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A Computation of w
(
F
−→s2−→s1

)
and w

(
F
−→s2−→s1,q

)
In this section, we prove Lemma 3.4 of the main paper, which we rename here as Lemma A.2. It
provides a closed form for w

(
F
−→s2−→s1

)
and w

(
F
−→s2−→s1,q

)
in terms of the in-trees of G rooted at the seeds.

We will use the Matrix Tree Theorem extension for directed graphs (Theorem 2.1 in the main paper),
referred to as MTTdir, and the Determinant Lemma (Lemma A.1) which we state without proof.
Lemma A.1 (Determinant Lemma [7]). Given an invertible matrix A ∈ Rm×m and u, v ∈ Rm we
have

det(A+ uv>) = det(A)(1 + v>A−1u).

Lemma A.2. Let G = (V,E,w) be a directed graph. Let l−1,[v]
ij represent the entry ij of the matrix(

L[v]
)−1

for any v ∈ V . Given s1, s2 and q:

1. The weight of all 2-in-forests rooted at s1 and s2 is

w
(
F
−→s2−→s1

)
= w(T

−→s1)l−1,[s1]
s2s2 = w(T

−→s2)l−1,[s2]
s1s1 .

2. The weight of all 2-in-forests rooted at s1 and s2 such that q is connected to s1 is

w
(
F
−→s2−→s1,q

)
= w(T

−→s1)(l−1,[s1]
s2s2 − l−1,[s1]

s2q ).

Proof: Let 1j denote the column j of the identity matrix I . Given a column vector v ∈ R|V |, v[s1]

denotes the vector v after removing the entry indexed by s1.

1. Let Ḡ1 = (V,E ∪ (s2, s1), w̄) be defined as in Lemma 3.3. We can compute

w
(
F
−→s2−→s1

)
=︸︷︷︸

Lemma 3.3

w
(
T
−→s1
Ḡ1

)
− w

(
T
−→s1
G

)
=︸︷︷︸

MTTdir

det
(
L

[s1]

Ḡ1

)
− det

(
L

[s1]
G

)
= det

(
L

[s1]
G + 1[s1]

s2

(
1[s1]
s2

)>)
− det

(
L

[s1]
G

)
=︸︷︷︸

LemmaA.1

det(L
[s1]
G )

(
1 +

(
1[s1]
s2

)> (
L

[s1]
G

)−1

1[s1]
s2

)
− det(L

[s1]
G )

= det(L
[s1]
G )`−1,[s1]

s2s2 =︸︷︷︸
MTTdir

w(T
−→s1
G )`−1,[s1]

s2s2 .

(1)

To prove w
(
F
−→s2−→s1

)
= w(T −→s2)l

−1,[s2]
s1s1 we just need to exchange the role of s1 and s2 in

Lemma 3.3 of the main paper and follow the same steps as above.
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2. Let b = 1s2 − 1q and Ḡ2 be defined as in Lemma 3.3 of the main paper. Then

w
(
F
−→s2−→s1,q

)
=︸︷︷︸

Lemma 3.3

w
(
T
−→s1
Ḡ2

)
− w

(
T
−→s1
G

)
=︸︷︷︸

MTTdir

det
(
L

[s1]

Ḡ2

)
− det

(
L

[s1]
G

)
= det

(
L

[s1]
G + b[s1]

(
1[s1]
s2

)>)
− det

(
L

[s1]
G

)
=︸︷︷︸

LemmaA.1

det(L
[s1]
G )

(
1 +

(
1[s1]
s2

)> (
L

[s1]
G

)−1

b[s1]

)
− det(L

[s1]
G )

= det(L
[s1]
G )(l−1,[s1]

s2s2 − l−1,[s1]
s2q ) =︸︷︷︸

MTTdir

w(T
−→s1)(l−1,[s1]

s2s2 − l−1,[s1]
s2q ).

(2)

B Directed Random Walker

The Random Walker by Grady [6] answers the following question for undirected graphs: What is
the probability that a random walker starting at node q reaches seed s1 before reaching s2? If we
considered the seeds as a set of absorbing nodes, then the probabilities that the Random Walker
computes are the absorbing probabilities of the seeds. The Random Walker can easily be extended
to the directed setting if we compute these probabilities for a directed graph. In this section, we
derive the absorption probabilities of a set of seeds for a directed graph. We expect this result to be
well known but we reproduce it here for the convenience of the reader since we could not find any
suitable reference that expressed these probabilities in terms of the Laplacian matrix. G = (V,E,w)
will stand for a directed graph and S ⊂ V will be the set of seed/labeled nodes and U = V \S the
unlabeled nodes.

Let L denote the Laplacian matrix of G as defined in Definition 2 of the main paper. We index the
Laplacian matrix block-wise in terms of the unlabeled and labeled
nodes in the following form

L =

(
LS B1

B2 LU

)
. (3)

Remark B.1. Invertibility of LU: Assume that for any u ∈ U , there exists some s ∈ S = V \U
such that there is a directed path from u to s. Let Ĝ denote the graph formed after merging all the
vertices of S into one node s∗. By assumption, any node u ∈ U can reach at least one seed in S,
therefore s∗ will be reachable from any node. Consequently, there exists at least one incoming tree
in Ĝ rooted at s∗. Due to the Directed Matrix Tree Theorem, det(L

[s∗]

Ĝ
) = det(LU ) 6= 0, which

implies that LU is non-singular.

In the light of the previous remark we assume that any node u ∈ U can reach at least one of the seeds
s ∈ S via a directed path. Otherwise, if a node could not reach any seed, then it will not have a well
defined directed random walker probability.

For the moment, let us assume that none of the seeds is absorbing, i.e., every seed has at least one
out-going edge. Let

P := D−1A = I −D−1L> (4)
be the transition probability matrix where D and A are defined as in the main text. Note that D
is invertible since we assume that the seeds are not absorbing and any node can reach one of the
seeds, which implies that the out-degree of any node is greater than zero. The entry Pij denotes the
probability of transitioning from node i to node j in one hop. Note that

∑
j∈V Pij = 1 for all i.

We can express, in conjunction with equation (4), the transpose of the transition probability matrix as

P> =

(
IS − LSD−1

S −B1D
−1
U

−B2D
−1
S IU − LUD−1

U

)
.

Now consider the set of seeds S as absorbing nodes, i.e., once a random walker reaches one of the
seeds the random walker will vanish. Hence, the transition probability matrix will have the following
form
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P̄> =

(
IS −B1D

−1
U

0 IU − LUD−1
U

)
Theorem B.3 provides a closed formula for limn→∞(P̄n)> which will give us the absorbing proba-
bilities of the seeds. In order to prove it, we need to state a series of definitions and results that we
state without proof [see 8, Chapter 5.6].
Definition 1. Given an arbitrary matrix A ∈ Rm×m, we define the 1-norm matrix of A as

||A||1 = max
j

m∑
i

|Aij |.

Lemma B.2. [see 8, Corollary 5.6.16] Given an arbitrary matrix A ∈ Rm×m, if ||A||1 < 1 then
(A− I) is invertible and

(I −A)−1 =

∞∑
i=0

Ai. (5)

Now we can prove the following result.
Theorem B.3. Let P̄ be defined as before then

lim
n→∞

(
P̄>
)n

=

(
IS −B1L

−1
U

0 0

)
.

Proof: Let us first prove by induction that

(
P̄>
)n

=

 IS −B1D
−1
U

n−1∑
i=0

(
IU − LUD−1

U

)i
0

(
IU − LUD−1

U

)n
 .

It naturally holds for n = 1. By induction

(
P̄>
)n+1

=
(
P̄>
)n
P̄> =

 IS −B1D
−1
U

n−1∑
i=0

(
IU − LUD−1

U

)i
0

(
IU − LUD−1

U

)n
( IS −B1D

−1
U

0 IU − LUD−1
U

)

=

 IS −B1D
−1
U −B1D

−1
U

n−1∑
i=0

(
IU − LUD−1

U

)i+1

0
(
IU − LUD−1

U

)n+1



=

 IS −B1D
−1
U

n∑
i=0

(
IU − LUD−1

U

)i
0

(
IU − LUD−1

U

)n+1


Now we will prove the case when n→∞. Let as assume that the limit exist. We express it blockwise
as

lim
n→∞

(
P̄>
)n

=

(
IS P̄>1
0 P̄>2

)
.

Since every node u ∈ U can reach a seed node, s, in a finite number of hops, there exists a number of
steps, k′ > 0, such that for all k ≥ k′, the probability, Psu(k), of being in seed s at step k, is greater
than 0. Hence, Mk :=

(
IU − LUD−1

U

)k
is a substochastic matrix and we have∣∣∣∣∣∣(IU − LUD−1

U

)k∣∣∣∣∣∣
1

= max
j

∑
i

[(
IU − LUD−1

U

)k]
ij

=︸︷︷︸
j∗

maximizer

1−
∑
s∈S

Psj∗(k)︸ ︷︷ ︸
>0

< 1.
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Therfore,

lim
n→∞

||Mn
k ||1 = lim

n→∞

∣∣∣∣∣∣(IU − LUD−1
U

)n·k∣∣∣∣∣∣
1

= lim
n→∞

∣∣∣∣∣∣(IU − LUD−1
U

)n∣∣∣∣∣∣
1

≤ lim
n→∞

(∣∣∣∣IU − LUD−1
U

∣∣∣∣
1

)n
= 0⇒ P̄>2 = lim

n→∞

(
IU − LUD−1

U

)n
= 0.

Furtheremore, as a consequence of Lemma B.2
∞∑
i=0

(
IU − LUD−1

U

)i
=
(
IU − IU + LUD

−1
U

)−1
=
(
LUD

−1
U

)−1
= DUL

−1
U .

Finally,

P̄>1 = lim
n→∞

−B1D
−1
U

n∑
i=0

(
IU − LUD−1

U

)i
= −B1D

−1
U

∞∑
i=0

(
IU − LUD−1

U

)i
= −B1D

−1
U DUL

−1
U = −B1L

−1
U

The entry
[
P̄>1
]
su

, where s ∈ S and u ∈ U , is the probability that a random walker starting at node
u will be absorbed by s. That is because

[
P̄>1
]
su

=
∑∞
i=1 Psu(k) where Psu(k) is the probability of

being at node s at kth step if you started at u.

Remark B.4. Note that P̄>1 = −B1L
−1
U is the transposed version of the linear system solved

by the undirected Random Walker and equivalently the ProbWS [5, 6], i.e., P̄1 = −
(
L>U
)−1

B>1 .
Since [5, 6] consider an undirected graph, which can be interpreted as a directed graph where each
undirected edge has been replaced by a pair of directed edges in opposite directions with the same
weight, the equality

(
L>U
)−1

= L−1
U holds and the transposition becomes irrelevant.

C Proof Theorem 4.3

In this section we prove the Theorem 4.3 of the main paper (here renamed Theorem C.1), which
states the equivalence between the DProbWS and the Random Walker applied to directed graphs.
Although it replicates step by step the same arguments presented in Theorem 4.1 of [5], we decided
to include it here for reference.

Theorem C.1. The probability, xs1q , that a random walker on a directed graph starting at node q
first reaches s1 before reaching s2 is equal to the Directed Probabilistic Watershed’s probability
(Definition 3 of the main paper)

xs1q = P (q ∼ s1).

Proof: We write the probability of the DProbWS in terms of the inverse of L[s2] (Theorem 3.4 in the
main paper):

Pr(q ∼ s1) = `−1,[s2]
s1q

/
`−1,[s2]
s1s1 . (6)

Therefore, we only need to know the row s1 of
(
L[s2]

)−1
to calculate for each q the probability

P (q ∼ s1), which can be computed solving the following linear system(
L[s2]

)>
y = 1s1

/
`−1,[s2]
s1s1 ⇐⇒ y =

((
L[s2]

)>)−1

1s1
/
`−1,[s2]
s1s1 =

((
L[s2]

)>)−1

·,s1

/
`−1,[s2]
s1s1 .

(7)
Here 1s1 denotes the column s1 of the identity matrix. Note that y is the vector formed by the elements
in the right hand side of (6). Let us assume without loss of generality that the row corresponding to
the seed s1 is the first one. Thus, we can express equation (7) block-wise :(

Ls1s1
[
B>2
]
s1[

B>1
]
s1

L>U

)(
ys1
yU

)
=

(
Ls1s1ys1 +

[
B>2
]
s1
yU[

B>1
]
s1
ys1 + L>UyU

)
=

(
1/`
−1,[s2]
s1s1

0

)
, (8)
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where Ls1s1 is the entry s1s1 of the Laplacian, [B1]s1 and [B2]s1 are the row and column s1 of the
Laplacian without considering the element in the diagonal and LU are the rows and columns of the
unseeded vertices. Since ys1 = Pr(q ∼ s1) = 1, we obtain the following linear system of equations

L>UyU = −
[
B>1
]
s1
, (9)

which is the same linear system that the Directed Random Walker solves (see Appendix B). Therefore
P (q ∼ s1) = yq = xs1q for all q.

D Proof Theorem 5.1

In this section we prove the Theorem 5.1 of the main paper (here renamed as Theorem D.1), which
shows that in the limit case in which the Gibbs distribution has infinitely low temperature, the labeling
of the DProbWS is equal to the one induced by the restriction of the DProbWS to the incoming
directed forest of minimum cost, mSF, or equivalently, the incoming directed forest of maximum
weight, MSF. The theorem follows the reasoning presented in Theorem 5.1 of [5].
Theorem D.1. Let wmax =: max

f∈F
−→s2−→s1

w(f). Given two seeds s1 and s2, if the entropy of the Gibbs

distribution over the in-forests is minimized then

xs1q =

∣∣{f ∈ Fs2s1,q : w(f) = wmax}
∣∣

|{f ∈ Fs2s1 : w(f) = wmax}|
.

Proof: The entropy of the Gibbs distribution (equation (6) of the main paper) is minimized when
µ→∞. For a fixed µ0 > 0, let us define µ = α · µ0, then

w(e) = exp(−µc(e)) = exp(−α · µ0c(e)) = w0(e)α,

where w0(e) = exp(−µ0c(e)). Since µ→∞ ⇐⇒ α→∞, we have

Pα(q ∼ s1) :=

∑
f∈F

−→s2−→s1,q

∏
e∈f

w0(e)α

∑
f∈F

−→s2−→s1

∏
e∈f

w0(e)α
=

∑
f∈F

−→s2−→s1,q

w0(f)α

∑
f∈F

−→s2−→s1

w0(f)α
=

∑
f∈F

−→s2−→s1,q

(
w0(f)

wmax

)α
∑
f∈F

−→s2−→s1

(
w0(f)

wmax

)α α→∞−−−−→
(?)

xs1q

(10)
In (?) we used the fact that w(f)

wmax
< 1 ⇐⇒ w(f) 6= wmax. When α→∞, only for the MSFs the

fraction
(
w(f)
wmax

)α
does not tend to 0, but to 1. Thus, we are counting MSFs.

E Further experiment details

E.1 Reference methods

ARW method The method proposed in [2] is closely related to ours, due to the use of Absorbing
Random Walks (ARW). Conceptually, this method adds an absorbing meta node to the original graph,
which is connected to every node in by an edge with certain weight w̄.1 The algorithm computes the
random walker expected accumulated number of visits to the seeds starting at a query node before
being absorbed by the meta node. The expected accumulated number of visits provides a notion of
affinity between the nodes. The algorithm assigns the label of the seed that maximizes the expected
accumulated number of visits from the unlabeled query node.

LLUD method The method proposed in [16] also uses the random walker. The LLUD method
considers an optimization problem over the space of classification functionsH(V ), which assigns a
real value f(v) to each vertex v ∈ V . The optimization problem is the following

arg min
f∈H(V )

{Ω(f) + γ||f − y||} (11)

1The weight w̄ is implicitly determined by a parameter α in the algorithm, which we set equal to 0.1 for all
our experiments. See [2] for more details.
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where y denotes the function in H(V ) defined by y(v) = 1 or −1 if vertex v has been labeled as
positive or negative respectively, and 0 if it is unlabeled. The functional Ω is defined as

Ω(f) :=
1

2

∑
(u,v)∈E

π(u)Puv

(
f(u)√
π(u)

− f(v)√
π(v)

)
, (12)

where π is the stationary distribution of the random walker, which is assumed to be unique indepen-
dently of the starting point. 2 The functional Ω forces the classification function to be smooth, while
the second term in (11) forces the function to preserve the label of the seeds. The balance between
this two terms is regulated by the parameter γ.3

GTG method The method in [4] interprets the classification of the nodes as a transductive game
where each player (node) can choose a strategy among a set of strategies (labels). The proposed
transduction game always has a Nash equilibrium which will define the final labeling. Partial payoffs
between two nodes are defined based on the weight of the edge connecting these nodes. The total
payoff of a node is the sum of its partial payoffs. The Nash equilibrium is computed iteratively till
convergence.

E.2 Datasets

Digits The Digits dataset4 [3, 14] consists of 8× 8 pixel images of digits. The dataset contains a
total of 1797 images divided in 10 classes corresponding to the different digits. We use this dataset to
construct a kNN graph. The kNN graph is formed by 1797 nodes and 8985 edges.

20Newsgroups The 20Newsgroups dataset5 [3, 9] is a collection of 11314 newsgroup documents,
partitioned across 20 different newsgroups. We only use the train data. We define a kNN graph out of
it. The kNN graph contains 11314 nodes and 56570 edges.

Email-EU The Email-EU dataset6 [10, 11, 15] is a directed unweighted graph that was generated
using email data from a large European research institution. An edge (u, v) is present in the graph if
person u sent an email to person v. There is a total of 1005 nodes and 25571 edges. It has a total of
42 classes representing the departments at the research institute.

Cora The Cora dataset7 [12] is a directed graph where each node represents a scientific publication.
An edge (u, v) is present in the graph if paper u cites v. There is a total of 2708 nodes and 5429
edges. It has a total of 7 classes representing the topics of the publications.

CiteseerX The CiteseerX dataset8 [13] is a directed graph where each node represents a scientific
publication. An edge (u, v) is present in the graph if paper u cites v. There is a total of 3264 nodes
and 4536 edges. It has a total of 6 classes representing the topics of the publications.

E.3 k-Nearest Neighbor graph construction

The Digits and 20Newsgroups datasets are not graph datasets. To process them with the DProbWS,
we construct k-Nearest Neighbor (kNN) graphs out of them. Directed edges of the kNN graphs are
obtained as follows: an edge from node u to node v is present if and only if v is among the k nearest
neighbors of u. In our experiments we set k = 5 as in [2].

2In practice, the uniqueness is ensured thanks to the use of the teleporting random walk.
3In the algorithm, the parameter γ is implicitly determined by another parameter µ, which we set equal to

0.9 for all our experiments. See [16] for more details.
4https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.

html
5https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_

20newsgroups.html
6http://snap.stanford.edu/data/email-Eu-core.html
7https://web.archive.org/web/20151007064508/http://linqs.cs.umd.edu/projects/

projects/lbc/
8https://networkrepository.com/citeseer.php

6

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
http://snap.stanford.edu/data/email-Eu-core.html
https://web.archive.org/web/20151007064508/http://linqs.cs.umd.edu/projects/projects/lbc/
https://web.archive.org/web/20151007064508/http://linqs.cs.umd.edu/projects/projects/lbc/
https://networkrepository.com/citeseer.php


To generate the kNN graph first we need to embed the data points into a metric space. In the case
of the Digits dataset, since they are images, we just flatten the 8x8 images into a vector of 64
dimensions. The 20Newsgroups is a text dataset. Via the TfidfVectorizer class implemented
in scikit-learn in Python9, we embed the datapoints into R130107. TfidfVectorizer maps
a collection of raw documents to a matrix of TF-IDF features, where TF-IDF stands for “Term
Frequency - Inverse Document Frequency". TF-IDF is a statistic that aims to better define how
important a word is for a document, while also taking into account the relation to other documents
from the same corpus [1].

Once the data points have been embedded, the weight of the assigned edge (u, v) is given by
wuv = exp(−||f(u)− f(v)||), where f(u) is the image of the node u in the embedding space. Note
that the structure of the graph and the weights depend on the distances between the nodes in the
embedding space. If the representation of the data in the embedding space is poor, so will be the
labeling.

E.4 Hardware

The hardware we used is a machine with Intel Xeon E5-2650V3 CPU.

E.5 Teleporting random walker

As pointed out in Remark 3.1, if a node cannot reach any seed via a directed path, the DProbWS
method is not able to infer the label. Such nodes are known as zero-knowledge nodes. From the
tree perspective view, the zero knowledge nodes do not belong to any in-tree rooted at the seeds and
therefore the DProbWS probabilities are all equal to zero.

Due to the high sparsity of the citation networks (Cora and CiteseerX), many of the nodes are
zero-knowledge nodes and therefore its label can not be inferred. Inspired by [16], we remedy this
by replacing the natural random walker by the so-called teleporting random walker (TRW). In the
TRW setting, a random walker jumps uniformly at random to any node with probability η, and with
probability (1− η) takes a step of the natural random walker. This ensures that any node can reach
any other node. Let P and PTRW be the transition probability matrices of the random walker and the
teleporting random walker. Formally, they are related as follows

PTRW = (1− η)P +
η

n− 1

(
11> − I

)
, (13)

where 1 is the column vector full of ones, I is the identity matrix of appropriate size and n is the
number of nodes in the graph.

Since both ARW [2] and DProbWS methods are based on the random walker, we can implement the
variants ARWtrw and DprobWStrw, which make use of the TRW. We set the η value equal to 10−6

for all datasets except for the Digits dataset, where η = 10−2.

In practice, the TRW approach is equivalent to add to every node out-going edges towards the rest
of the nodes. By adding these out-going edges to each node the graph becomes a complete graph.
Hence, we can not exploit the efficient sparse linear solvers. The next section proposes an efficient
computation of the DProbWStrw probabilities, that permits to use sparse linear solvers at the expense
of solving an extra linear system. The results presented in the Experiments section for the TRW
variants have been been computed without this speed-up by inverting the dense Laplacians.

E.5.1 Efficient computation of the DProbWStrw probabilities

In this section we will show that in the DProbWStrw variant, to use a TRW with self-loops is
equivalent to use the TRW without self-loops. Thanks to this equivalence, we can exploit the
Sherman-Morrison formula (Lemma E.2) which permits to take advantage of the sparsity of the
graph.

In Theorem 4.2 we have proven the equivalence between the random walker and the in-forest
approaches. Thanks to this equivalence we can easily show that self-loops do not play a role in the

9https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.
text.TfidfVectorizer.html
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DProbWS probabilities. Since any in-forest does not contain cycles, and therefore self-loops, the
set of in-forests of a graph remains the same if we add self-loops to the graph. Therefore, the total
weight of the set of in-forests is not modified by adding self-loops to the graph. Consequently, the
DProbWS probability is unchanged (see Definition 3). In light of Theorem 4.2, this implies that the
random walker absorption probabilities of the seeds are also independent of the presence of self-loops.
Intuitively, we can argue that in the long run the number of steps the random walker remains immobile
at a node (number of steps that the random walker traverses a self-loop) is irrelevant to the seed
absorption probability.

Formally, the graph with self-loops and without self-loops define the same Laplacian matrix. Let
A be the adjacency matrix of the graph without self-loops. If we add self-loops to the graph, the
adjacency matrix of the graph with self-loops will be Â = A + d, where d is a diagonal matrix
indicating the weights of the self-loops edges. Therefore,

L = D −A> = D + d︸ ︷︷ ︸
D̂

− (A> + d)︸ ︷︷ ︸
Â>

= D̂ − Â> = L̂,

i.e., the Laplacian of the graph without self-loops, L, and with self-loops, L̂, are the same. As a
consequence of Theorem 3.5, the DProbWS probabilities are also equal for both graphs.

Note that, although the Laplacians are unaffected by adding self-loops, the random walker transition
probabilities at each node will differ by adding a self-loop. However, a random walker defined on a
graph with self-loops will determine the same absorption probabilities as a random walker on the
same graph without the self-loops. This equivalence holds because the transition probabilities of the
graph with self-loops, at each node, conditioned to not traverse the self-loop of the node are equal to
the transition probabilities in the graph without the self-loops.

The following lemma proposes a variant of the TRW with self-loops which defines the same DProbWS
probabilities as the TRW without self-loops described in the previous section (13).
Lemma E.1. The TRW without self-loops proposed in (13) determines the same DProbWS proba-
bilities as the TRW with self-loops defined by the following transition probability matrix

P̂TRW = (1− η̂)P + η̂
1

n
11>, (14)

where η̂ = nη
η+n−1 .

Proof: As argued in the previous paragraphs, we just need to show that the transition probabilities
of the TRW with self-loops at each node conditioned to not traverse the self-loop are equal to the
transition probabilities in the graph without the self-loops. The probability of traversing a self-loop in
the TRW with self-loops is equal to

P̂TRW (self-loop) =
η̂

n
.

Consequently, the transition probability of the TRW with self-loops from node i to node j conditioned
to not traverse the self-loop is given by

P̂TRW (j|i,¬self-loop) =

{
P̂TRW (j|i)

1−P̂TRW (self-loop)
= P̂TRW (j|i)

1− η̂n
if i 6= j

0 if i = j
.

Hence, the transition probability of the TRW with self-loops conditioned to not traverse any self-loop
will be equal to

P̂TRW,¬self-loop =
(1− η̂)

1− η̂
n

P +
η̂

1− η̂
n

1

n

(
11> − I

)
.

Substituting η̂ by nη
η+n−1 we obtain

P̂TRW,¬self-loop = (1− η)P +
η

n− 1

(
11> − I

)
= PTRW ,
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i.e., we retrieve the transition probability matrix of the TRW without self-loops (13).

Next, we will express the linear system that the DProbWStrw solves in terms of the P̂TRW matrix,
instead of the Laplacian. The DProbWS method solves the following linear system (Theorem 4.2) for
each seed s

L>Ux
s
U = −

[
B>1
]
s
. (15)

Thanks to the relation between the transition probability matrix and the Laplacian exposed in (4), the
linear system (15) is equivalent to

(
I − P>U

)
xsU = −

[
B̂>1

]
s
, (16)

where I is the identity matrix with the appropriate size and B̂>1 = D−1
U B>1 , with D the diagonal

matrix whose entries are the out-degree of each node. 10

If we use the TRW with self-loops, as a consequence of (14), equation (16) becomes

(
(1− η̂)

(
I − P>U

)
+
η̂

n
11>

)
xsU = −(1− η̂)

[
B̂>1

]
s
− η̂

n
1. (17)

or alternatively

((
I − P>U

)
+

η̂

n(1− η̂)
11>

)
xsU = −

[
B̂>1

]
s
− η̂

n(1− η̂)
1. (18)

The difference between the matrices of the linear systems in (16) and (18) is equal to a 1-rank matrix(
I − P>U

)
−
((
I − P>U

)
+

η̂

n(1− η̂)
11>

)
= − η̂

n(1− η̂)
11>.

Therefore, we can apply the Sherman-Morrison formula [7].

Lemma E.2 (Sherman-Morrison formula [7]). Given an invertible matrixA ∈ Rm×m and u, v ∈ Rm

we have (
A+ uv>

)−1
= A−1 − A−1uv>A−1

1 + v>A−1u
.

if and only if v>A−1u 6= 1.

Let N = I − P>U , then we can apply Lemma E.2 to (18) and obtain

xsU =

((
I − P>U

)
+

η̂

n(1− η̂)
11>

)−1(
−
[
B̂>1

]
s
− η̂

n(1− η̂)
1

)
=

(
N +

η̂

n(1− η̂)
11>

)−1(
−
[
B̂>1

]
s
− η̂

n(1− η̂)
1

)
=︸︷︷︸

LemmaE.2

(
N−1 − η̂

n(1− η̂)

N−111>N−1

1 + η̂
n(1−η̂)1>N−11

)(
−
[
B̂>1

]
s
− η̂

n(1− η̂)
1

)
= −N−1

[
B̂>1

]
s
− η̂

n(1− η̂)
N−11

+
η̂

n(1− η̂)

N−111>N−1
[
B̂>1

]
s

1 + η̂
n(1−η̂)1>N−11

+

(
η̂

n(1− η̂)

)2
N−111>N−11

1 + η̂
n(1−η̂)1>N−11

(19)

10We assume that the out-degree is distinct of zero for all nodes in the set of unlabeled nodes U .
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Equation (19) shows that xsU can easily be computed via (18), if we compute N−1
[
B̂>1

]
s

and

y := N−11. Computing the term N−1
[
B̂>1

]
s

= I − P>U
[
B̂>1

]
s

is equivalent to solve the linear
system in (15). Hence, by exploing the Shermann-Morrison formula (Lemma E.2), we just need
to solve the extra linear system Ny = 1, which costs much less effort than solving a dense linear
system per seed.
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