes|e)]. (5)

More discriminative and cost-sensitive losses such as max-margin and softmax margin can be used
as drop-in replacements, but we leave this investigation to future work.

3.3 Inference

We use dynamic programming (Viterbi) to infer the most likely interval sequence for every eventType
independently. The procedure is described in Algorithm 2.

When processing longer audio recordings, our system transcribes audio segment by segment. Be-
cause the system is designed to ignore all events that extend outside a segment, these audio segments
need to overlap with each other. In this work, segments are 10s long and the overlap is 5s. In order
to properly handle notes near the boundaries of a segment, we modify the algorithm such that it
is forced to take the result from the overlapping portions into account as follows. Within an audio
segment, decoding is performed in reverse order: backtracking starts from the position immediately
after the last event decoded in the last segment of the same event type, if any of those overlap with
the current segment. We found that, for each segment, it works slightly better to discard all events of
which the onsets fall into the overlapping region with the next segment, which is a procedure similar
to the overlap-discard method for computing discrete convolutions for a long signal.

Algorithm 2 Viterbi (MAP) decoding of a specific eventType within an audio segment.

Input: function score(i, j), function scoreϵ(i− 1, i), backtracking starting frame position t
Output: a set of intervals Y

v(N − 1)← max(score(N − 1, N − 1), 0)
for all j ∈ N − 2, . . . , 0 do

v(j)← max

{
v(j + 1) + scoreϵ(j, j + 1) - skip if inactive
maxk>j{v(k) + score(j, k)} - if an interval

v(j)← v(j) + max(score(j, j), 0) - single frame case
end for
Perform backtracking starting from position t to get Y

After events are extracted, feature vectors of the events, described in Section 3.4, are used to predict
attributes, namely, velocity and refined onset/offset positions. These attributes are then assembled
with the events to form an event tuple (onset, offset, eventType, velocity) for the final output.

3.4 Model Architectures

In this section, we present details of the neural architectures for the three components used in the
proposed approach: 1) contextual model, 2) score models, and 3) attribute predictors. To recap, we
first apply a contextual model to transform the input audio frames into a sequence of contextual
embeddings. These contextual embeddings are then used by the score models to compute score(·)
for all possible events, in a fashion similar to Cross and Huang [2016], Kitaev and Klein [2018], Liu
et al. [2016], and scoreϵ(·). After events are extracted, contextual embeddings are also used by the
attribute predictors to predict attributes (i.e., velocity and refined onset/offset times) associated with
each event.
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Figure 2: Model architectures. The contextual model transforms the input frame sequence into a
sequence of context embeddings, based on which scores and attributes are computed by the score
models and attribute predictors, respectively.

3.4.1 Contextual Model

As input to the contextual model, we compute a log-mel spectrogram with a frame size of 4096
samples, a hop size of 1024 samples, and the Hann window function. Following Hawthorne et al.
[2018], Kong et al. [2020], we use 229-bands with a frequency range from 30 Hz to 8000 Hz. In ad-
dition to a single Hann window applied to each frame, we also experimented with applying multiple
adjustable Gaussian windows (5 windows, initialized with equidistant centers and constant variance)
to the same frame and concatenating the resulting log-mel spectra together for improving the tem-
poral resolution of the spectra input. By doing this, the input becomes a log-mel spectrogram with
multiple channels for each time-frequency bin, with each channel obtained from a different window
function. We feed the log-mel spectrogram through four convolutional blocks with a kernel size of 3
and 48, 64, 92, 128 filters, respectively. Each convolutional block contains two 2-d convolution lay-
ers, followed by batch normalization and a Gaussian Error Linear Unit (GELU) activation function
[Hendrycks and Gimpel, 2016]. At the end of each block, the output is pooled along the frequency
dimension using average pooling with a kernel size and stride of 2. The channel and frequency
dimensions are flattened together and fed into a two-layer bidirectional GRU with hidden size 256.
This contextual model is largely the same as the one used in Kong et al. [2020], however, we only
utilize one instance of the block rather than stacking it for different frame-level prediction targets.

3.4.2 Score(i, j, ·) and Scoreϵ(i− 1, i, ·)

As shown in Fig. 2b, the features used for scoring an interval [i, j] include contextual embeddings at
its two endpoints, i.e., hi, hj , their elementwise multiplication hi ⊙ hj , and the first three moments
for the contextual embeddings within the interval [i, j]. These features are chosen because they
provide information for events as a whole while being cheap to compute, and are often seen in
the literature when extracting holistic/pairwise features. These features are concatenated and fed
into a three-layer feed-forward neural network (MLPLayer) to obtain a raw intervalic score tensor
with shape Tend × Tbegin × N , where the three dimensions are the ending position of an interval,
the beginning position of an interval, and eventType channels, respectively. The output size of this
network is equal to the number of event types and the hidden size is equal to 4x the output size.
On top of the raw score tensor, as shown in the figure, we experimented with applying a simple
convolutional block with two convolutional layers of kernel size 3 and filter size being 3x the output
size, with the hope that the block can aggregate neighboring information in the space of intervals
in order to increase the expressivity. We also experimented with scaling the intervallic score by
the length of the interval, motivated by the following observation: when the score function for an
interval is chosen to be the variance alone with this length scaling added, the semiCRF layer in this
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work is equivalent to optimal 1-d k-means clustering. This scaling adjusts the score for an event to be
roughly at the same scale of the aggregated non-event score at the same time interval at initialization.

For the inactivity score, scoreϵ(i− 1, i), only contextual embeddings of two consecutive frames are
used. These are similarly fed into a three-layer feed-forward network with an output size equal to
the number of event types.

3.4.3 Attribute Predictor

As shown in Fig. 2c, for predicting attributes associated with each event, we use features of end-
points concatenated with an trainable eventType embedding vector seventType with size 256 for fully
specifying the event. These features are fed into separate multi-layer feed-forward networks. The
velocity prediction network has hidden sizes of 512/512, and produces a 128-dimensional logits to
infer the MIDI velocity value. The refined onset and offset time prediction network has hidden sizes
of 512/128, and produces a 2-dimensional real vector, which is used as logits for the Continuous
Bernoulli Distribution for onset/offset refinement, respectively, as defined in Eqn. (4).

4 Experiments

4.1 Dataset

We conduct our experiments using the MAESTRO v2 dataset [Hawthorne et al., 2019], which con-
tains around 200 hours of MIDI-synchronized (3ms precision) virtuoso piano performance record-
ings. The recordings were collected across several years of the International Piano-e-Competition,
and were recorded on Yamaha Disklavier pianos. All recordings are sampled at 44.1 kHz, except
for files from the 2017 and 2018 competitions, which are sampled at 48 kHz; we thus downsample
them to 44.1 kHz for consistency. For comparing with other works, we follow the convention to
extend the offset of notes to the offset of any simultaneous sustain pedal event [Hawthorne et al.,
2018, Kong et al., 2020].

4.2 Training

We use a batch size of 12 and Adabelief [Zhuang et al., 2020] optimizer with a weight decay of
1e-4. We use oneCycle [Smith and Topin, 2019] learning rate scheduler with maximum learning
rate set to 6e-4 for 180k iterations and cosine annealing. The learning rate is increased gradually for
20% of iterations and then gradually annealed to 1.5e-5. We automatically determine the value for
gradient clipping by using the 0.8 quantile of the gradient norm during the last 10k iterations, which
is a strategy similar to Seetharaman et al. [2020]. We apply dropout with rate 0.1 on the attribute
predictors and the score model.

4.3 Evaluation Metrics

We follow the standard piano transcription evaluation procedure, validating note predictions with
multiple levels of criteria. The most basic metric considers a note prediction correct if the esti-
mated onset is within 50 ms of the corresponding ground-truth onset. The next incremental metric
additionally requires that the offset prediction is within 50 ms or 20% of the note duration from
the ground-truth offset position. The final incremental metric additionally requires that the velocity
estimate is within a tolerance of 0.1 ([0,1] normalized velocity) from the ground-truth velocity, as
defined in Hawthorne et al. [2018]. We directly use the implementation contained in the mir_eval
library [Raffel et al., 2014] to compute these three note-level metrics.

We also introduce activation-level metrics which serve as a hopsize-agnostic replacement for the
commonly reported frame-level metrics for evaluating how predicted time spans of events overlap
with the ground truth (see the supplementary material for details).

Following the convention, each result is averaged across all pieces within the test set. We compute
similar metrics, minus the velocity variation, for the sustain pedal activity, as in Kong et al. [2020].
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4.4 Main Results

We compare the proposed system to the state-of-the-art methods2 , for piano transcription using the
MAESTRO v2 test split. We recompute these metrics for other systems directly from the transcribed
MIDI files generated by their pretrained models. We also report our results for our model trained
and evaluated on the MAESTRO v3 splits for future reference. The note transcription and pedal
transcription results are listed in Tables 1 and 2, respectively.

Activation Note Onset Note w/ Offset Note w/ Offset & Vel.
Method P R F1 P R F1 P R F1 P R F1

MAESTRO v2
Hawthorne et al. [2019] 86.84 89.24 87.82 97.88 92.26 94.93 82.09 77.44 79.65 78.37 73.94 76.05

Kong et al. [2020] 90.09 90.42 90.15 98.16 95.46 96.77 85.65 83.32 84.45 84.18 81.92 83.02
Proposed w/o Extra Win 93.84 88.07 90.75 98.85 93.97 96.31 90.67 86.24 88.37 89.60 85.25 87.34
Proposed w/o Post Conv 93.90 88.18 90.85 98.86 94.06 96.36 90.52 86.18 88.26 89.49 85.23 87.27

Proposed w/o Len Scaling 93.85 88.25 90.87 98.80 94.15 96.39 90.70 86.48 88.51 89.66 85.51 87.50
Proposed 93.84 88.48 90.98 98.78 94.18 96.39 90.79 86.62 88.63 89.78 85.68 87.65

Proposed (batchsize=20) 93.85 88.72 91.11 98.66 94.50 96.51 90.68 86.89 88.72 89.68 85.96 87.75
MAESTRO v3

Proposed (batchsize= 20) 93.79 88.36 90.75 98.69 93.96 96.11 90.79 86.46 88.42 89.78 85.51 87.44

Table 1: Piano transcription note results for the proposed methods and various related works.

Activation Onset Onset & Offset
Method P R F1 P R F1 P R F1

MAESTRO v2
Kong et al. [2020] 94.14 94.29 94.11 77.43 78.19 77.71 73.56 74.21 73.81

Proposed w/o Extra Win 95.29 86.36 90.02 81.56 73.47 76.99 78.14 70.50 73.83
Proposed w/o Post Conv 95.19 87.05 90.36 81.72 73.29 76.99 77.99 70.05 73.54

Proposed w/o Len Scaling 94.73 87.32 90.34 80.79 73.51 76.71 77.36 70.51 73.53
Proposed 95.13 87.71 90.73 82.14 74.91 78.10 78.48 71.72 74.71

Proposed (split) 95.20 89.60 91.84 83.01 77.55 79.98 79.72 74.55 76.85
Proposed (batchsize=20) 95.35 87.63 90.78 82.27 75.61 78.55 78.72 72.42 75.20

MAESTRO v3
Proposed (batchsize= 20) 95.17 88.33 90.98 82.18 75.81 78.52 78.75 72.74 75.30

Table 2: Sustain pedal detection results for the proposed methods and various related works.

On MAESTRO v2, the proposed system achieves a Note w/ Offset F1 of 88.72% and a Note w/ Offset
& Velocity F1 of 87.75%, significantly outperforming previous methods in predicting holistic note
events. Regarding the Note Onset F1 score, Kong et al. [2020] has the highest performance. Our
proposed method slightly underperforms Kong et al. [2020], but still outperforms Hawthorne et al.
[2019] by about 1.5%. Regarding the Activation F1 score, our proposed method achieves the highest
performance, outperforming Kong et al. [2020] by 1% and outperforming Hawthorne et al. [2019]
by 3%. This is the case even though the proposed method is not optimized to output frame-level
predictions, while the compared methods both have a frame-level prediction branch.

The Proposed w/o Extra Wins entry refers to the variation which does not apply extra adjustible
windows for creating multiple version of log-mel spectrogram as the input. The results indicate that
this oversampled log-mel spectrogram input helped improve the system slightly. The Proposed w/o
Post Conv entry refers to the variation which does not include the final convolutional block when
computing the score matrix. The results indicate that this convolutional block also helped improve
the system slightly. The Proposed w/o Len Scaling entry refers to the variation which scales the
scores in the intervallic score matrix by the length of the interval. The results indicate that this
scaling of intervallic scores also helped improve the system slightly. We also found that increasing
the batch size from 12 to 20 improves the result.

2Regarding discrepancies with respect to numbers reported in [Kong et al 2020], we inspected their code
and found a bug that affects a small portion of note offsets when handling pedal extension. In our evaluation,
we use the correct offset labels, which improves the results of their model slightly. For pedals, they use a onset
tolerance of 200ms.
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In terms of sustain pedal transcription results (Table 2), our method achieves an Onset F1 of 78.55%
and an Onset w/ Offset F1 of 75.2%, outperforming Kong et al. [2020] in predicting holistic pedal
events. Because Kong et al. [2020] uses a separate model replicating their note transcription model
to predict pedal activity separately, we also experimented with splitting the original architecture
into two branches with only the convolutional blocks shared, still training these two tasks (notes
and pedals) together. The result is shown in the table as Proposed (split). This variation with two
branches for notes and pedals further improves all F1 metrics for pedal transcription. It suggests
that there may be some negative transfer between these two tasks and further improvements may
be achieved by tuning branches for notes and pedals separately. Kong et al. [2020] yields a F1

of 94.11% for predicting the pedal activation, that is 2% higher than the proposed model, due to
its higher recall. This difference may be due to the fact that our system is only trained to make
predictions on the holistic events instead of individual frames.

4.5 Runtime Analysis

The proposed model has an O(L2N) time complexity, where L is the length of the input sequence,
i.e., the number of frames, and N is the number of eventType(s). The semi-CRF layers involve
sequential computation, and traditionally were often considered too slow for practical use with re-
spect to long sequences if no restrictions were applied. Here we benchmark the computation time of
several components of the proposed algorithm that have quadratic time complexity, using an input
sequence of a reasonable length for music transcription. The results are shown in Table 3. With a
hop size of 1024 samples and a sampling rate of 44.1 KHz, 400, 800, and 1600 frames correspond
to audio segments of 9.29 s, 18.58 s, and 37.15 s, respectively, which are common lengths used for
audio processing. For these lengths, the ratio of the audio length to the time taken by each compo-
nent are within the acceptable range. The algorithms were implemented in PyTorch, and we believe
that further speedup can be achieved with a native C++/CUDA implementation.

400 Frames 800 Frames 1600 Frames
Components GPU CPU GPU CPU GPU CPU

Forward Backward (PyTorch autodiff) 0.39 5.95 4.40 44.69 17.68 354.40
Forward Only 0.05 0.20 0.09 0.80 0.23 3.08

Forward-Backward 0.08 0.58 0.12 2.32 0.27 7.12
Viterbi 0.23 0.16 0.27 0.36 0.54 0.88

Pairwise Scores 0.06 0.84 0.25 3.14 0.99 11.76
Table 3: Running time (seconds) of algorithm components that have quadratic time complexity w.r.t.
the input length on Intel(R) Core(TM) i7-7800X CPU @ 3.50 GHz and Nvidia GTX 1080TI. Events
for N = 90 eventTypes and for a single audio segment are predicted.

To get a clearer idea on the overall speed of the system, we then compare the entire running time
with the previous state-of-the-art system transcribing the same audio file, Carl Czerny Grand Sonata
Op.145 No.9, which is 33.3 minutes long. For a fair comparison with Kong et al. [2020], we do not
batchify our computations across audio segments for transcribing a single audio file. Our system
takes 95s while Kong et al. [2020] takes 353s.

5 Conclusions

In this work, we proposed a piano transcription system designed to directly predict note events. It
uses a specialized formulation of a semi-Markov conditional random fields, where the prediction
targets are a set of non-overlapping events for each piano key and the sustain pedal. Using this for-
mulation, we eliminate the need to build post-processing algorithms or heuristics atop frame-level
estimates, as well as the need to aggregate disjoint predictions from multiple tasks, e.g., onset, offset
and pitch estimation. The results of our experiments on MAESTRO, a popular piano transcription
dataset, show that our model significantly outperforms two state-of-the-art piano transcription meth-
ods on note-level transcription. We show that the proposed method can be implemented efficiently
enough for the task domain and that the final system transcribes faster than the existing state of the
art system. We believe that this simple, fast, and well-performing approach is extensible to other
similar tasks which currently rely on frame-level estimates.
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