
Appendices

A Further Common Assumptions for Causal Discovery

Following from Section 2.1, we review several relaxations of faithfulness, which give rise to different
constraint-based causal discovery methods that allow certain type of unfaithfulness.
Assumption 8 (Adjacency-faithfulness [30]). Given a DAG G and distribution P over the variable

set V, if two variables X and Y are adjacent in G, then they are dependent conditional on any subset

of V \ {X,Z}.

Assumption 9 (Orientation-faithfulness [30]). Given a DAG G and distribution P over the variable

set V, let <X,Y, Z> be any unshielded triple in G.

(1) If X ! Y  Z, then X and Z are dependent conditional on any subset of V \ {X,Z} that

contains Y ;

(2) otherwise, X and Z are dependent conditional on any subset of V \ {X,Z} that does not contain

Y .

Under the Markov and adjacency-faithfulness assumptions, any violation of orientation-faithfulness
is detectable in the sense that the true distribution P is not faithful to any DAG [30, 49]. This
presents a concrete method to detect unfaithfulness, leading to a variation of the PC method known
as Conversative PC [30] that avoids making definite claim of the causal structure when violation of
orientation-faithfulness is detected. Along this line, a further restriction of the adjacency-faithfulness
assumption has been formulated and also adopted by the Very Conservative SGS algorithm [39] to
relax the type of faithfulness assumption required.
Assumption 10 (Triangle-faithfulness [49]). Given a DAG G and distribution P over the variable

set V, let <X,Y, Z> be any three variables that form a triangle in G (i.e., they are adjacent to one

another).

(1) If Y is a non-collider on the path <X,Y, Z>, then X and Z are dependent conditional on any

subset of V \ {X,Z} that does not contain Y .

(2) If Y is a collider on the path <X,Y, Z>, then X and Z are dependent conditional on any subset

of V \ {X,Z} that contains Y .

B Analysis of the SUCF Assumption

We provide further simulation results for the analysis of the SUCF assumption in Section 3.2.

(a) Expected degree of 5. (b) Expected degree of 8.

Figure 6: Visualizations of the minimum values mini,j{|⇥ij | : Xi and Xj correspond to a pair of
neighbors in G} and mini,j {|⇥ij | : Xi and Xj correspond to a pair of non-adjacent spouses in G}

computed across 100 simulations. Different number of nodes and expected degrees are considered.
X-axes are visualized in log scale.
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C Proofs

C.1 Proof of Theorems 1 and 2

We first describe Lemmas 1 and 2 required to prove the main theorems, and these lemmas are similar
to Lemma 1 and Theorem 2 by Loh and Bühlmann [20], respectively, but we do assume that B
is strictly upper/lower triangular. Here, Lemma 1 is straightforward from expanding the equation
⇥ = (I�B)⌦�1(I�B)T with ⌦ = diag(�2

1 , . . . ,�
2
d).

Lemma 1. Given a DAG G and distribution P that follow a linear Gaussian model with inverse

covariance matrix ⇥. The entries of ⇥ are given by

⇥jk = ���2
j Bkj � ��2

k Bjk +
X

` 6=j,k

��2
` Bj`Bk`, 8j 6= k,

⇥jj = ��2
j +

X

` 6=j

��2
` B2

j`, 8j.

Lemma 2. Given a DAG G and distribution P that follow a linear Gaussian model with inverse

covariance matrix ⇥, the structure defined by supp(⇥) is a subgraph of the moralized graph of the

true DAG G.

Proof. Let Xj and Xk, j 6= k be two variables that are not adjacent in the moralized graph of G.
Then it suffices to show that ⇥jk = ⇥kj = 0. Clearly, Xj and Xk must not be adjacent in the DAG
G, indicating that Bkj = Bjk = 0. They also cannot share a common child; otherwise they must be
adjacent in the moralized graph. Therefore, we have Bj` = 0 and Bk` = 0 for ` 6= j, k. Applying
Lemma 1 gives ⇥jk = ⇥kj = 0.

With the above lemmas, we now provide the proofs of the main results.
Theorem 1. Given a DAG G and distribution P that follow a linear Gaussian model with inverse

covariance matrix ⇥, under Markov assumption, the SSCF and SUCF assumptions are satisfied if

and only if the structure defined by supp(⇥) is the same as the moralized graph of the true DAG G.

Proof. We proceed by contraposition in both parts of the proof.

If part:
Suppose either the SSCF or SUCF assumption is violated, i.e., there exists a collider Xj ! Xi  Xk

in the DAG G such that Xj ?? Xk|V \ {Xj , Xk}. This indicates that ⇥jk = ⇥kj = 0. Since Xj

and Xk are either neighbors or spouses, there exists an edge between them in the moralized graph of
G, but is not contained in the structure defined by supp(⇥), showing that they are not the same.

Only if part:
Suppose that the structure defined by supp(⇥) is not the same as the moralized graph of G. Then, by
Lemma 2, there exists a pair of variables Xj and Xk, j 6= k that are adjacent in the moralized graph
but ⇥jk = ⇥kj = 0. In the linear Gaussian case, we have Xj ?? Xk|V \ {Xj , Xk}. It remains to
consider the following cases:

• If variables Xj and Xk correspond to a pair of non-adjacent spouses in G, then they have an
unshielded collider, indicating that the SUCF assumption is violated.

• Otherwise, variables Xj and Xk correspond to a pair of neighbors in G. Assume without loss
of generality that Xj is a parent of Xk, i.e., Xj ! Xk 2 E. This implies that Bjk 6= 0 and
Bkj = 0, which, by Lemma 1, yields

⇥jk = ���2
k Bjk +

X

` 6=j,k

��2
` Bj`Bk` = 0.

Since ��2
k Bjk 6= 0, there exists a variable Xi with i 6= j, k such that ��2

i BjiBki 6= 0. We
then have Bji 6= 0 and Bki 6= 0, indicating that Xi is a common child of the variables Xj and
Xk. In this case, Xj ! Xi  Xk forms a shielded collider in G, which, with the CI relation
Xj ?? Xk|V \ {Xj , Xk}, implies that the SSCF assumption is violated.

In both cases, either the SUCF or SSCF assumption is violated.
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Theorem 2. Given a DAG G and distribution P that follow a linear Gaussian model with inverse

covariance matrix ⇥, under Markov assumption, the SSCF assumption is satisfied if and only if the

structure defined by supp(⇥) is a super-structure of the true DAG G.

Proof. We proceed by contraposition in both parts of the proof. Note that the proof is similar to that
of Theorem 1.

If part:
Suppose the SSCF assumption is violated, i.e., there exists a shielded collider Xj ! Xi  Xk in the
DAG G such that Xj ?? Xk|V \ {Xj , Xk}. This indicates that ⇥jk = ⇥kj = 0. Since Xj and Xk

are neighbors, there exists an edge between them in G, but is not contained in the structure defined by
supp(⇥), showing that it is not a super-structure of the true DAG G.

Only if part:
Suppose that the structure defined by supp(⇥) is not a super-structure of the DAG G. Then, there
exists a pair of neighbors Xj and Xk, j 6= k in G such that ⇥jk = ⇥kj = 0. In the linear Gaussian
case, we have Xj ?? Xk|V \ {Xj , Xk}. Assume without loss of generality that Xj is a parent of
Xk, i.e., Xj ! Xk 2 E. This implies that Bjk 6= 0 and Bkj = 0, which, by Lemma 1, yields

⇥jk = ���2
k Bjk +

X

` 6=j,k

��2
` Bj`Bk` = 0.

Since ��2
k Bjk 6= 0, there exists a variable Xi, i 6= j, k such that ��2

i BjiBki 6= 0. We then have
Bji 6= 0 and Bki 6= 0, indicating that Xi is a common child of the variables Xj and Xk. In this case,
Xj ! Xi  Xk forms a shielded collider in G, which, with the CI relation Xj ?? Xk|V\{Xj , Xk},
implies that the SSCF assumption is violated.

C.2 Proof of Theorem 3

Theorem 3. Exact score-based search with BIC asymptotically outputs a DAG that belongs to the

MEC of the true DAG G if and only if the DAG G and distribution P satisfy the SMR assumption.

Proof. We provide a proof by contrapositive in both directions based on the consistency of the BIC
score [12, 3].

If part:
Suppose that exact score-based search asymptotically outputs a DAG H (having the highest BIC
score) that does not belong to the MEC of the true DAG G. Since the BIC score is known to be
consistent, (H,P) must satisfy the Markov assumption, because otherwise its BIC score is lower than
that of the true DAG G and exact search would not have output H. By assumption, the BIC score of
H is higher than that of G, which, by the consistency of BIC, implies that |H|  |G|, and therefore,
(G,P) does not satisfy the SMR assumption.

Only if part:
Suppose that (G,P) does not satisfy the SMR assumption. Then there exists a DAG H not in the MEC
of G such that |H|  |G|, and (H,P) satisfies the Markov assumption. Without loss of generality, we
choose H with the least number of edges. We first consider the case in which |H| < |G|. Since both
H and G satisfy the Markov assumption, by the consistency of BIC, the BIC score of H is higher
than that of G, which implies that exact score-based search will not output any DAG from the MEC
of G. For the case with |H| = |G|, since they are both Markov with distribution P, they have the same
BIC score. Therefore, exact search will output a DAG that belongs to the MEC of either H or G, and
is not guaranteed to output a DAG from the MEC of the true DAG G.

D Implementation Details

This section provides the implementation details of the proposed Local A* method and the baselines.

D.1 Local A*

Local A* first uses inverse covariance estimation to discover a super-structure of the underlying
DAG, and then applies the A*-SS method on the local clusters formed by each variable and its
neighbors within two hops in the super-structure, using some further strategy to reduce search
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space (see Section 4.3). In our experiments, we use GLasso to estimate the support of the inverse
covariance matrix, implemented through the scikit-learn package [26]. We set the coefficient
of `1 penalty term to 0.05 for 20-node graphs or smaller, and otherwise to 0.2. For graphs with
more than 40 nodes, a thresholding step is applied on the estimated covariance matrix to remove
the entries whose absolute values are less than 0.03. We use relatively small values for conservative
variable selection. If needed, one may further use suitable model selection methods (e.g., cross-
validation) to select these hyperparameters. Since we focus on the linear Gaussian setting, we
use the BIC score for the exact search procedure. To accelerate Algoritnm 1, we run the local
search procedure on 12 local clusters in parallel (i.e., on 12 CPUs). The code is available at
https://github.com/ignavierng/local-astar.

D.2 Baselines

The implementation details of the baselines are described below:

• PC and FGES are implemented using the py-causal package [33] distributed under the LGPL
2.1 license. For the former, we use the Conservative PC algorithm [30] with Fisher Z test,
while the BIC score [34] is adopted for the latter.

• The implementation of MMHC is available through the bnlearn package [35] in R that is
published under the GPL-3 license.

• SP is implemented using the causaldag package in Python under the 3-Clause BSD License.
• We use our own Python implementation of Triplet A* as we were not able to run the official

C++ implementation on graphs with more than 5 nodes. Similar to the proposed Local A*
approach, parallel computing is used to accelerate the iterative search procedure of Triplet A*.

We use the default hyperparameters unless otherwise stated. For a fair comparison, we run all
experiments of the baselines on 12 CPUs.

E Supplementary Experiment Results

E.1 Exact Violations of Faithfulness

To demonstrate the efficacy of GLasso for estimating super-structures with weaker assumptions, we
experiment with several examples by using GLasso and MMPC to discover the direct neighbors
of the true DAG when faithfulness is guaranteed to be violated. Consider an example where
X ! Y ! Z ! W and X ! W such that X ?? W due to path cancellation. In this case,
the faithfulness assumption is violated but SSCF holds. In particular, we consider the linear SEM
X = NX , Y = X+NY , Z = Y +NZ ,W = �X+Z+NW where NX , NY , NZ , NW ⇠ N (0, 1).
We conduct 100 random simulations for 20, 100, and 106 samples. For 20 samples, GLasso is able
to discover all the direct neighbors (in the true DAG) in 98 of the simulations, whereas for 100 and
106 samples, it discovers the neighbors in all simulations. For MMPC, it fails to discover the edge
between the direct neighbors X and W in 69, 56, and 98 of the simulations for 20, 100, and 106

samples, respectively, because of the unfaithful independency X ?? W . This demonstrates that
GLasso is able to recover the direct neighbors in cases where MMPC fails, as the former requires
only the SSCF assumption that is intuitively much weaker than faithfulness required by the latter.

E.2 Structural Intervention Distance

We use SHD and F1 score to compare the different CPDAGs. If we are given DAGs, then we can
compute their corresponding SID in a straightforward way. Comparing CPDAGs with SID is more
complicated, although it is doable according to Peters and Bühlmann [28, Section 2.4.2], since it
requires computing the lower and upper bounds of the SID. For this reason, we did not include
the results of SID in this paper. Nevertheless, the observations of SID are nearly identical to those
based on SHD. For instance, for the dataset considered in Figure 8a (i.e., 7-node graphs with 300
samples) with expected degree of 2, the average lower and upper bounds of the SID for A*-SS, Local
A*, Triplet A*, PC, FGES, MMHC, and SP are (7.5, 10.5), (7.5, 10.5), (10.2, 13.1), (15.0, 20.1),
(14.2, 17.8), (16.2, 18.4), and (14.3, 18.4), respectively.
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E.3 Different Super-Structure Estimation Methods

This section provides further empirical results to compare the efficacy of GLasso and MMPC for
estimating super-structures in practice (see Section 5.1).

Figure 7: Results of different super-structure estimation methods on 10-node graphs with different
degrees. The sample size is n = 10000. Lower is better, except for TPR.

E.4 Comparison with Other Baselines

This section provides further empirical results to compare the proposed methods to the baselines (see
Section 5.3).

(a) n = 300.

(b) n = 10000.

Figure 8: Results of different structure learning methods on 7-node graphs with different degrees
and sample sizes. Higher is better, except for SHD. For better visualization, we do not include the
standard errors here as each panel has a number of lines.
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E.5 Scaling up A* to Large Graphs

This section provides empirical results for Local A* and MMHC on graphs with
{50, 100, 150, 200, 250, 300} nodes (see Section 5.4).

Figure 9: Results and time for Local A* and MMHC on graphs with different sizes. The sample size
is n = 10000. Lower is better, except for F1 score.
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