
A Computing Mutual Information I[ZI , I]

For two random variables ZI and I , where ZI is dependent on I , we can calculate the mutual
information via KL-divergence:

I(ZI , I) = DKL(P (ZI |I)||P (ZI)) (5)

KL-divergence is defined as

DKL(P,Q) = −
∫
x

P (x) log
Q(x)

P (x)
dx (6)

which means for calculating KL-divergence we need to integrate over the entire probability space.
However, Given two random variables P ∼ N (µ1, σ1) and Q ∼ N (µ2, σ2) that are Gaussian
distributed, the KL-divergence between this two random variables can be calculated in closed form:

DKL(P,Q) = log
σ2

σ1
+
σ2

1 + (µ1 − µ2)2

2σ2
2

− 1

2
(7)

The bottleneck is constructed by masking the input ZI = ΛI + (1−Λ)εI , where εI is the input noise
and εI ∼ N (µI , σI). The distribution of ZI given input I , P (ZI |I), is thus (Remark 2):

P (ZI |I) ∼ N (ΛI + (1− Λ)µI , (1− Λ)2σ2
I) (8)

As explained in Section 3.2, ZI is conditioned on ZG by using ZI = ΛZG + (1 − Λ)ε , and
ZG = λGI + (1− λG)εG, by substitution we have:

P (ZI) ∼ N (λGΛI + (1− λGΛ)µI , (1− λGΛ)2σ2
I) (9)

We are implicitly introducing an independence assumption for the random variable P (ZI) through our
Gaussian masking (ZI = ΛZG+(1−Λ)ε) formulation of P (ZI). Where each elements of P (ZI) are
constructed by an independent Gaussian masking. A better approximation would not impose such an
independence assumption. Please note that in original IBA [19] the same independence assumption
exists for P (Z). Since KL-divergence is additive for independent distributions (DKL(P ||Q) =∑
kDKL(Pk||Qk)), we can calculate the KL-divergence of P (ZI |I) and P (Z) by summing over

the KL-Divergence of there elements. Therefore (proposition 3):

DKL[P (ZI,k|Ik)||P (ZI,k)]

= log
(1− λG,kΛk)σI,k

(1− Λk)σI,k
+

(1− Λk)2σ2
I,k

2(1− λG,kΛk)2σ2
I,k

+
((ΛkIk + (1− Λk)µI,k)− (λG,kΛkIk + (1− λG,kΛk)µI,k))2

2(1− λG,kΛk)2σ2
I,k

− 1

2

= log
1− λG,kΛk

1− Λk
+

(1− Λk)2

2(1− λG,kΛk)2

+
(ΛkIk + µI,k − ΛkµI,k − λG,kΛkIk − µI,k + λG,kΛkµI,k)2

2(1− λG,kΛk)2σ2
I,k

− 1

2

= log
1− λG,kΛk

1− Λk
+

(1− Λk)2

2(1− λG,kΛk)2
+

(ΛkIk − ΛkµI,k − λG,kΛkIk + λG,kΛkµI,k)2

2(1− λG,kΛk)2σ2
I,k

− 1

2

= log
1− λG,kΛk

1− Λk
+

(1− Λk)2

2(1− λG,kΛk)2
+

(Ik − µI,k)2(Λk − λG,kΛk)2

2(1− λG,kΛk)2σ2
I,k

− 1

2
(10)

B Derivation of Proposition 4

The derivation is inspired by [40]. Contrary to [40], in this work we derive the exact representation of
I(Z, Y) instead of a lower bound. Given X as input, Y as output, Z as bottleneck (masked input), we

13

assume Y ↔ X ↔ Z, this means that Y and Z are independent given X. This assumption is fulfilled
by masking scheme and data generation process: for Z we have Z = m(X, ε, λ) (where function m
represents the masking scheme), thus Z depends on X given sampled noise and mask; for Y we have
Y = g(X), where function g represents the data generation process for the task. Therefore:

p(x, y, z) = p(y|x, z)p(z|x)p(x) = p(y|x)p(z|x)p(x) (11)

Thus we can also calculate p(y|z) by:

p(y|z) =
p(z, y)

p(z)
=

∫
p(y|x)p(z|x)p(x)

p(z)
dx (12)

And mutual information between Z and Y:

I(Z, Y) =

∫
p(y, z) log

p(y, z)

p(y)p(z)
dydz

=

∫
p(y, z) log

p(y|z)
p(y)

dydz

(13)

However, calculating p(y|z) requires integral over x, which is intractable. We then apply the
variational idea to approximate p(y|z) by qθ(y|z) instead. qθ(y|z) represents the neural network part
after bottleneck, θ indicates parameter of the neural network part.

I(Z, Y) =

∫
p(y, z) log

p(y|z)
p(y)

qθ(y|z)
qθ(y|z)

dydz

=

∫
p(y, z) log

qθ(y|z)
p(y)

dydz +

∫
p(y, z) log

p(y|z)
qθ(y|z)

dydz

=

∫
p(y, z) log

qθ(y|z)
p(y)

dydz +

∫
p(z)(

∫
p(y|z)DKL[p(y|z)||qθ(y|z)]dy)dz

=

∫
p(y, z) log

qθ(y|z)
p(y)

dydz +

∫
p(z)DKL[p(y|z)||qθ(y|z)]dz

=

∫
p(y, z) log

qθ(y|z)
p(y)

dydz + Ez∼p(z)[DKL[p(y|z)||qθ(y|z)]]

(14)

C Derivation of Theorem 5

Proof: Here we want to prove that for per-sample Information Bottleneck under classification task,
optimizer of cross entropy loss is also the optimal value for mutual information I[Y, Z]. Previous
work concludes that the optimizer of minEε∼p(ε)[− log qθ(ysample|z)] is a lower bound of I(Y, Z)
[40]. To ease the effort of readers searching across literatures, we summarize the proof in [40] in
Appendix G. We now prove this optimizer is not only the lower bound of I(Y,Z), but also the
optimizer for I(Y, Z) under per-sample setting (local explanation setting). Now we consider the
second term in Eq. (14) which we neglected during mutual information calculation:

Ez∼p(z)[DKL[p(y|z)||qθ(y|z)]] (15)

This term equals to zero if p(y|z) ≡ qθ(y|z). The local explainable set contains a batch of neighbours
of Xsample. We make two assumptions on the data points in the local explainable set. One is all
data points in the local explainable set have the same label distribution (for an Oracle classifier),
as data points are only slightly perturbed from Xsample. Another one is that distribution of Z can
be considered as equivalent inside local explainable set, i.e. the latent features are equivalent for
samples that are in the local explanation set of X (we know this is not true for adversarial samples,
however for many samples in the neighborhood which have the same label with X this is true). Now

14

we approximate p(y|z) by:

p(y|z) =
1

N

N∑
n=1

p(y|xn)p(z|xn)

p(z)
(local set of sample)

=
1

N

N∑
n=1

p(y|xsample + ε)p(z|xsample + ε)

p(z)

=
p(y|xsample)p(z|xsample)

p(z)
(use two assumptions above)

= p(y|xsample)

(16)

p(z|xsample) ≡ p(z) because we consider a local dataset, and use the second assumption that Z is
equivalent given data in a local set:

p(z) =

∫
p(z|x)p(x)dx ≈ 1

N

N∑
n=1

p(z|xn) =
1

N

N∑
n=1

p(z|xsample + ε) = p(z|xsample) (17)

Now p(y|z) ≡ qθ(y|z) can be easily proved, for p(y|z):

p(y|z) = p(y|xsample) =

{
1, if y = ysample
0, otherwise

(18)

For qθ(y|z), the optimizer maximize Eε[log(qθ(ysample|z))]. Then we have:

qθ(y|z) =

{
1, if y = ysample
0, otherwise

(19)

Thus they are equivalent, and the KL divergence is zero. As a result, we can remove the inequality in
variational step under assumption that we are generating attribution per sample, and assuming local
explanation.

D Details and Hyper-parameters of Experiment Setup

D.1 Hyper-parameters and Implementation of Attribution Methods

Most hyper-parameters used for ImageNet experiments are presented in the body of the text. We
would like to supplement the setting of generative model. The generative adversarial model for
estimating ZG uses a discriminator with 3 CNN layers followed by 2 fully connected layers, and
contains 200 samples in target dataset. During training, we update the discriminator’s parameter after
every 5 generator updates. To attribute the 4-layer LSTM model trained on IMDB dataset, we insert a
bottleneck after the last LSTM layer, the parameter β at this bottleneck is 15. The learning rate for
this bottleneck at hidden layer is 5 × 10−5. The generative adversarial model uses a single Layer
RNN as discriminator. For the input bottleneck at embedding space, we use βin = 30, lr = 0.5, and
optimization step = 30.

For Extremal Perturbations, size of the perturbation mask is a hyper-parameter. We set the mask size
to be 10% of the image size for EHR experiment, as all images for EHR have bounding box covering
less than 33% of the image. For the rest of evaluations of Extremal Perturbation, we use default mask
size implemented in public code framework.

Regarding the parameters of Integrated Gradients (IG), we use the default values (proposed in the
original paper [2]). The number of integrated points is 50 and the baseline value is 0. We will add
the details in the appendix. These values are commonly used and we observe that the method with
default parameters performs well in the quantitative experiment (Fig. 5b) as explained.

D.2 Hyper-parameters of InputIBA

In Fig. 7 we observe the effect of β in InputIBA optimization. Similar to IBA [19] it controls
the ammount of information passing through the bottleneck. Fig. 8 shows the effect of number of
optimization steps in InputIBA. Fig. 9 shows how the attribution map varies while the number of
optimizations steps of the generative adversarial model changes.

15

Input : 1 : 10 : 20 : 50 : 100

Figure 7: Influence of β of the InputIBA.

Input steps: 30 steps: 60 steps: 90 steps: 120 steps: 150

Figure 8: Influence of optimization steps of the InputIBA.

Input steps: 50 steps: 100 steps: 200 steps: 500 steps: 1000

Figure 9: Influence of optimization steps of the generative adversarial model.

Method Insertion AUC Deletion AUC
InputIBA 0.710± 0.005 0.045± 0.001

IBA 0.713± 0.004 0.090± 0.002
GradCAM 0.703± 0.005 0.133± 0.003
Guided BP 0.529± 0.004 0.132± 0.002

Extremal Perturbation 0.676± 0.004 0.135± 0.003
DeepSHAP 0.430± 0.004 0.196± 0.003

Integrated Gradients 0.358± 0.004 0.210± 0.003

Table 3: Mean and the standard error of insertion/deletion AUC for ImageNet dataset. We show the
statistical information with standard error in the table.

D.3 Insertion/Deletion

Instead of inserting or deleting one single pixel/token and report the model prediction on modified
input at each step, we apply batch-wise pixel/token insertion and deletion. One advantage of batch-
wise modification is that the evaluation is accelerated by leveraging the batch processing ability of
existing deep learning framework. Also batch-wise modification on input stabilizes the output, as
perturb only one pixel or token cannot change the overall information of the input effectively, thus
introduces strong deviation on model prediction. On both ImageNet and IMDB dataset, we set the
batch size to be 10. For images in ImageNet, we delete pixel by replacing it with black pixel. In
insertion test, we insert pixel on a blurred image rather than a black canvas, since insert pixel on black
canvas generates stronger adversarial effect than in deletion test. We generate the blurred image by
applying Gaussian blur with kernel size equal to 29, standard deviation for Gaussian kernel is 15.
For texts in IMDB dataset, both insertion and deletion are performed by replacing the token in text
with <unk> token. Insertion/Deletion results on ImageNet dataset and their corresponding standard
deviation are presented in Table 3.

16

D.4 Remove-and-Retrain (ROAR)

In Remove-and-Retrain (ROAR), we divide CIFAR10 dataset into train set, validation set and test
set. In training phase, a classifier is trained on the train set with 30 training epochs. After training is
complete, we apply the attribution method on trained model for all images in 3 subsets. In retrain
phase, for each attribution method, we perturb all 3 subsets based on attribution maps. As a result,
we generate 9 perturbed dataset using different perturbation rate (ranging from 10% to 90%, with
10% step). A model is trained from scratch on perturbed train set with 30 training epochs, and we
report the final performance of this model on perturbed test set.

E Qualitative Results of Attribution Methods

Image IBA GradCAM Guided BP Extremal Perturbation DeepSHAP Integrated Gradients InputIBA

Figure 10: Qualitative Comparison (ImageNet): We conduct qualitative comparision between
attribution methods on more sample images form ImageNet validation set.

F The case for EHR (vs. BBox metric in IBA [15])

Here we explain the limitations of bbox evaluation metric used in the [15] with three synthetic
examples. As illustrated in Fig. 11, we assume an object covers 25% area of an image. We also
assume three attribution methods and their attribution maps. As illustrated in Fig. 11a, method (a)

17

bbox: 1.0
EHR:1.0

(a)

bbox: 1.0
EHR:0.4

(b)

bbox: 1.0
EHR:0.2

(c)

Figure 11: Synthetic Examples: We synthesize three attribution maps of an imaginary image. The
object is surrounded by a bounding box, which is annotated with a blue box. Values of the bbox
metric and EHR are also shown on the top of each figure. (a): Attribution scores within the bounding
box are 1.0 (the maximal value), outside the bounding box are 0 (the minimal value). (b): Attribution
scores within the bounding box are 1.0, outside the bounding box are 0.25. (c) Attribution scores
within the bounding box are 0.25, outside the bounding box are 0.

only highlights the pixels within the bounding boxes. In this case, both the bbox metric and EHR are
1.0. In Fig. 11b, method (b) additionally highlights the region outside the bounding box, the scores
outside the bounding box is lower than that within the bounding box. Thus, the bbox metric remains
1.0. However, method (b) is sub-optimal to method (a) as it erroneously highlights the non-object
pixels. In Fig. 11c, method (c) only highlights the pixels within the bounding box, but with lower
scores. Thus, method (c) is also considered to be sub-optimal to method (a). The bbox metric in [15]
cannot distinguish these three cases, while EHR can: the EHR of method (b) and (c) are substantially
lower than that of method (a).

G Optimization of I[Y, Z][40]

For easier reference, we provide a summary of derivation of the lower bound of the mutual information
I(Z, Y) as done in [40]:

I(Z, Y) ≥
∫
p(y, z) log

qθ(y|z)
p(y)

dydz

=

∫
p(y, z) log qθ(y|z)dydz +H(Y)

(20)

The second term H(Y) is a constant and has no effect when optimize over mask. We can now further
construct our optimization objective as

max
λ

OE(Z, Y) (21)

To get the final result, we first expand p(y, z) as
∫
p(x, y, z)dx, and reformulate p(x, y, z) based on

Eq. (11), then we construct an empirical data distribution

p(x, y) =
1

N

N∑
n=1

σxn(x)σyn(y) (22)

Lastly, we use reparameterization trick since Z = f(x, ε), and x is not a random variable.

p(z|x)dz = p(ε)dε (23)

18

Combine all tricks together:

OE(Z, Y) =

∫
p(y, z) log qθ(y|z)dydz

=

∫
p(y|x)p(z|x)p(x) log qθ(y|z)dxdydz

=
1

N

N∑
n=1

∫
p(z|xn) log qθ(yn|z)dz

=
1

N

N∑
n=1

∫
p(ε) log qθ(yn|z)dε

=
1

N

N∑
n=1

Eε∼p(ε)[log qθ(yn|z)]

= Eε∼p(ε)[log qθ(ysample|z)]

(24)

Summation is removed in the last derivation step, because we assume only one attribution sample.
We can write the optimization problem as minimizing a loss function, then the loss function is [40]:

L = Eε∼p(ε)[− log qθ(ysample|z)] (25)

L is the cross entropy loss function for a single sample xsample.

19

	Computing Mutual Information
	Derivation of Proposition 4
	Derivation of Theorem 5
	Details and Hyper-parameters of Experiment Setup
	Hyper-parameters and Implementation of Attribution Methods
	Hyper-parameters of InputIBA
	Insertion/Deletion
	Remove-and-Retrain (ROAR)

	Qualitative Results of Attribution Methods
	The case for EHR (vs. BBox metric in IBA
	Optimization of VIB

